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The notation and terminology used here are introduced in the following papers:
[11], [9], [10], [8], [1], [12], [4], [2], [7], [5], [3], and [6].

For simplicity we adopt the following rules: p, q, r, s, p1, q1 are elements of
CQC-WFF, X, Y , Z, X1, X2 are subsets of CQC-WFF, h is a formula, and x,
y are bound variables.

One can prove the following four propositions:

(1) If p ∈ X, then X ⊢ p.

(2) If X ⊆ Cn Y, then CnX ⊆ CnY.

(3) If X ⊢ p and {p} ⊢ q, then X ⊢ q.

(4) If X ⊢ p and X ⊆ Y, then Y ⊢ p.

Let p, q be elements of CQC-WFF. The predicate p ⊢ q is defined by:

(Def.1) {p} ⊢ q.

We now state two propositions:

(5) p ⊢ p.

(6) If p ⊢ q and q ⊢ r, then p ⊢ r.

Let X, Y be subsets of CQC-WFF. The predicate X ⊢ Y is defined as
follows:

(Def.2) For every element p of CQC-WFF such that p ∈ Y holds X ⊢ p.

We now state several propositions:

(7) X ⊢ Y iff Y ⊆ Cn X.

(8) X ⊢ X.

(9) If X ⊢ Y and Y ⊢ Z, then X ⊢ Z.

(10) X ⊢ {p} iff X ⊢ p.

1This work has been done while the author visited Warsaw University in Bia lystok, in
winter 1994–1995.
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(11) {p} ⊢ {q} iff p ⊢ q.

(12) If X ⊆ Y, then Y ⊢ X.

(13) X ⊢ Taut .

(14) ∅CQC ⊢ Taut .

Let X be a subset of CQC-WFF. The predicate ⊢ X is defined by:

(Def.3) For every element p of CQC-WFF such that p ∈ X holds ⊢ p.

We now state three propositions:

(15) ⊢ X iff ∅CQC ⊢ X.

(16) ⊢ Taut .

(17) ⊢ X iff X ⊆ Taut .

Let us consider X, Y . The predicate X ⊢⊣ Y is defined by:

(Def.4) For every p holds X ⊢ p iff Y ⊢ p.

Let us observe that this predicate is reflexive and symmetric.
The following propositions are true:

(18) X ⊢⊣ Y iff X ⊢ Y and Y ⊢ X.

(19) If X ⊢⊣ Y and Y ⊢⊣ Z, then X ⊢⊣ Z.

(20) X ⊢⊣ Y iff Cn X = Cn Y.

(21) CnX ∪ Cn Y ⊆ Cn(X ∪ Y ).

(22) Cn(X ∪ Y ) = Cn(Cn X ∪ Cn Y ).

(23) X ⊢⊣ CnX.

(24) X ∪ Y ⊢⊣ CnX ∪ Cn Y.

(25) If X1 ⊢⊣ X2, then X1 ∪ Y ⊢⊣ X2 ∪ Y.

(26) If X1 ⊢⊣ X2 and X1 ∪ Y ⊢ Z, then X2 ∪ Y ⊢ Z.

(27) If X1 ⊢⊣ X2 and Y ⊢ X1, then Y ⊢ X2.

Let p, q be elements of CQC-WFF. The predicate p ⊢⊣ q is defined by:

(Def.5) p ⊢ q and q ⊢ p.

Let us observe that the predicate defined above is reflexive and symmetric.
We now state a number of propositions:

(28) If p ⊢⊣ q and q ⊢⊣ r, then p ⊢⊣ r.

(29) p ⊢⊣ q iff {p} ⊢⊣ {q}.

(30) If p ⊢⊣ q and X ⊢ p, then X ⊢ q.

(31) {p, q} ⊢⊣ {p ∧ q}.

(32) p ∧ q ⊢⊣ q ∧ p.

(33) X ⊢ p ∧ q iff X ⊢ p and X ⊢ q.

(34) If p ⊢⊣ q and r ⊢⊣ s, then p ∧ r ⊢⊣ q ∧ s.

(35) X ⊢ ∀xp iff X ⊢ p.

(36) ∀xp ⊢⊣ p.

(37) If p ⊢⊣ q, then ∀xp ⊢⊣ ∀yq.
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Let p, q be elements of CQC-WFF. We say that p is an universal closure of
q if and only if the conditions (Def.6) are satisfied.

(Def.6) (i) p is closed, and

(ii) there exists a natural number n such that 1 ≤ n and there exists a
finite sequence L such that len L = n and L(1) = q and L(n) = p and for
every natural number k such that 1 ≤ k and k < n there exists a bound
variable x and there exists an element r of CQC-WFF such that r = L(k)
and L(k + 1) = ∀xr.

One can prove the following propositions:

(38) If p is an universal closure of q, then p ⊢⊣ q.

(39) If ⊢ p ⇒ q, then p ⊢ q.

(40) If X ⊢ p ⇒ q, then X ∪ {p} ⊢ q.

(41) If p is closed and p ⊢ q, then ⊢ p ⇒ q.

(42) If p1 is an universal closure of p, then X ∪ {p} ⊢ q iff X ⊢ p1 ⇒ q.

(43) If p is closed and p ⊢ q, then ¬q ⊢ ¬p.

(44) If p is closed and X ∪ {p} ⊢ q, then X ∪ {¬q} ⊢ ¬p.

(45) If p is closed and ¬p ⊢ ¬q, then q ⊢ p.

(46) If p is closed and X ∪ {¬p} ⊢ ¬q, then X ∪ {q} ⊢ p.

(47) If p is closed and q is closed, then p ⊢ q iff ¬q ⊢ ¬p.

(48) If p1 is an universal closure of p and q1 is an universal closure of q, then
p ⊢ q iff ¬q1 ⊢ ¬p1.

(49) If p1 is an universal closure of p and q1 is an universal closure of q, then
p ⊢⊣ q iff ¬p1 ⊢⊣ ¬q1.

Let p, q be elements of CQC-WFF. The predicate p ≡ q is defined by:

(Def.7) ⊢ p ⇔ q.

Let us observe that this predicate is reflexive and symmetric.

One can prove the following propositions:

(50) p ≡ q iff ⊢ p ⇒ q and ⊢ q ⇒ p.

(51) If p ≡ q and q ≡ r, then p ≡ r.

(52) If p ≡ q, then p ⊢⊣ q.

(53) p ≡ q iff ¬p ≡ ¬q.

(54) If p ≡ q and r ≡ s, then p ∧ r ≡ q ∧ s.

(55) If p ≡ q and r ≡ s, then p ⇒ r ≡ q ⇒ s.

(56) If p ≡ q and r ≡ s, then p ∨ r ≡ q ∨ s.

(57) If p ≡ q and r ≡ s, then p ⇔ r ≡ q ⇔ s.

(58) If p ≡ q, then ∀xp ≡ ∀xq.

(59) If p ≡ q, then ∃xp ≡ ∃xq.

(60) For all sets X, Y , Z such that Y ∩Z = ∅ holds (X\Y )∪Z = (X∪Z)\Y.
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(61) Let k be a natural number, and let l be a list of variables of the length
k, and let a be a free variable, and let x be a bound variable. Then
snb(l) ⊆ snb(l[a7−→. x]).

(62) Let k be a natural number, and let l be a list of variables of the length
k, and let a be a free variable, and let x be a bound variable. Then
snb(l[a7−→. x]) ⊆ snb(l) ∪ {x}.

(63) For every h holds snb(h) ⊆ snb(h(x)).

(64) For every h holds snb(h(x)) ⊆ snb(h) ∪ {x}.

(65) If p = h(x) and x 6= y and y /∈ snb(h), then y /∈ snb(p).

(66) If p = h(x) and q = h(y) and x /∈ snb(h) and y /∈ snb(h), then ∀xp ≡
∀yq.
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[5] Czes law Byliński and Grzegorz Bancerek. Variables in formulae of the first order lan-

guage. Formalized Mathematics, 1(3):459–469, 1990.
[6] Agata Darmochwa l. A first–order predicate calculus. Formalized Mathematics, 1(4):689–

695, 1990.
[7] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics,

1(2):303–311, 1990.
[8] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

[11] Zinaida Trybulec and Halina Świe
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