Logical Equivalence of Formulae ${ }^{1}$

Oleg Okhotnikov
Ural University
Ekaterinburg

MML Identifier: CQC_THE3.

The notation and terminology used here are introduced in the following papers: [11], [9], [10], [8], [1], [12], [4], [2], [7], [5], [3], and [6].

For simplicity we adopt the following rules: p, q, r, s, p_{1}, q_{1} are elements of CQC-WFF, X, Y, Z, X_{1}, X_{2} are subsets of CQC-WFF, h is a formula, and x, y are bound variables.

One can prove the following four propositions:
(1) If $p \in X$, then $X \vdash p$.
(2) If $X \subseteq \operatorname{Cn} Y$, then $\mathrm{Cn} X \subseteq \operatorname{Cn} Y$.
(3) If $X \vdash p$ and $\{p\} \vdash q$, then $X \vdash q$.
(4) If $X \vdash p$ and $X \subseteq Y$, then $Y \vdash p$.

Let p, q be elements of CQC-WFF. The predicate $p \vdash q$ is defined by:
(Def.1) $\quad\{p\} \vdash q$.
We now state two propositions:
(5) $p \vdash p$.
(6) If $p \vdash q$ and $q \vdash r$, then $p \vdash r$.

Let X, Y be subsets of CQC-WFF. The predicate $X \vdash Y$ is defined as follows:
(Def.2) For every element p of CQC-WFF such that $p \in Y$ holds $X \vdash p$.
We now state several propositions:
(7) $\quad X \vdash Y$ iff $Y \subseteq \operatorname{Cn} X$.
(8) $X \vdash X$.
(9) If $X \vdash Y$ and $Y \vdash Z$, then $X \vdash Z$.
(10) $\quad X \vdash\{p\}$ iff $X \vdash p$.

[^0](11) $\{p\} \vdash\{q\}$ iff $p \vdash q$.
(12) If $X \subseteq Y$, then $Y \vdash X$.
(13) $X \vdash$ Taut.
(14) $\emptyset_{\mathrm{CQC}} \vdash$ Taut.

Let X be a subset of CQC-WFF. The predicate $\vdash X$ is defined by:
(Def.3) For every element p of CQC-WFF such that $p \in X$ holds $\vdash p$.
We now state three propositions:
(15) $\vdash X$ iff $\emptyset_{\mathrm{CQC}} \vdash X$.
(16) \vdash Taut.
(17) $\vdash X$ iff $X \subseteq$ Taut.

Let us consider X, Y. The predicate $X \mapsto Y$ is defined by:
(Def.4) For every p holds $X \vdash p$ iff $Y \vdash p$.
Let us observe that this predicate is reflexive and symmetric.
The following propositions are true:
(18) $\quad X \vdash Y$ iff $X \vdash Y$ and $Y \vdash X$.
(19) If $X \mapsto Y$ and $Y \mapsto Z$, then $X \mapsto Z$.
(20) $\quad X \mapsto Y$ iff $\mathrm{Cn} X=\mathrm{Cn} Y$.
(21) $\operatorname{Cn} X \cup \operatorname{Cn} Y \subseteq \operatorname{Cn}(X \cup Y)$.
(22) $\operatorname{Cn}(X \cup Y)=\operatorname{Cn}(\operatorname{Cn} X \cup \operatorname{Cn} Y)$.
(23) $\quad X \mapsto \operatorname{Cn} X$.
(24) $\quad X \cup Y \mapsto \operatorname{Cn} X \cup \operatorname{Cn} Y$.
(25) If $X_{1} \mapsto X_{2}$, then $X_{1} \cup Y \mapsto X_{2} \cup Y$.
(26) If $X_{1} \mapsto X_{2}$ and $X_{1} \cup Y \vdash Z$, then $X_{2} \cup Y \vdash Z$.
(27) If $X_{1} \mapsto X_{2}$ and $Y \vdash X_{1}$, then $Y \vdash X_{2}$.

Let p, q be elements of CQC-WFF. The predicate $p \mapsto q$ is defined by: (Def.5) $\quad p \vdash q$ and $q \vdash p$.
Let us observe that the predicate defined above is reflexive and symmetric.
We now state a number of propositions:
(28) If $p \mapsto q$ and $q \mapsto r$, then $p \mapsto r$.
(29) $\quad p \mapsto q$ iff $\{p\} \mapsto\{q\}$.
(30) If $p \mapsto q$ and $X \vdash p$, then $X \vdash q$.
(31) $\quad\{p, q\} \mapsto\{p \wedge q\}$.
(32) $p \wedge q \mapsto q \wedge p$.
(33) $\quad X \vdash p \wedge q$ iff $X \vdash p$ and $X \vdash q$.
(34) If $p \mapsto q$ and $r \mapsto s$, then $p \wedge r \mapsto q \wedge s$.
(35) $X \vdash \forall_{x} p$ iff $X \vdash p$.
(36) $\quad \forall_{x} p \mapsto p$.
(37) If $p \mapsto q$, then $\forall_{x} p \mapsto \forall_{y} q$.

Let p, q be elements of CQC-WFF. We say that p is an universal closure of q if and only if the conditions (Def.6) are satisfied.
(Def.6) (i) $\quad p$ is closed, and
(ii) there exists a natural number n such that $1 \leq n$ and there exists a finite sequence L such that len $L=n$ and $L(1)=q$ and $L(n)=p$ and for every natural number k such that $1 \leq k$ and $k<n$ there exists a bound variable x and there exists an element r of CQC-WFF such that $r=L(k)$ and $L(k+1)=\forall_{x} r$.
One can prove the following propositions:
(38) If p is an universal closure of q, then $p \mapsto q$.
(39) If $\vdash p \Rightarrow q$, then $p \vdash q$.
(40) If $X \vdash p \Rightarrow q$, then $X \cup\{p\} \vdash q$.
(41) If p is closed and $p \vdash q$, then $\vdash p \Rightarrow q$.
(42) If p_{1} is an universal closure of p, then $X \cup\{p\} \vdash q$ iff $X \vdash p_{1} \Rightarrow q$.
(43) If p is closed and $p \vdash q$, then $\neg q \vdash \neg p$.
(44) If p is closed and $X \cup\{p\} \vdash q$, then $X \cup\{\neg q\} \vdash \neg p$.
(45) If p is closed and $\neg p \vdash \neg q$, then $q \vdash p$.
(46) If p is closed and $X \cup\{\neg p\} \vdash \neg q$, then $X \cup\{q\} \vdash p$.
(47) If p is closed and q is closed, then $p \vdash q$ iff $\neg q \vdash \neg p$.
(48) If p_{1} is an universal closure of p and q_{1} is an universal closure of q, then $p \vdash q$ iff $\neg q_{1} \vdash \neg p_{1}$.
(49) If p_{1} is an universal closure of p and q_{1} is an universal closure of q, then $p \mapsto q$ iff $\neg p_{1} \mapsto \neg q_{1}$.
Let p, q be elements of CQC-WFF. The predicate $p \equiv q$ is defined by:

(Def.7) $\quad \vdash p \Leftrightarrow q$.

Let us observe that this predicate is reflexive and symmetric.
One can prove the following propositions:

```
p\equivq iff }\vdashp=>q\mathrm{ and }\vdashq=>p
```

(51) If $p \equiv q$ and $q \equiv r$, then $p \equiv r$.
(52) If $p \equiv q$, then $p \mapsto q$.
(53) $\quad p \equiv q$ iff $\neg p \equiv \neg q$.
(54) If $p \equiv q$ and $r \equiv s$, then $p \wedge r \equiv q \wedge s$.
(55) If $p \equiv q$ and $r \equiv s$, then $p \Rightarrow r \equiv q \Rightarrow s$.
(56) If $p \equiv q$ and $r \equiv s$, then $p \vee r \equiv q \vee s$.
(57) If $p \equiv q$ and $r \equiv s$, then $p \Leftrightarrow r \equiv q \Leftrightarrow s$.
(58) If $p \equiv q$, then $\forall_{x} p \equiv \forall_{x} q$.
(59) If $p \equiv q$, then $\exists_{x} p \equiv \exists_{x} q$.
(60) For all sets X, Y, Z such that $Y \cap Z=\emptyset$ holds $(X \backslash Y) \cup Z=(X \cup Z) \backslash Y$.
(61) Let k be a natural number, and let l be a list of variables of the length k, and let a be a free variable, and let x be a bound variable. Then $\operatorname{snb}(l) \subseteq \operatorname{snb}(l[a \vdash x])$.
(62) Let k be a natural number, and let l be a list of variables of the length k, and let a be a free variable, and let x be a bound variable. Then $\operatorname{snb}(l[a \longmapsto x]) \subseteq \operatorname{snb}(l) \cup\{x\}$.
(63) For every h holds $\operatorname{snb}(h) \subseteq \operatorname{snb}(h(x))$.
(64) For every h holds $\operatorname{snb}(h(x)) \subseteq \operatorname{snb}(h) \cup\{x\}$.
(65) If $p=h(x)$ and $x \neq y$ and $y \notin \operatorname{snb}(h)$, then $y \notin \operatorname{snb}(p)$.
(66) If $p=h(x)$ and $q=h(y)$ and $x \notin \operatorname{snb}(h)$ and $y \notin \operatorname{snb}(h)$, then $\forall_{x} p \equiv$ $\forall_{y} q$.

Acknowledgments

The author wishes to thank Professor A. Trybulec for many helpful talks during the preparation of this paper.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Bylinski. A classical first order language. Formalized Mathematics, 1(4):669676, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czesław Byliński and Grzegorz Bancerek. Variables in formulae of the first order language. Formalized Mathematics, 1(3):459-469, 1990.
[6] Agata Darmochwat. A first-order predicate calculus. Formalized Mathematics, 1(4):689695, 1990.
[7] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303-311, 1990.
[8] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[11] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[12] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[^0]: ${ }^{1}$ This work has been done while the author visited Warsaw University in Biatystok, in winter 1994-1995.

