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Summary. This article continues the development of the basic
terminology for the SCM as defined in [11,12,18]. There is developed of
the terminology for discussing static properties of instructions (i.e. not
related to execution), for data locations, instruction locations, as well
as for states and partial states of SCM. The main contribution of the
article consists in characterizing SCM computations starting in states
containing autonomic finite partial states.

MML Identifier: AMI 5.

The articles [17], [2], [16], [10], [15], [20], [5], [6], [7], [19], [1], [14], [4], [9], [3],
[8], [11], [12], [18], and [13] provide the notation and terminology for this paper.

1. Preliminaries

The following propositions are true:

(1) For all sets A, B, X, Y such that A ⊆ X and B ⊆ Y and X ∩ Y = ∅
holds A ∩ B = ∅.

(2) For all sets X, Y , Z such that X ⊆ Y holds X ⊆ Z∪Y and X ⊆ Y ∪Z.

(3) For all natural numbers m, k such that k 6= 0 holds m · k ÷ k = m.

(4) For all natural numbers i, j such that i ≥ j holds i −′ j + j = i.

(5) For all functions f , g and for all sets A, B such that A ⊆ B and
f

�
B = g

�
B holds f

�
A = g

�
A.

(6) For all functions p, q and for every set A holds (p+·q)
�
A = p

�
A+·q

�
A.

(7) For all functions f , g and for every set A such that A misses dom g
holds (f +· g)

�
A = f

�
A.
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(8) For all functions f , g and for every set A such that dom f misses A
holds (f +· g)

�
A = g

�
A.

(9) For all functions f , g, h such that dom g = domh holds f +· g +· h =
f +· h.

(10) For all functions f , g such that f ⊆ g holds f +· g = g and g +· f = g.

(11) For every function f and for every set A holds f +· f
�
A = f.

(12) For all functions f , g and for all sets B, C such that dom f ⊆ B and
dom g ⊆ C and B misses C holds (f +· g)

�
B = f and (f +· g)

�
C = g.

(13) For all functions p, q and for every set A such that dom p ⊆ A and
dom q misses A holds (p +· q)

�
A = p.

(14) For every function f and for all sets A, B holds f
�
(A∪B) = f

�
A+·f

�
B.

2. Total states of SCM

One can prove the following propositions:

(15) Let a be a data-location and let s be a state of SCM. Then
(Exec(Divide(a, a), s))(ICSCM) = Next(ICs) and (Exec(Divide(a, a), s))
(a) = s(a) mod s(a) and for every data-location c such that c 6= a holds
(Exec(Divide(a, a), s))(c) = s(c).

(16) For arbitrary x such that x ∈ Data-LocSCM holds x is a data-location.

(17) For arbitrary x such that x ∈ Instr-LocSCM holds x is an instruction-
location of SCM.

(18) For every data-location d1 there exists a natural number i such that
d1 = di.

(19) For every instruction-location i1 of SCM there exists a natural number
i such that i1 = ii.

(20) For every data-location d1 holds d1 6= ICSCM.

(21) For every instruction-location i1 of SCM holds i1 6= ICSCM.

(22) For every instruction-location i1 of SCM and for every data-location
d1 holds i1 6= d1.

(23) The objects of SCM = {ICSCM} ∪ Data-LocSCM ∪ Instr-LocSCM.

(24) Let s be a state of SCM, and let d be a data-location, and let l be an
instruction-location of SCM. Then d ∈ dom s and l ∈ dom s.

(25) For every state s of SCM holds ICSCM ∈ dom s.

(26) Let s1, s2 be states of SCM. Suppose IC(s1) = IC(s2) and for every
data-location a holds s1(a) = s2(a) and for every instruction-location i of
SCM holds s1(i) = s2(i). Then s1 = s2.

(27) For every state s of SCM holds Data-LocSCM ⊆ dom s.

(28) For every state s of SCM holds Instr-LocSCM ⊆ dom s.

(29) For every state s of SCM holds dom(s
�
Data-LocSCM) = Data-LocSCM.
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(30) For every state s of SCM holds dom(s
�
Instr-LocSCM) = Instr-LocSCM.

(31) Data-LocSCM is finite.

(32) The instruction locations of SCM is finite.

(33) Data-LocSCM misses Instr-LocSCM.

(34) For every state s of SCM holds Start-At(ICs) = s
�
{ICSCM}.

(35) For every instruction-location l of SCM holds Start-At(l) = {〈〈ICSCM,
l〉〉}.

Let I be an instruction of SCM. The functor InsCode(I) yields a natural
number and is defined as follows:

(Def.1) InsCode(I) = I1.

The functor @I yielding an element of InstrSCM is defined by:

(Def.2) @I = I.

Let l1 be an element of Instr-LocSCM. The functor l1
T yields an instruction-

location of SCM and is defined as follows:

(Def.3) l1
T = l1.

Let l1 be an element of Data-LocSCM. The functor l1
T yielding a data-

location is defined as follows:

(Def.4) l1
T = l1.

One can prove the following proposition

(36) For every instruction l of SCM holds InsCode(l) ≤ 8.

In the sequel a, b are data-locations and l1 is an instruction-location of SCM.
One can prove the following propositions:

(37) InsCode(haltSCM) = 0.

(38) InsCode(a:=b) = 1.

(39) InsCode(AddTo(a, b)) = 2.

(40) InsCode(SubFrom(a, b)) = 3.

(41) InsCode(MultBy(a, b)) = 4.

(42) InsCode(Divide(a, b)) = 5.

(43) InsCode(goto l1) = 6.

(44) InsCode(if a = 0 goto l1) = 7.

(45) InsCode(if a > 0 goto l1) = 8.

In the sequel d2, d3 denote data-locations and l1 denotes an instruction-
location of SCM.

We now state a number of propositions:

(46) For every instruction i2 of SCM such that InsCode(i2) = 0 holds i2 =
haltSCM.

(47) For every instruction i2 of SCM such that InsCode(i2) = 1 there exist
d2, d3 such that i2 = d2:=d3.

(48) For every instruction i2 of SCM such that InsCode(i2) = 2 there exist
d2, d3 such that i2 = AddTo(d2, d3).
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(49) For every instruction i2 of SCM such that InsCode(i2) = 3 there exist
d2, d3 such that i2 = SubFrom(d2, d3).

(50) For every instruction i2 of SCM such that InsCode(i2) = 4 there exist
d2, d3 such that i2 = MultBy(d2, d3).

(51) For every instruction i2 of SCM such that InsCode(i2) = 5 there exist
d2, d3 such that i2 = Divide(d2, d3).

(52) For every instruction i2 of SCM such that InsCode(i2) = 6 there exists
l1 such that i2 = goto l1.

(53) For every instruction i2 of SCM such that InsCode(i2) = 7 there exist
l1, d2 such that i2 = if d2 = 0 goto l1.

(54) For every instruction i2 of SCM such that InsCode(i2) = 8 there exist
l1, d2 such that i2 = if d2 > 0 goto l1.

(55) For every instruction-location l1 of SCM holds (@goto l1)addressj = l1.

(56) For every instruction-location l1 of SCM and for every data-
location a holds (@(if a = 0 goto l1))addressj = l1 and (@(if a =
0 goto l1))addressc = a.

(57) For every instruction-location l1 of SCM and for every data-
location a holds (@(if a > 0 goto l1))addressj = l1 and (@(if a >
0 goto l1))addressc = a.

(58) For all states s1, s2 of SCM such that s1
�
(Data-LocSCM∪{ICSCM}) =

s2
�
(Data-LocSCM ∪{ICSCM}) and for every instruction l of SCM holds

Exec(l, s1)
�
(Data-LocSCM ∪ {ICSCM}) = Exec(l, s2)

�
(Data-LocSCM ∪

{ICSCM}).

(59) For every instruction i of SCM and for every state s of SCM holds
Exec(i, s)

�
Instr-LocSCM = s

�
Instr-LocSCM.

3. Finite partial states of SCM

The following proposition is true

(60) For every finite partial state p of SCM and for every state s of SCM

such that ICSCM ∈ dom p and p ⊆ s holds ICp = ICs.

Let p be a finite partial state of SCM and let l1 be an instruction-location of
SCM. Let us assume that l1 ∈ dom p. The functor πl1p yielding an instruction
of SCM is defined by:

(Def.5) πl1p = p(l1).

The following proposition is true

(61) Let x be arbitrary and let p be a finite partial state of SCM. If x ⊆ p,
then x is a finite partial state of SCM.

Let p be a finite partial state of SCM. The functor ProgramPart(p) yields
a programmed finite partial state of SCM and is defined by:

(Def.6) ProgramPart(p) = p
�
(the instruction locations of SCM).
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The functor DataPart(p) yielding a finite partial state of SCM is defined as
follows:

(Def.7) DataPart(p) = p
�
Data-LocSCM.

A finite partial state of SCM is data-only if:

(Def.8) dom it ⊆ Data-LocSCM.

Next we state a number of propositions:

(62) For every finite partial state p of SCM holds DataPart(p) ⊆ p.

(63) For every finite partial state p of SCM holds ProgramPart(p) ⊆ p.

(64) Let p be a finite partial state of SCM and let s be a state of SCM.
If p ⊆ s, then for every natural number i holds ProgramPart(p) ⊆
(Computation(s))(i).

(65) For every finite partial state p of SCM holds ICSCM /∈
dom DataPart(p).

(66) For every finite partial state p of SCM holds ICSCM /∈
dom ProgramPart(p).

(67) For every finite partial state p of SCM holds {ICSCM} misses
dom DataPart(p).

(68) For every finite partial state p of SCM holds {ICSCM} misses
dom ProgramPart(p).

(69) For every finite partial state p of SCM holds dom DataPart(p) ⊆
Data-LocSCM.

(70) For every finite partial state p of SCM holds dom ProgramPart(p) ⊆
Instr-LocSCM.

(71) For all finite partial states p, q of SCM holds dom DataPart(p) misses
dom ProgramPart(q).

(72) For every programmed finite partial state p of SCM holds
ProgramPart(p) = p.

(73) For every finite partial state p of SCM and for every instruction-
location l of SCM such that l ∈ dom p holds l ∈ domProgramPart(p).

(74) Let p be a data-only finite partial state of SCM and let q be a finite
partial state of SCM. Then p ⊆ q if and only if p ⊆ DataPart(q).

(75) For every finite partial state p of SCM such that ICSCM ∈ dom p holds
p = Start-At(ICp) +· ProgramPart(p) +· DataPart(p).

A partial function from FinPartSt(SCM) to FinPartSt(SCM) is data-only
if it satisfies the condition (Def.9).

(Def.9) Let p be a finite partial state of SCM. Suppose p ∈ dom it. Then p is
data-only and for every finite partial state q of SCM such that q = it(p)
holds q is data-only.

Next we state the proposition

(76) For every finite partial state p of SCM such that ICSCM ∈ dom p holds
p is not programmed.
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Let s be a state of SCM and let p be a finite partial state of SCM. Then
s +· p is a state of SCM.

Next we state several propositions:

(77) Let i be an instruction of SCM, and let s be a state of SCM, and let
p be a programmed finite partial state of SCM. Then Exec(i, s +· p) =
Exec(i, s) +· p.

(78) For every finite partial state p of SCM such that ICSCM ∈ dom p holds
Start-At(ICp) ⊆ p.

(79) For every state s of SCM and for every instruction-location i3 of SCM

holds ICs+·Start-At(i3) = i3.

(80) For every state s of SCM and for every instruction-location i3 of SCM

and for every data-location a holds s(a) = (s +· Start-At(i3))(a).

(81) Let s be a state of SCM, and let i3 be an instruction-location of
SCM, and let a be an instruction-location of SCM. Then s(a) =
(s +· Start-At(i3))(a).

(82) For all states s, t of SCM holds s+·t
�
Data-LocSCM is a state of SCM.

4. Autonomic finite partial states of SCM

The following proposition is true

(83) For every autonomic finite partial state p of SCM such that
DataPart(p) 6= ∅ holds ICSCM ∈ dom p.

One can check that there exists a finite partial state of SCM which is auto-
nomic and non programmed.

We now state a number of propositions:

(84) For every autonomic non programmed finite partial state p of SCM

holds ICSCM ∈ dom p.

(85) For every autonomic finite partial state p of SCM such that ICSCM ∈
dom p holds ICp ∈ dom p.

(86) Let p be an autonomic non programmed finite partial state of SCM

and let s be a state of SCM. If p ⊆ s, then for every natural number i
holds IC(Computation(s))(i) ∈ dom ProgramPart(p).

(87) Let p be an autonomic non programmed finite partial state of SCM

and let s1, s2 be states of SCM. Suppose p ⊆ s1 and p ⊆ s2. Let
i be a natural number, and let d2, d3 be data-locations, and let l1 be
an instruction-location of SCM, and let I be an instruction of SCM.
If I = CurInstr((Computation(s1))(i)), then IC(Computation(s1))(i) =
IC(Computation(s2))(i) and I = CurInstr((Computation(s2))(i)).

(88) Let p be an autonomic non programmed finite partial state of SCM

and let s1, s2 be states of SCM. Suppose p ⊆ s1 and p ⊆ s2. Let i
be a natural number, and let d2, d3 be data-locations, and let l1 be an
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instruction-location of SCM, and let I be an instruction of SCM. If
I = CurInstr((Computation(s1))(i)), then if I = d2:=d3 and d2 ∈ dom p,
then (Computation(s1))(i)(d3) = (Computation(s2))(i)(d3).

(89) Let p be an autonomic non programmed finite partial state of SCM

and let s1, s2 be states of SCM. Suppose p ⊆ s1 and p ⊆ s2. Let
i be a natural number, and let d2, d3 be data-locations, and let l1 be
an instruction-location of SCM, and let I be an instruction of SCM.
Suppose I = CurInstr((Computation(s1))(i)). If I = AddTo(d2, d3) and
d2 ∈ dom p, then (Computation(s1))(i)(d2)+(Computation(s1))(i)(d3) =
(Computation(s2))(i)(d2) + (Computation(s2))(i)(d3).

(90) Let p be an autonomic non programmed finite partial state of SCM

and let s1, s2 be states of SCM. Suppose p ⊆ s1 and p ⊆ s2. Let
i be a natural number, and let d2, d3 be data-locations, and let l1 be
an instruction-location of SCM, and let I be an instruction of SCM.
Suppose I = CurInstr((Computation(s1))(i)). If I = SubFrom(d2, d3) and
d2 ∈ dom p, then (Computation(s1))(i)(d2)− (Computation(s1))(i)(d3) =
(Computation(s2))(i)(d2) − (Computation(s2))(i)(d3).

(91) Let p be an autonomic non programmed finite partial state of SCM

and let s1, s2 be states of SCM. Suppose p ⊆ s1 and p ⊆ s2. Let
i be a natural number, and let d2, d3 be data-locations, and let l1 be
an instruction-location of SCM, and let I be an instruction of SCM.
Suppose I = CurInstr((Computation(s1))(i)). If I = MultBy(d2, d3) and
d2 ∈ dom p, then (Computation(s1))(i)(d2) · (Computation(s1))(i)(d3) =
(Computation(s2))(i)(d2) · (Computation(s2))(i)(d3).

(92) Let p be an autonomic non programmed finite partial state of SCM and
let s1, s2 be states of SCM. Suppose p ⊆ s1 and p ⊆ s2. Let i be a natural
number, and let d2, d3 be data-locations, and let l1 be an instruction-
location of SCM, and let I be an instruction of SCM. Suppose I =
CurInstr((Computation(s1))(i)). If I = Divide(d2, d3) and d2 ∈ dom p
and d2 6= d3, then (Computation(s1))(i)(d2)÷(Computation(s1))(i)(d3) =
(Computation(s2))(i)(d2) ÷ (Computation(s2))(i)(d3).

(93) Let p be an autonomic non programmed finite partial state of SCM and
let s1, s2 be states of SCM. Suppose p ⊆ s1 and p ⊆ s2. Let i be a natural
number, and let d2, d3 be data-locations, and let l1 be an instruction-
location of SCM, and let I be an instruction of SCM. Suppose I =
CurInstr((Computation(s1))(i)). If I = Divide(d2, d3) and d3 ∈ dom p and
d2 6= d3, then (Computation(s1))(i)(d2) mod (Computation(s1))(i)(d3) =
(Computation(s2))(i)(d2) mod (Computation(s2))(i)(d3).

(94) Let p be an autonomic non programmed finite partial state of SCM

and let s1, s2 be states of SCM. Suppose p ⊆ s1 and p ⊆ s2. Let
i be a natural number, and let d2, d3 be data-locations, and let l1 be
an instruction-location of SCM, and let I be an instruction of SCM.
Suppose I = CurInstr((Computation(s1))(i)). If I = if d2 = 0 goto l1
and l1 6= Next(IC(Computation(s1))(i)), then (Computation(s1))(i)(d2) = 0
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iff (Computation(s2))(i)(d2) = 0.

(95) Let p be an autonomic non programmed finite partial state of SCM

and let s1, s2 be states of SCM. Suppose p ⊆ s1 and p ⊆ s2. Let
i be a natural number, and let d2, d3 be data-locations, and let l1 be
an instruction-location of SCM, and let I be an instruction of SCM.
Suppose I = CurInstr((Computation(s1))(i)). If I = if d2 > 0 goto l1
and l1 6= Next(IC(Computation(s1))(i)), then (Computation(s1))(i)(d2) > 0
iff (Computation(s2))(i)(d2) > 0.
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[6] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[7] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
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