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Summary. We define a set of binary arithmetic expressions with
the following operations: +, —, -, mod, and div and formalize the com-
mon meaning of the expressions in the set of integers. Then, we define a
compile function that for a given expression results in a program for the
SCM machine defined by Nakamura and Trybulec in [13]. We prove that
the generated program when loaded into the machine and executed com-
putes the value of the expression. The program uses additional memory
and runs in time linear in length of the expression.

MML Identifier: SCM_COMP.

The articles [16], [12], [1], [21], [18], [20], [17], [9], [10], [3], [2], [13], [14], [19],
[15], [5], [4], [8], [11], [6], and [7] provide the terminology and notation for this
paper.

The following two propositions are true:

(1) Let Iy, Iy be finite sequences of elements of the instructions of SCM,
and let D be a finite sequence of elements of 7, and let i1, p1, d; be natural
numbers. Then every state with instruction counter on i1, with I; ~ I
located from pi, and D from dp is a state with instruction counter on
i1, with I; located from pq, and D from d; and a state with instruction
counter on i1, with I located from pq + len I7, and D from d;.

(2) Let Iy, I> be finite sequences of elements of the instructions of SCM,
and let i1, p1, di, k, io be natural numbers, and let s be a state with
instruction counter on i1, with I; ~ Iy located from p1, and 7 from dj,
and let u be a state of SCM. Suppose u = (Computation(s))(k) and
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i(iz) = IC,. Then u is a state with instruction counter on o, with Iy
located from p1 + len I, and €7 from d;.
The binary strict non empty tree construction structure AEgcy with termi-
nals, nonterminals, and useful nonterminals is defined by the conditions (Def.1).
(Def.1) (i) The terminals of AEgcym = Data-Locgeom,
(ii)  the nonterminals of AEgcy = |1, 51, and
(i)  for all symbols z, y, z of AEgem holds z = (y, z) iff x € [ 1, 5.
A binary term is an element of TS(AEgcmMm).
Let ny be a nonterminal of AEgcym and let tq, to be binary terms. Then
ni-tree(ty,t2) is a binary term.
Let ¢ be a terminal of AEgcy. Then the root tree of ¢ is a binary term.
Let ¢ be a terminal of AEgcy. The functor @t yielding a data-location is
defined as follows:
(Def.2) @t =t.
One can prove the following propositions:
(3)  For every nonterminal ny of AEgcy holds ny = (0, 0) or ny = (0, 1) or
ny = (0, 2) or ny = (0, 3) or ny = (0, 4).
(4) (i) (0, 0) is a nonterminal of AEgcm,
(ii) (0, 1) is a nonterminal of AEgc,
(iii) (0, 2) is a nonterminal of AEgcw,
(iv) (0, 3) is a nonterminal of AEgcn, and
(v) {0, 4) is a nonterminal of AEgcy.
Let t3, t4 be binary terms. The functor ¢3 + t4 yields a binary term and is
defined as follows:
(Def.3)  ts+tg = (0, 0)-tree(ts,ts).
The functor t3 — t4 yielding a binary term is defined as follows:
(Def.4) t3 - t4 = (0, 1)—tree(t3, t4).
The functor t3 - t4 yields a binary term and is defined by:
(Def5) t3-14 = (0, 2)—tree(t3, t4).
The functor t3 + t4 yields a binary term and is defined by:
(Def6) i3 +14 = (0, 3)—tree(t3, t4).
The functor t3 mod t4 yielding a binary term is defined as follows:
(Def.7)  tzmod ty = (0, 4)-tree(ts, t4).
We now state the proposition
(5)  Let t5 be a binary term. Then
(i)  there exists a terminal ¢ of AEgcy such that t5 = the root tree of ¢, or
(ii)  there exist binary terms t1, to such that t5 =t +t9 or t5 =t; — tg or
ts =t1 -ty or t5 = t1 +~ tg or t5 = t; mod ty.
Let o be a nonterminal of AEgcy and let ¢, j be integers. The functor o(i, )
yielding an integer is defined as follows:
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(Def8) (i)  o(i,j) =i+ j if o = (0, 0),

(il)  o(i,j) =i—jifo=(0,1),
(iii)  o(i,j) =i-jif o= (0, 2),
(iv)  o(i,j) =i=+7jif o= (0, 3),

(v)  o(i,j) =imodj if o = (0, 4).

Let s be a state of SCM and let ¢ be a terminal of AEgcy. Then s(t) is an
integer.

7 is a non empty subset of R.

One can verify that every element of 7 is integer.

Let D be a non empty set, let f be a function from 7 into D, and let x be
an integer. Then f(x) is an element of D.

Let s be a state of SCM and let t5 be a binary term. The functor t¢s5 Qg
yields an integer and is defined by the condition (Def.9).

(Def.9)  There exists a function f from TS(AEgcm) into Z such that
(i) 5% s= f(ts),
(ii)  for every terminal ¢t of AEgcy holds f(the root tree of t) = s(t), and
(iii)  for every nonterminal ny of AEgcy and for all binary terms ¢4, to and
for all symbols rq, ro of AEgcn such that r{ = the root label of ¢; and
ro = the root label of t9 and ny = (r1,r2) and for all elements x1, x2 of Z
such that z1 = f(¢1) and xo = f(t2) holds f(ni-tree(ti,t2)) = ni(z1,x2).
One can prove the following three propositions:
(6)  For every state s of SCM and for every terminal ¢ of AEgcy holds (the
root tree of t) @ s = s(t).
(7)  For every state s of SCM and for every nonterminal n; of AEgcn and
for all binary terms t1, ty holds (ni-tree(t;,t2)) @ s = ny(t; @ s,to @ 5).
(8) Let s be a state of SCM and let 1, t3 be binary terms. Then (t; +
t)) @ s = (t1 @ s) 4+ (129 s) and (t; —t3) @5 = (t; @ 5) — (t2 @ s) and
tyta@s=(t19s) (t2®s) and (t; ~t2) @ s = (t1 @ s) + (t2 ® s) and
(t; mod ts) © s = (t; @ s) mod (to @ s).

Let ny be a nonterminal of AEgcy and let n be a natural number. The func-
tor Selfwork(ni,n) yielding an element of (the instructions of SCM qua set)*
is defined as follows:

(Def.10) (i)  Selfwork(ni,n) = (AddTo(d,,dn+1)) if 71 = (0, 0),

(ii)  Selfwork(ni,n) = (SubFrom(d,,d,+1)) if n1 = (0, 1),

(i)  Selfwork(ni,n) = (MultBy(d,,d,+1)) if n1 = (0, 2),

(iv)  Selfwork(ni,n) = (Divide(dy,, dp+1)) if ny = (0, 3),

(v)  Selfwork(ni,n) = (Divide(dy,, dy+1), dn:=dp41) if n1 = (0, 4).

Let t5 be a binary term and let a; be a natural number. The functor
Compile(ts, a1 ) yielding a finite sequence of elements of the instructions of SCM
is defined by the condition (Def.11).

(Def.11)  There exists a function f from TS(AEgcm) into ((the instructions of
SCM qua set)*)V such that
(i)  Compile(ts,a1) = (f(t5) qua element of ((the instructions of SCM
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qua set)*)")(a1),

(ii)  for every terminal t of AEgonm there exists a function g from N into
(the instructions of SCM qua set)* such that g = f(the root tree of t)
and for every natural number n holds g(n) = (d,:=t), and

(iii)  for every nonterminal ny of AEgcy and for all binary terms t3, t4 and
for all symbols r1, ro of AEgcnm such that ry = the root label of t3 and ro =
the root label of t4 and ny = (r1,r2) there exist functions g, fi, fo from N
into (the instructions of SCM qua set)* such that g = f(ni-tree(ts,t4))
and f; = f(t3) and fo = f(t4) and for every natural number n holds
g(n) = fi(n) " fa(n + 1) ~ Selfwork(ny, n).

One can prove the following propositions:

(9) For every terminal ¢ of AEgcy and for every natural number n holds
Compile(the root tree of ¢, n) = (d,:=%t).

(10)  Let ny be a nonterminal of AEgcwm, and let t3, t4 be binary terms, and
let n be a natural number, and let 1, ro be symbols of AEgcn. Suppose
r1 = the root label of t3 and o = the root label of t4 and ny = (ry,r2).
Then Compile(ni-tree(ts, t4),n) = (Compile(ts,n)) ~ Compile(ty,n + 1)~
Selfwork(ni,n).

Let t be a terminal of AEgcy. The functor d~1(¢) yielding a natural number
is defined as follows:

(Def.12) ddfl(t) =t.
Let na, n3 be natural numbers. Then max(ng, ng) is a natural number.
Let t5 be a binary term. The functor maxpy (t5) yielding a natural number
is defined by the condition (Def.13).
(Def.13)  There exists a function f from TS(AEgcym) into N such that

(i)  maxpr(ts) = f(ts),

(ii)  for every terminal ¢ of AEgcy holds f(the root tree of t) = d=1(¢),
and

(iii)  for every nonterminal ny of AEgcy and for all binary terms ¢q, to and
for all symbols 71, 7o of AEscym such that 71 = the root label of ¢; and
r9 = the root label of t9 and ny = (rq1,r2) and for all natural numbers
x1, xg such that x1 = f(t1) and xo = f(t2) holds f(ni-tree(t1,t2)) =
max(x1,x2).

One can prove the following propositions:

(11)  For every terminal ¢ of AEgcy holds maxpy, (the root tree of t) = d~1(¢).

(12)  For every nonterminal nq of AEgcy and for all binary terms ¢, to holds
maxpr,(ni-tree(ty, t2)) = max(maxpy (1), maxpy,(t2)).

(13)  Let t5 be a binary term and let s1, so be states of SCM. Suppose that
for every natural number dy such that dy < maxpy,(¢5) holds s1(d(ay)) =
Sg(d(dz)). Then t5 @ S1 = t5 Q S9.

(14)  Let t5 be a binary term, and let aj, n, k& be natural numbers, and let
s be a state with instruction counter on n, with Compile(ts,a;) located
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from n, and £7 from k. Suppose a; > maxpy(t5). Then there exists a
natural number ¢ and there exists a state u of SCM such that

u = (Computation(s))(i + 1),

i + 1 = len Compile(ts, aq),

Icu - ln—f—(i—i—l)a
u(d(q,)) = ts @ s, and
for every natural number dg such that da < a; holds s(d(4,)) = u(d(4,))-

)
)
111) IC(COmputation(s))(i) = Inti,
) .
)
)

Let t5 be a binary term, and let a;, n, £ be natural numbers, and
let s be a state with instruction counter on n, with (Compile(ts,a;)) °
(haltgcn) located from n, and €7 from k. Suppose a; > maxpr,(t5).
Then s is halting and (Result(s))(d,)) = t5 @ s and the complexity of
s = len Compile(ts, aq).
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