
FORMALIZED MATHEMATICS

Volume 5, Number 1, 1996

Warsaw University - Bia lystok

A Compiler of Arithmetic Expressions for

SCM 1

Grzegorz Bancerek

Polish Academy of Sciences

Institute of Mathematics

Warsaw

Piotr Rudnicki

University of Alberta

Department of Computing Science

Edmonton

Summary. We define a set of binary arithmetic expressions with
the following operations: +, −, ·, mod, and div and formalize the com-
mon meaning of the expressions in the set of integers. Then, we define a
compile function that for a given expression results in a program for the
SCM machine defined by Nakamura and Trybulec in [13]. We prove that
the generated program when loaded into the machine and executed com-
putes the value of the expression. The program uses additional memory
and runs in time linear in length of the expression.

MML Identifier: SCM COMP.

The articles [16], [12], [1], [21], [18], [20], [17], [9], [10], [3], [2], [13], [14], [19],
[15], [5], [4], [8], [11], [6], and [7] provide the terminology and notation for this
paper.

The following two propositions are true:

(1) Let I1, I2 be finite sequences of elements of the instructions of SCM,
and let D be a finite sequence of elements of � , and let i1, p1, d1 be natural
numbers. Then every state with instruction counter on i1, with I1 � I2

located from p1, and D from d1 is a state with instruction counter on
i1, with I1 located from p1, and D from d1 and a state with instruction
counter on i1, with I2 located from p1 + len I1, and D from d1.

(2) Let I1, I2 be finite sequences of elements of the instructions of SCM,
and let i1, p1, d1, k, i2 be natural numbers, and let s be a state with
instruction counter on i1, with I1 � I2 located from p1, and ε � from d1,
and let u be a state of SCM. Suppose u = (Computation(s))(k) and

1This work was partially supported by NSERC Grant OGP9207 while the first author
visited University of Alberta, May-June 1993.

15
c© 1996 Warsaw University - Bia lystok

ISSN 0777–4028



16 grzegorz bancerek and piotr rudnicki

i(i2) = ICu. Then u is a state with instruction counter on i2, with I2

located from p1 + len I1, and ε � from d1.

The binary strict non empty tree construction structure AESCM with termi-
nals, nonterminals, and useful nonterminals is defined by the conditions (Def.1).

(Def.1) (i) The terminals of AESCM = Data-LocSCM,

(ii) the nonterminals of AESCM = [: 1, 5 :], and

(iii) for all symbols x, y, z of AESCM holds x ⇒ 〈y, z〉 iff x ∈ [: 1, 5 :].

A binary term is an element of TS(AESCM).

Let n1 be a nonterminal of AESCM and let t1, t2 be binary terms. Then
n1-tree(t1, t2) is a binary term.

Let t be a terminal of AESCM. Then the root tree of t is a binary term.

Let t be a terminal of AESCM. The functor @t yielding a data-location is
defined as follows:

(Def.2) @t = t.

One can prove the following propositions:

(3) For every nonterminal n1 of AESCM holds n1 = 〈〈0, 0〉〉 or n1 = 〈〈0, 1〉〉 or
n1 = 〈〈0, 2〉〉 or n1 = 〈〈0, 3〉〉 or n1 = 〈〈0, 4〉〉.

(4) (i) 〈〈0, 0〉〉 is a nonterminal of AESCM,
(ii) 〈〈0, 1〉〉 is a nonterminal of AESCM,

(iii) 〈〈0, 2〉〉 is a nonterminal of AESCM,
(iv) 〈〈0, 3〉〉 is a nonterminal of AESCM, and

(v) 〈〈0, 4〉〉 is a nonterminal of AESCM.

Let t3, t4 be binary terms. The functor t3 + t4 yields a binary term and is
defined as follows:

(Def.3) t3 + t4 = 〈〈0, 0〉〉-tree(t3, t4).

The functor t3 − t4 yielding a binary term is defined as follows:

(Def.4) t3 − t4 = 〈〈0, 1〉〉-tree(t3, t4).

The functor t3 · t4 yields a binary term and is defined by:

(Def.5) t3 · t4 = 〈〈0, 2〉〉-tree(t3, t4).

The functor t3 ÷ t4 yields a binary term and is defined by:

(Def.6) t3 ÷ t4 = 〈〈0, 3〉〉-tree(t3, t4).

The functor t3 mod t4 yielding a binary term is defined as follows:

(Def.7) t3 mod t4 = 〈〈0, 4〉〉-tree(t3, t4).

We now state the proposition

(5) Let t5 be a binary term. Then

(i) there exists a terminal t of AESCM such that t5 = the root tree of t, or
(ii) there exist binary terms t1, t2 such that t5 = t1 + t2 or t5 = t1 − t2 or

t5 = t1 · t2 or t5 = t1 ÷ t2 or t5 = t1 mod t2.

Let o be a nonterminal of AESCM and let i, j be integers. The functor o(i, j)
yielding an integer is defined as follows:



a compiler of arithmetic expressions for . . . 17

(Def.8) (i) o(i, j) = i + j if o = 〈〈0, 0〉〉,
(ii) o(i, j) = i − j if o = 〈〈0, 1〉〉,
(iii) o(i, j) = i · j if o = 〈〈0, 2〉〉,
(iv) o(i, j) = i ÷ j if o = 〈〈0, 3〉〉,
(v) o(i, j) = i mod j if o = 〈〈0, 4〉〉.

Let s be a state of SCM and let t be a terminal of AESCM. Then s(t) is an
integer.

� is a non empty subset of � .
One can verify that every element of � is integer.
Let D be a non empty set, let f be a function from � into D, and let x be

an integer. Then f(x) is an element of D.
Let s be a state of SCM and let t5 be a binary term. The functor t5

@ s

yields an integer and is defined by the condition (Def.9).

(Def.9) There exists a function f from TS(AESCM) into � such that
(i) t5

@ s = f(t5),
(ii) for every terminal t of AESCM holds f(the root tree of t) = s(t), and
(iii) for every nonterminal n1 of AESCM and for all binary terms t1, t2 and

for all symbols r1, r2 of AESCM such that r1 = the root label of t1 and
r2 = the root label of t2 and n1 ⇒ 〈r1, r2〉 and for all elements x1, x2 of �
such that x1 = f(t1) and x2 = f(t2) holds f(n1-tree(t1, t2)) = n1(x1, x2).

One can prove the following three propositions:

(6) For every state s of SCM and for every terminal t of AESCM holds (the
root tree of t) @ s = s(t).

(7) For every state s of SCM and for every nonterminal n1 of AESCM and
for all binary terms t1, t2 holds (n1-tree(t1, t2))

@ s = n1(t1
@ s, t2

@ s).

(8) Let s be a state of SCM and let t1, t2 be binary terms. Then (t1 +
t2)

@ s = (t1
@ s) + (t2

@ s) and (t1 − t2)
@ s = (t1

@ s) − (t2
@ s) and

t1 · t2
@ s = (t1

@ s) · (t2
@ s) and (t1 ÷ t2)

@ s = (t1
@ s) ÷ (t2

@ s) and
(t1 mod t2)

@ s = (t1
@ s) mod (t2

@ s).

Let n1 be a nonterminal of AESCM and let n be a natural number. The func-
tor Selfwork(n1, n) yielding an element of (the instructions of SCM qua set)∗

is defined as follows:

(Def.10) (i) Selfwork(n1, n) = 〈AddTo(dn,dn+1)〉 if n1 = 〈〈0, 0〉〉,
(ii) Selfwork(n1, n) = 〈SubFrom(dn,dn+1)〉 if n1 = 〈〈0, 1〉〉,
(iii) Selfwork(n1, n) = 〈MultBy(dn,dn+1)〉 if n1 = 〈〈0, 2〉〉,
(iv) Selfwork(n1, n) = 〈Divide(dn,dn+1)〉 if n1 = 〈〈0, 3〉〉,
(v) Selfwork(n1, n) = 〈Divide(dn,dn+1),dn:=dn+1〉 if n1 = 〈〈0, 4〉〉.

Let t5 be a binary term and let a1 be a natural number. The functor
Compile(t5, a1) yielding a finite sequence of elements of the instructions of SCM

is defined by the condition (Def.11).

(Def.11) There exists a function f from TS(AESCM) into ((the instructions of
SCM qua set)∗) � such that

(i) Compile(t5, a1) = (f(t5) qua element of ((the instructions of SCM



18 grzegorz bancerek and piotr rudnicki

qua set)∗) � )(a1),

(ii) for every terminal t of AESCM there exists a function g from � into
(the instructions of SCM qua set)∗ such that g = f(the root tree of t)
and for every natural number n holds g(n) = 〈dn:=@t〉, and

(iii) for every nonterminal n1 of AESCM and for all binary terms t3, t4 and
for all symbols r1, r2 of AESCM such that r1 = the root label of t3 and r2 =
the root label of t4 and n1 ⇒ 〈r1, r2〉 there exist functions g, f1, f2 from �
into (the instructions of SCM qua set)∗ such that g = f(n1-tree(t3, t4))
and f1 = f(t3) and f2 = f(t4) and for every natural number n holds
g(n) = f1(n) � f2(n + 1) � Selfwork(n1, n).

One can prove the following propositions:

(9) For every terminal t of AESCM and for every natural number n holds
Compile(the root tree of t, n) = 〈dn:=@t〉.

(10) Let n1 be a nonterminal of AESCM, and let t3, t4 be binary terms, and
let n be a natural number, and let r1, r2 be symbols of AESCM. Suppose
r1 = the root label of t3 and r2 = the root label of t4 and n1 ⇒ 〈r1, r2〉.
Then Compile(n1-tree(t3, t4), n) = (Compile(t3, n)) � Compile(t4, n + 1) �
Selfwork(n1, n).

Let t be a terminal of AESCM. The functor d−1(t) yielding a natural number
is defined as follows:

(Def.12) dd−1(t) = t.

Let n2, n3 be natural numbers. Then max(n2, n3) is a natural number.

Let t5 be a binary term. The functor maxDL(t5) yielding a natural number
is defined by the condition (Def.13).

(Def.13) There exists a function f from TS(AESCM) into � such that

(i) maxDL(t5) = f(t5),

(ii) for every terminal t of AESCM holds f(the root tree of t) = d−1(t),
and

(iii) for every nonterminal n1 of AESCM and for all binary terms t1, t2 and
for all symbols r1, r2 of AESCM such that r1 = the root label of t1 and
r2 = the root label of t2 and n1 ⇒ 〈r1, r2〉 and for all natural numbers
x1, x2 such that x1 = f(t1) and x2 = f(t2) holds f(n1-tree(t1, t2)) =
max(x1, x2).

One can prove the following propositions:

(11) For every terminal t of AESCM holds maxDL(the root tree of t) = d−1(t).

(12) For every nonterminal n1 of AESCM and for all binary terms t1, t2 holds
maxDL(n1-tree(t1, t2)) = max(maxDL(t1),maxDL(t2)).

(13) Let t5 be a binary term and let s1, s2 be states of SCM. Suppose that
for every natural number d2 such that d2 ≤ maxDL(t5) holds s1(d(d2)) =

s2(d(d2)). Then t5
@ s1 = t5

@ s2.

(14) Let t5 be a binary term, and let a1, n, k be natural numbers, and let
s be a state with instruction counter on n, with Compile(t5, a1) located



a compiler of arithmetic expressions for . . . 19

from n, and ε � from k. Suppose a1 > maxDL(t5). Then there exists a
natural number i and there exists a state u of SCM such that

(i) u = (Computation(s))(i + 1),
(ii) i + 1 = len Compile(t5, a1),
(iii) IC(Computation(s))(i) = in+i,

(iv) ICu = in+(i+1),

(v) u(d(a1)) = t5
@ s, and

(vi) for every natural number d2 such that d2 < a1 holds s(d(d2)) = u(d(d2)).

(15) Let t5 be a binary term, and let a1, n, k be natural numbers, and
let s be a state with instruction counter on n, with (Compile(t5, a1)) �
〈haltSCM〉 located from n, and ε � from k. Suppose a1 > maxDL(t5).
Then s is halting and (Result(s))(d(a1)) = t5

@ s and the complexity of
s = len Compile(t5, a1).

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[2] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77–82,

1993.
[3] Grzegorz Bancerek. König’s lemma. Formalized Mathematics, 2(3):397–402, 1991.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[5] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for SCM. Formal-

ized Mathematics, 4(1):61–67, 1993.
[6] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on binary trees. Formal-

ized Mathematics, 5(1):9–13, 1996.
[7] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized

Mathematics, 4(1):91–101, 1993.
[8] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formal-

ized Mathematics, 1(3):529–536, 1990.
[9] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[10] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[11] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar - part 1. Formalized

Mathematics, 2(5):683–687, 1991.
[12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[13] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[14] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-

malized Mathematics, 3(2):241–250, 1992.
[15] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,

1(3):495–500, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[17] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.
[18] Andrzej Trybulec and Czes law Byliński. Some properties of real numbers. Formalized

Mathematics, 1(3):445–449, 1990.
[19] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.



20 grzegorz bancerek and piotr rudnicki

[20] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received December 30, 1993


