Logical Equivalence of Formulae¹

Oleg Okhotnikov Ural University Ekaterinburg

MML Identifier: CQC_THE3.

The notation and terminology used here are introduced in the following papers: [11], [9], [10], [8], [1], [12], [4], [2], [7], [5], [3], and [6].

For simplicity we adopt the following rules: p, q, r, s, p_1, q_1 are elements of CQC-WFF, X, Y, Z, X_1, X_2 are subsets of CQC-WFF, h is a formula, and x, y are bound variables.

One can prove the following four propositions:

- (1) If $p \in X$, then $X \vdash p$.
- (2) If $X \subseteq \operatorname{Cn} Y$, then $\operatorname{Cn} X \subseteq \operatorname{Cn} Y$.
- (3) If $X \vdash p$ and $\{p\} \vdash q$, then $X \vdash q$.

(4) If $X \vdash p$ and $X \subseteq Y$, then $Y \vdash p$.

Let p, q be elements of CQC-WFF. The predicate $p \vdash q$ is defined by:

 $(\text{Def.1}) \quad \{p\} \vdash q.$

We now state two propositions:

- (5) $p \vdash p$.
- (6) If $p \vdash q$ and $q \vdash r$, then $p \vdash r$.

Let X, Y be subsets of CQC-WFF. The predicate $X \vdash Y$ is defined as follows:

 $(\mathrm{Def.2}) \quad \text{ For every element } p \text{ of CQC-WFF such that } p \in Y \text{ holds } X \vdash p.$

We now state several propositions:

- (7) $X \vdash Y$ iff $Y \subseteq \operatorname{Cn} X$.
- (8) $X \vdash X$.
- (9) If $X \vdash Y$ and $Y \vdash Z$, then $X \vdash Z$.
- (10) $X \vdash \{p\}$ iff $X \vdash p$.

 $^1\mathrm{This}$ work has been done while the author visited Warsaw University in Białystok, in winter 1994–1995.

C 1996 Warsaw University - Białystok ISSN 1426-2630

- $(11) \quad \{p\} \vdash \{q\} \text{ iff } p \vdash q.$
- (12) If $X \subseteq Y$, then $Y \vdash X$.
- (13) $X \vdash \text{Taut}$.
- (14) $\emptyset_{CQC} \vdash Taut$.
 - Let X be a subset of CQC-WFF. The predicate $\vdash X$ is defined by:

(Def.3) For every element p of CQC-WFF such that $p \in X$ holds $\vdash p$. We now state three propositions:

- (15) $\vdash X \text{ iff } \emptyset_{\text{CQC}} \vdash X.$
- (16) \vdash Taut.
- (17) $\vdash X \text{ iff } X \subseteq \text{Taut}.$

Let us consider X, Y. The predicate $X \vdash Y$ is defined by:

(Def.4) For every p holds $X \vdash p$ iff $Y \vdash p$.

Let us observe that this predicate is reflexive and symmetric.

The following propositions are true:

- (18) $X \vdash Y$ iff $X \vdash Y$ and $Y \vdash X$.
- (19) If $X \vdash Y$ and $Y \vdash Z$, then $X \vdash Z$.
- (20) $X \vdash Y$ iff $\operatorname{Cn} X = \operatorname{Cn} Y$.
- (21) $\operatorname{Cn} X \cup \operatorname{Cn} Y \subseteq \operatorname{Cn}(X \cup Y).$
- (22) $\operatorname{Cn}(X \cup Y) = \operatorname{Cn}(\operatorname{Cn} X \cup \operatorname{Cn} Y).$
- (23) $X \mapsto \operatorname{Cn} X.$
- $(24) \quad X \cup Y \longmapsto \operatorname{Cn} X \cup \operatorname{Cn} Y.$
- (25) If $X_1 \mapsto X_2$, then $X_1 \cup Y \mapsto X_2 \cup Y$.
- (26) If $X_1 \vdash X_2$ and $X_1 \cup Y \vdash Z$, then $X_2 \cup Y \vdash Z$.
- (27) If $X_1 \vdash X_2$ and $Y \vdash X_1$, then $Y \vdash X_2$.

Let p, q be elements of CQC-WFF. The predicate $p \vdash q$ is defined by:

(Def.5) $p \vdash q \text{ and } q \vdash p.$

Let us observe that the predicate defined above is reflexive and symmetric. We now state a number of propositions:

- (28) If $p \vdash q$ and $q \vdash r$, then $p \vdash r$.
- $(29) \quad p \vdash q \text{ iff } \{p\} \vdash \{q\}.$
- (30) If $p \vdash q$ and $X \vdash p$, then $X \vdash q$.
- $(31) \quad \{p,q\} \longmapsto \{p \land q\}.$
- $(32) \quad p \wedge q \vdash \neg q \wedge p.$
- (33) $X \vdash p \land q \text{ iff } X \vdash p \text{ and } X \vdash q.$
- (34) If $p \vdash q$ and $r \vdash s$, then $p \wedge r \vdash q \wedge s$.
- (35) $X \vdash \forall_x p \text{ iff } X \vdash p.$
- $(36) \quad \forall_x p \vdash \mid p.$
- (37) If $p \vdash q$, then $\forall_x p \vdash \forall_y q$.

Let p, q be elements of CQC-WFF. We say that p is an universal closure of q if and only if the conditions (Def.6) are satisfied.

- (Def.6) (i) p is closed, and
 - (ii) there exists a natural number n such that $1 \leq n$ and there exists a finite sequence L such that len L = n and L(1) = q and L(n) = p and for every natural number k such that $1 \leq k$ and k < n there exists a bound variable x and there exists an element r of CQC-WFF such that r = L(k) and $L(k+1) = \forall_x r$.

One can prove the following propositions:

- (38) If p is an universal closure of q, then $p \vdash q$.
- (39) If $\vdash p \Rightarrow q$, then $p \vdash q$.
- (40) If $X \vdash p \Rightarrow q$, then $X \cup \{p\} \vdash q$.
- (41) If p is closed and $p \vdash q$, then $\vdash p \Rightarrow q$.
- (42) If p_1 is an universal closure of p, then $X \cup \{p\} \vdash q$ iff $X \vdash p_1 \Rightarrow q$.
- (43) If p is closed and $p \vdash q$, then $\neg q \vdash \neg p$.
- (44) If p is closed and $X \cup \{p\} \vdash q$, then $X \cup \{\neg q\} \vdash \neg p$.
- (45) If p is closed and $\neg p \vdash \neg q$, then $q \vdash p$.
- (46) If p is closed and $X \cup \{\neg p\} \vdash \neg q$, then $X \cup \{q\} \vdash p$.
- (47) If p is closed and q is closed, then $p \vdash q$ iff $\neg q \vdash \neg p$.
- (48) If p_1 is an universal closure of p and q_1 is an universal closure of q, then $p \vdash q$ iff $\neg q_1 \vdash \neg p_1$.
- (49) If p_1 is an universal closure of p and q_1 is an universal closure of q, then $p \vdash q$ iff $\neg p_1 \vdash \neg q_1$.

Let p, q be elements of CQC-WFF. The predicate $p \equiv q$ is defined by:

(Def.7) $\vdash p \Leftrightarrow q$.

Let us observe that this predicate is reflexive and symmetric.

One can prove the following propositions:

- (50) $p \equiv q \text{ iff } \vdash p \Rightarrow q \text{ and } \vdash q \Rightarrow p.$
- (51) If $p \equiv q$ and $q \equiv r$, then $p \equiv r$.
- (52) If $p \equiv q$, then $p \vdash q$.
- (53) $p \equiv q \text{ iff } \neg p \equiv \neg q.$
- (54) If $p \equiv q$ and $r \equiv s$, then $p \wedge r \equiv q \wedge s$.
- (55) If $p \equiv q$ and $r \equiv s$, then $p \Rightarrow r \equiv q \Rightarrow s$.
- (56) If $p \equiv q$ and $r \equiv s$, then $p \lor r \equiv q \lor s$.
- (57) If $p \equiv q$ and $r \equiv s$, then $p \Leftrightarrow r \equiv q \Leftrightarrow s$.
- (58) If $p \equiv q$, then $\forall_x p \equiv \forall_x q$.
- (59) If $p \equiv q$, then $\exists_x p \equiv \exists_x q$.
- (60) For all sets X, Y, Z such that $Y \cap Z = \emptyset$ holds $(X \setminus Y) \cup Z = (X \cup Z) \setminus Y$.

- (61) Let k be a natural number, and let l be a list of variables of the length k, and let a be a free variable, and let x be a bound variable. Then $\operatorname{snb}(l) \subseteq \operatorname{snb}(l[a \mapsto x])$.
- (62) Let k be a natural number, and let l be a list of variables of the length k, and let a be a free variable, and let x be a bound variable. Then $\operatorname{snb}(l[a \mapsto x]) \subseteq \operatorname{snb}(l) \cup \{x\}.$
- (63) For every h holds $\operatorname{snb}(h) \subseteq \operatorname{snb}(h(x))$.
- (64) For every h holds $\operatorname{snb}(h(x)) \subseteq \operatorname{snb}(h) \cup \{x\}$.
- (65) If p = h(x) and $x \neq y$ and $y \notin \operatorname{snb}(h)$, then $y \notin \operatorname{snb}(p)$.
- (66) If p = h(x) and q = h(y) and $x \notin \operatorname{snb}(h)$ and $y \notin \operatorname{snb}(h)$, then $\forall_x p \equiv \forall_y q$.

Acknowledgments

The author wishes to thank Professor A. Trybulec for many helpful talks during the preparation of this paper.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669– 676, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- Czesław Byliński and Grzegorz Bancerek. Variables in formulae of the first order language. Formalized Mathematics, 1(3):459–469, 1990.
- [6] Agata Darmochwał. A first-order predicate calculus. Formalized Mathematics, 1(4):689– 695, 1990.
- [7] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303-311, 1990.
- [8] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [11] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [12] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received January 24, 1995