FORMALIZED MATHEMATICS

Volume 5, Number 1, 1996
Warsaw University - Bialystok

A Compiler of Arithmetic Expressions for
SCM !

Grzegorz Bancerek Piotr Rudnicki
Polish Academy of Sciences University of Alberta
Institute of Mathematics Department of Computing Science
Warsaw Edmonton

Summary. We define a set of binary arithmetic expressions with
the following operations: +, —, -, mod, and div and formalize the com-
mon meaning of the expressions in the set of integers. Then, we define a
compile function that for a given expression results in a program for the
SCM machine defined by Nakamura and Trybulec in [13]. We prove that
the generated program when loaded into the machine and executed com-
putes the value of the expression. The program uses additional memory
and runs in time linear in length of the expression.

MML Identifier: SCM_COMP.

The articles [16], [12], [1], [21], [18], [20], [17], [9], [10], [3], [2], [13], [14], [19],
[15], [5], [4], [8], [11], [6], and [7] provide the terminology and notation for this
paper.

The following two propositions are true:

(1) Let Iy, Iy be finite sequences of elements of the instructions of SCM,
and let D be a finite sequence of elements of 7, and let i1, p1, d; be natural
numbers. Then every state with instruction counter on i1, with I; ~ I
located from pi, and D from dp is a state with instruction counter on
i1, with I; located from pq, and D from d; and a state with instruction
counter on i1, with I located from pq + len I7, and D from d;.

(2) Let Iy, I> be finite sequences of elements of the instructions of SCM,
and let i1, p1, di, k, io be natural numbers, and let s be a state with
instruction counter on i1, with I; ~ Iy located from p1, and 7 from dj,
and let u be a state of SCM. Suppose u = (Computation(s))(k) and

!This work was partially supported by NSERC Grant OGP9207 while the first author
visited University of Alberta, May-June 1993.

@ 1996 Warsaw University - Bialystok
15 ISSN 0777-4028

16 GRZEGORZ BANCEREK AND PIOTR RUDNICKI

i(iz) = IC,. Then u is a state with instruction counter on o, with Iy
located from p1 + len I, and €7 from d;.
The binary strict non empty tree construction structure AEgcy with termi-
nals, nonterminals, and useful nonterminals is defined by the conditions (Def.1).
(Def.1) (i) The terminals of AEgcym = Data-Locgeom,
(ii) the nonterminals of AEgcy = |1, 51, and
(i) for all symbols z, y, z of AEgem holds z = (y, z) iff x € [1, 5.
A binary term is an element of TS(AEgcmMm).
Let ny be a nonterminal of AEgcym and let tq, to be binary terms. Then
ni-tree(ty,t2) is a binary term.
Let ¢ be a terminal of AEgcy. Then the root tree of ¢ is a binary term.
Let ¢ be a terminal of AEgcy. The functor @t yielding a data-location is
defined as follows:
(Def.2) @t =t.
One can prove the following propositions:
(3) For every nonterminal ny of AEgcy holds ny = (0, 0) or ny = (0, 1) or
ny = (0, 2) or ny = (0, 3) or ny = (0, 4).
(4) (i) (0, 0) is a nonterminal of AEgcm,
(ii) (0, 1) is a nonterminal of AEgc,
(iii) (0, 2) is a nonterminal of AEgcw,
(iv) (0, 3) is a nonterminal of AEgcn, and
(v) {0, 4) is a nonterminal of AEgcy.
Let t3, t4 be binary terms. The functor ¢3 + t4 yields a binary term and is
defined as follows:
(Def.3) ts+tg = (0, 0)-tree(ts,ts).
The functor t3 — t4 yielding a binary term is defined as follows:
(Def.4) t3 - t4 = (0, 1)—tree(t3, t4).
The functor t3 - t4 yields a binary term and is defined by:
(Def5) t3-14 = (0, 2)—tree(t3, t4).
The functor t3 + t4 yields a binary term and is defined by:
(Def6) i3 +14 = (0, 3)—tree(t3, t4).
The functor t3 mod t4 yielding a binary term is defined as follows:
(Def.7) tzmod ty = (0, 4)-tree(ts, t4).
We now state the proposition
(5) Let t5 be a binary term. Then
(i) there exists a terminal ¢ of AEgcy such that t5 = the root tree of ¢, or
(ii) there exist binary terms t1, to such that t5 =t +t9 or t5 =t; — tg or
ts =t1 -ty or t5 = t1 +~ tg or t5 = t; mod ty.
Let o be a nonterminal of AEgcy and let ¢, j be integers. The functor o(i,)
yielding an integer is defined as follows:

A COMPILER OF ARITHMETIC EXPRESSIONS FOR ...

(Def8) (i) o(i,j) =i+ j if o = (0, 0),

(il) o(i,j) =i—jifo=(0,1),
(iii) o(i,j) =i-jif o= (0, 2),
(iv) o(i,j) =i=+7jif o= (0, 3),

(v) o(i,j) =imodj if o = (0, 4).

Let s be a state of SCM and let ¢ be a terminal of AEgcy. Then s(t) is an
integer.

7 is a non empty subset of R.

One can verify that every element of 7 is integer.

Let D be a non empty set, let f be a function from 7 into D, and let x be
an integer. Then f(x) is an element of D.

Let s be a state of SCM and let t5 be a binary term. The functor t¢s5 Qg
yields an integer and is defined by the condition (Def.9).

(Def.9) There exists a function f from TS(AEgcm) into Z such that
(i) 5% s= f(ts),
(ii) for every terminal ¢t of AEgcy holds f(the root tree of t) = s(t), and
(iii) for every nonterminal ny of AEgcy and for all binary terms ¢4, to and
for all symbols rq, ro of AEgcn such that r{ = the root label of ¢; and
ro = the root label of t9 and ny = (r1,r2) and for all elements x1, x2 of Z
such that z1 = f(¢1) and xo = f(t2) holds f(ni-tree(ti,t2)) = ni(z1,x2).
One can prove the following three propositions:
(6) For every state s of SCM and for every terminal ¢ of AEgcy holds (the
root tree of t) @ s = s(t).
(7) For every state s of SCM and for every nonterminal n; of AEgcn and
for all binary terms t1, ty holds (ni-tree(t;,t2)) @ s = ny(t; @ s,to @ 5).
(8) Let s be a state of SCM and let 1, t3 be binary terms. Then (t; +
t)) @ s = (t1 @ s) 4+ (129 s) and (t; —t3) @5 = (t; @ 5) — (t2 @ s) and
tyta@s=(t19s) (t2®s) and (t; ~t2) @ s = (t1 @ s) + (t2 ® s) and
(t; mod ts) © s = (t; @ s) mod (to @ s).

Let ny be a nonterminal of AEgcy and let n be a natural number. The func-
tor Selfwork(ni,n) yielding an element of (the instructions of SCM qua set)*
is defined as follows:

(Def.10) (i) Selfwork(ni,n) = (AddTo(d,,dn+1)) if 71 = (0, 0),

(ii) Selfwork(ni,n) = (SubFrom(d,,d,+1)) if n1 = (0, 1),

(i) Selfwork(ni,n) = (MultBy(d,,d,+1)) if n1 = (0, 2),

(iv) Selfwork(ni,n) = (Divide(dy,, dp+1)) if ny = (0, 3),

(v) Selfwork(ni,n) = (Divide(dy,, dy+1), dn:=dp41) if n1 = (0, 4).

Let t5 be a binary term and let a; be a natural number. The functor
Compile(ts, a1) yielding a finite sequence of elements of the instructions of SCM
is defined by the condition (Def.11).

(Def.11) There exists a function f from TS(AEgcm) into ((the instructions of
SCM qua set)*)V such that
(i) Compile(ts,a1) = (f(t5) qua element of ((the instructions of SCM

— — N —

17

18 GRZEGORZ BANCEREK AND PIOTR RUDNICKI

qua set)*)")(a1),

(ii) for every terminal t of AEgonm there exists a function g from N into
(the instructions of SCM qua set)* such that g = f(the root tree of t)
and for every natural number n holds g(n) = (d,:=t), and

(iii) for every nonterminal ny of AEgcy and for all binary terms t3, t4 and
for all symbols r1, ro of AEgcnm such that ry = the root label of t3 and ro =
the root label of t4 and ny = (r1,r2) there exist functions g, fi, fo from N
into (the instructions of SCM qua set)* such that g = f(ni-tree(ts,t4))
and f; = f(t3) and fo = f(t4) and for every natural number n holds
g(n) = fi(n) " fa(n + 1) ~ Selfwork(ny, n).

One can prove the following propositions:

(9) For every terminal ¢ of AEgcy and for every natural number n holds
Compile(the root tree of ¢, n) = (d,:=%t).

(10) Let ny be a nonterminal of AEgcwm, and let t3, t4 be binary terms, and
let n be a natural number, and let 1, ro be symbols of AEgcn. Suppose
r1 = the root label of t3 and o = the root label of t4 and ny = (ry,r2).
Then Compile(ni-tree(ts, t4),n) = (Compile(ts,n)) ~ Compile(ty,n + 1)~
Selfwork(ni,n).

Let t be a terminal of AEgcy. The functor d~1(¢) yielding a natural number
is defined as follows:

(Def.12) ddfl(t) =t.
Let na, n3 be natural numbers. Then max(ng, ng) is a natural number.
Let t5 be a binary term. The functor maxpy (t5) yielding a natural number
is defined by the condition (Def.13).
(Def.13) There exists a function f from TS(AEgcym) into N such that

(i) maxpr(ts) = f(ts),

(ii) for every terminal ¢ of AEgcy holds f(the root tree of t) = d=1(¢),
and

(iii) for every nonterminal ny of AEgcy and for all binary terms ¢q, to and
for all symbols 71, 7o of AEscym such that 71 = the root label of ¢; and
r9 = the root label of t9 and ny = (rq1,r2) and for all natural numbers
x1, xg such that x1 = f(t1) and xo = f(t2) holds f(ni-tree(t1,t2)) =
max(x1,x2).

One can prove the following propositions:

(11) For every terminal ¢ of AEgcy holds maxpy, (the root tree of t) = d~1(¢).

(12) For every nonterminal nq of AEgcy and for all binary terms ¢, to holds
maxpr,(ni-tree(ty, t2)) = max(maxpy (1), maxpy,(t2)).

(13) Let t5 be a binary term and let s1, so be states of SCM. Suppose that
for every natural number dy such that dy < maxpy,(¢5) holds s1(d(ay)) =
Sg(d(dz)). Then t5 @ S1 = t5 Q S9.

(14) Let t5 be a binary term, and let aj, n, k& be natural numbers, and let
s be a state with instruction counter on n, with Compile(ts,a;) located

(15)

1]
2]

3]
[4]

[5]
(6]
[7]
8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]

A COMPILER OF ARITHMETIC EXPRESSIONS FOR ...

from n, and £7 from k. Suppose a; > maxpy(t5). Then there exists a
natural number ¢ and there exists a state u of SCM such that

u = (Computation(s))(i + 1),

i + 1 = len Compile(ts, aq),

Icu - ln—f—(i—i—l)a
u(d(q,)) = ts @ s, and
for every natural number dg such that da < a; holds s(d(4,)) = u(d(4,))-

)
)
111) IC(COmputation(s))(i) = Inti,
) .
)
)

Let t5 be a binary term, and let a;, n, £ be natural numbers, and
let s be a state with instruction counter on n, with (Compile(ts,a;)) °
(haltgcn) located from n, and €7 from k. Suppose a; > maxpr,(t5).
Then s is halting and (Result(s))(d,)) = t5 @ s and the complexity of
s = len Compile(ts, aq).

REFERENCES

Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-
ematics, 1(1):41-46, 1990.

Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82,
1993.

Grzegorz Bancerek. Konig’s lemma. Formalized Mathematics, 2(3):397-402, 1991.
Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for SCM. Formal-
ized Mathematics, 4(1):61-67, 1993.

Grzegorz Bancerek and Piotr Rudnicki. On defining functions on binary trees. Formal-
ized Mathematics, 5(1):9-13, 1996.

Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized
Mathematics, 4(1):91-101, 1993.

Czestaw Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formal-
ized Mathematics, 1(3):529-536, 1990.

Czeslaw Bylinski. Functions and their basic properties. Formalized Mathematics,
1(1):55-65, 1990.

Czeslaw Byliniski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
1990.

Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar - part 1. Formalized
Mathematics, 2(5):683-687, 1991.

Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151-160, 1992.

Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241-250, 1992.

Andrzej Trybulec. Function domains and Fraenkel operator. Formalized Mathematics,
1(3):495-500, 1990.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.

Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
1(1):97-105, 1990.

Andrzej Trybulec and Czestaw Byliniski. Some properties of real numbers. Formalized
Mathematics, 1(3):445-449, 1990.

Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51-56, 1993.

19

20 GRZEGORZ BANCEREK AND PIOTR RUDNICKI

[20] Michat J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received December 30, 1993

