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Summary. This article continues the development of the basic
terminology for the SCM as defined in [11,12,18]. There is developed of
the terminology for discussing static properties of instructions (i.e. not
related to execution), for data locations, instruction locations, as well
as for states and partial states of SCM. The main contribution of the
article consists in characterizing SCM computations starting in states
containing autonomic finite partial states.

MML Identifier: AMI 5.

The articles [17], [2], [16], [10], [15], [20], [5], [6], [7], [19], [1], [14], [4], [9], [3],
[8], [11], [12], [18], and [13] provide the notation and terminology for this paper.

1. Preliminaries

The following propositions are true:

(1) For all sets A, B, X, Y such that A ⊆ X and B ⊆ Y and X ∩ Y = ∅
holds A ∩B = ∅.

(2) For all sets X, Y , Z such that X ⊆ Y holds X ⊆ Z∪Y and X ⊆ Y ∪Z.
(3) For all natural numbers m, k such that k 6= 0 holds m · k ÷ k = m.

(4) For all natural numbers i, j such that i ≥ j holds i−′ j + j = i.

(5) For all functions f , g and for all sets A, B such that A ⊆ B and
f

�
B = g

�
B holds f

�
A = g

�
A.

(6) For all functions p, q and for every set A holds (p+·q) �
A = p

�
A+·q �

A.

(7) For all functions f , g and for every set A such that A misses dom g
holds (f +· g) �

A = f
�
A.
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(8) For all functions f , g and for every set A such that dom f misses A
holds (f +· g) �

A = g
�
A.

(9) For all functions f , g, h such that dom g = domh holds f +· g +· h =
f +· h.

(10) For all functions f , g such that f ⊆ g holds f +· g = g and g +· f = g.

(11) For every function f and for every set A holds f +· f �
A = f.

(12) For all functions f , g and for all sets B, C such that dom f ⊆ B and
dom g ⊆ C and B misses C holds (f +· g) �

B = f and (f +· g) �
C = g.

(13) For all functions p, q and for every set A such that dom p ⊆ A and
dom q misses A holds (p+· q) �

A = p.

(14) For every function f and for all sets A, B holds f
�
(A∪B) = f

�
A+·f �

B.

2. Total states of SCM

One can prove the following propositions:

(15) Let a be a data-location and let s be a state of SCM. Then
(Exec(Divide(a, a), s))(ICSCM) = Next(ICs) and (Exec(Divide(a, a), s))
(a) = s(a) mod s(a) and for every data-location c such that c 6= a holds
(Exec(Divide(a, a), s))(c) = s(c).

(16) For arbitrary x such that x ∈ Data-LocSCM holds x is a data-location.

(17) For arbitrary x such that x ∈ Instr-LocSCM holds x is an instruction-
location of SCM.

(18) For every data-location d1 there exists a natural number i such that
d1 = di.

(19) For every instruction-location i1 of SCM there exists a natural number
i such that i1 = ii.

(20) For every data-location d1 holds d1 6= ICSCM.

(21) For every instruction-location i1 of SCM holds i1 6= ICSCM.

(22) For every instruction-location i1 of SCM and for every data-location
d1 holds i1 6= d1.

(23) The objects of SCM = {ICSCM} ∪Data-LocSCM ∪ Instr-LocSCM.

(24) Let s be a state of SCM, and let d be a data-location, and let l be an
instruction-location of SCM. Then d ∈ dom s and l ∈ dom s.

(25) For every state s of SCM holds ICSCM ∈ dom s.

(26) Let s1, s2 be states of SCM. Suppose IC(s1) = IC(s2) and for every
data-location a holds s1(a) = s2(a) and for every instruction-location i of
SCM holds s1(i) = s2(i). Then s1 = s2.

(27) For every state s of SCM holds Data-LocSCM ⊆ dom s.

(28) For every state s of SCM holds Instr-LocSCM ⊆ dom s.

(29) For every state s of SCM holds dom(s
�
Data-LocSCM) = Data-LocSCM.
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(30) For every state s of SCM holds dom(s
�
Instr-LocSCM) = Instr-LocSCM.

(31) Data-LocSCM is finite.

(32) The instruction locations of SCM is finite.

(33) Data-LocSCM misses Instr-LocSCM.

(34) For every state s of SCM holds Start-At(ICs) = s
� {ICSCM}.

(35) For every instruction-location l of SCM holds Start-At(l) = {〈〈ICSCM,
l〉〉}.

Let I be an instruction of SCM. The functor InsCode(I) yields a natural
number and is defined as follows:

(Def.1) InsCode(I) = I1.

The functor @I yielding an element of InstrSCM is defined by:

(Def.2) @I = I.

Let l1 be an element of Instr-LocSCM. The functor l1
T yields an instruction-

location of SCM and is defined as follows:

(Def.3) l1
T = l1.

Let l1 be an element of Data-LocSCM. The functor l1
T yielding a data-

location is defined as follows:

(Def.4) l1
T = l1.

One can prove the following proposition

(36) For every instruction l of SCM holds InsCode(l) ≤ 8.

In the sequel a, b are data-locations and l1 is an instruction-location of SCM.
One can prove the following propositions:

(37) InsCode(haltSCM) = 0.

(38) InsCode(a:=b) = 1.

(39) InsCode(AddTo(a, b)) = 2.

(40) InsCode(SubFrom(a, b)) = 3.

(41) InsCode(MultBy(a, b)) = 4.

(42) InsCode(Divide(a, b)) = 5.

(43) InsCode(goto l1) = 6.

(44) InsCode(if a = 0 goto l1) = 7.

(45) InsCode(if a > 0 goto l1) = 8.

In the sequel d2, d3 denote data-locations and l1 denotes an instruction-
location of SCM.

We now state a number of propositions:

(46) For every instruction i2 of SCM such that InsCode(i2) = 0 holds i2 =
haltSCM.

(47) For every instruction i2 of SCM such that InsCode(i2) = 1 there exist
d2, d3 such that i2 = d2:=d3.

(48) For every instruction i2 of SCM such that InsCode(i2) = 2 there exist
d2, d3 such that i2 = AddTo(d2, d3).
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(49) For every instruction i2 of SCM such that InsCode(i2) = 3 there exist
d2, d3 such that i2 = SubFrom(d2, d3).

(50) For every instruction i2 of SCM such that InsCode(i2) = 4 there exist
d2, d3 such that i2 = MultBy(d2, d3).

(51) For every instruction i2 of SCM such that InsCode(i2) = 5 there exist
d2, d3 such that i2 = Divide(d2, d3).

(52) For every instruction i2 of SCM such that InsCode(i2) = 6 there exists
l1 such that i2 = goto l1.

(53) For every instruction i2 of SCM such that InsCode(i2) = 7 there exist
l1, d2 such that i2 = if d2 = 0 goto l1.

(54) For every instruction i2 of SCM such that InsCode(i2) = 8 there exist
l1, d2 such that i2 = if d2 > 0 goto l1.

(55) For every instruction-location l1 of SCM holds (@goto l1)addressj = l1.

(56) For every instruction-location l1 of SCM and for every data-
location a holds (@(if a = 0 goto l1))addressj = l1 and (@(if a =
0 goto l1))addressc = a.

(57) For every instruction-location l1 of SCM and for every data-
location a holds (@(if a > 0 goto l1))addressj = l1 and (@(if a >
0 goto l1))addressc = a.

(58) For all states s1, s2 of SCM such that s1
�
(Data-LocSCM∪{ICSCM}) =

s2
�
(Data-LocSCM∪{ICSCM}) and for every instruction l of SCM holds

Exec(l, s1)
�
(Data-LocSCM ∪ {ICSCM}) = Exec(l, s2)

�
(Data-LocSCM ∪

{ICSCM}).
(59) For every instruction i of SCM and for every state s of SCM holds

Exec(i, s)
�
Instr-LocSCM = s

�
Instr-LocSCM.

3. Finite partial states of SCM

The following proposition is true

(60) For every finite partial state p of SCM and for every state s of SCM
such that ICSCM ∈ dom p and p ⊆ s holds ICp = ICs.

Let p be a finite partial state of SCM and let l1 be an instruction-location of
SCM. Let us assume that l1 ∈ dom p. The functor πl1p yielding an instruction
of SCM is defined by:

(Def.5) πl1p = p(l1).

The following proposition is true

(61) Let x be arbitrary and let p be a finite partial state of SCM. If x ⊆ p,
then x is a finite partial state of SCM.

Let p be a finite partial state of SCM. The functor ProgramPart(p) yields
a programmed finite partial state of SCM and is defined by:

(Def.6) ProgramPart(p) = p
�
(the instruction locations of SCM).
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The functor DataPart(p) yielding a finite partial state of SCM is defined as
follows:

(Def.7) DataPart(p) = p
�
Data-LocSCM.

A finite partial state of SCM is data-only if:

(Def.8) dom it ⊆ Data-LocSCM.

Next we state a number of propositions:

(62) For every finite partial state p of SCM holds DataPart(p) ⊆ p.
(63) For every finite partial state p of SCM holds ProgramPart(p) ⊆ p.
(64) Let p be a finite partial state of SCM and let s be a state of SCM.

If p ⊆ s, then for every natural number i holds ProgramPart(p) ⊆
(Computation(s))(i).

(65) For every finite partial state p of SCM holds ICSCM /∈
dom DataPart(p).

(66) For every finite partial state p of SCM holds ICSCM /∈
dom ProgramPart(p).

(67) For every finite partial state p of SCM holds {ICSCM} misses
dom DataPart(p).

(68) For every finite partial state p of SCM holds {ICSCM} misses
dom ProgramPart(p).

(69) For every finite partial state p of SCM holds dom DataPart(p) ⊆
Data-LocSCM.

(70) For every finite partial state p of SCM holds dom ProgramPart(p) ⊆
Instr-LocSCM.

(71) For all finite partial states p, q of SCM holds dom DataPart(p) misses
dom ProgramPart(q).

(72) For every programmed finite partial state p of SCM holds
ProgramPart(p) = p.

(73) For every finite partial state p of SCM and for every instruction-
location l of SCM such that l ∈ dom p holds l ∈ dom ProgramPart(p).

(74) Let p be a data-only finite partial state of SCM and let q be a finite
partial state of SCM. Then p ⊆ q if and only if p ⊆ DataPart(q).

(75) For every finite partial state p of SCM such that ICSCM ∈ dom p holds
p = Start-At(ICp) +· ProgramPart(p) +·DataPart(p).

A partial function from FinPartSt(SCM) to FinPartSt(SCM) is data-only
if it satisfies the condition (Def.9).

(Def.9) Let p be a finite partial state of SCM. Suppose p ∈ dom it. Then p is
data-only and for every finite partial state q of SCM such that q = it(p)
holds q is data-only.

Next we state the proposition

(76) For every finite partial state p of SCM such that ICSCM ∈ dom p holds
p is not programmed.
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Let s be a state of SCM and let p be a finite partial state of SCM. Then
s+· p is a state of SCM.

Next we state several propositions:

(77) Let i be an instruction of SCM, and let s be a state of SCM, and let
p be a programmed finite partial state of SCM. Then Exec(i, s +· p) =
Exec(i, s) +· p.

(78) For every finite partial state p of SCM such that ICSCM ∈ dom p holds
Start-At(ICp) ⊆ p.

(79) For every state s of SCM and for every instruction-location i3 of SCM
holds ICs+·Start-At(i3) = i3.

(80) For every state s of SCM and for every instruction-location i3 of SCM
and for every data-location a holds s(a) = (s+· Start-At(i3))(a).

(81) Let s be a state of SCM, and let i3 be an instruction-location of
SCM, and let a be an instruction-location of SCM. Then s(a) =
(s+· Start-At(i3))(a).

(82) For all states s, t of SCM holds s+· t �
Data-LocSCM is a state of SCM.

4. Autonomic finite partial states of SCM

The following proposition is true

(83) For every autonomic finite partial state p of SCM such that
DataPart(p) 6= ∅ holds ICSCM ∈ dom p.

One can check that there exists a finite partial state of SCM which is auto-
nomic and non programmed.

We now state a number of propositions:

(84) For every autonomic non programmed finite partial state p of SCM
holds ICSCM ∈ dom p.

(85) For every autonomic finite partial state p of SCM such that ICSCM ∈
dom p holds ICp ∈ dom p.

(86) Let p be an autonomic non programmed finite partial state of SCM
and let s be a state of SCM. If p ⊆ s, then for every natural number i
holds IC(Computation(s))(i) ∈ dom ProgramPart(p).

(87) Let p be an autonomic non programmed finite partial state of SCM
and let s1, s2 be states of SCM. Suppose p ⊆ s1 and p ⊆ s2. Let
i be a natural number, and let d2, d3 be data-locations, and let l1 be
an instruction-location of SCM, and let I be an instruction of SCM.
If I = CurInstr((Computation(s1))(i)), then IC(Computation(s1))(i) =
IC(Computation(s2))(i) and I = CurInstr((Computation(s2))(i)).

(88) Let p be an autonomic non programmed finite partial state of SCM
and let s1, s2 be states of SCM. Suppose p ⊆ s1 and p ⊆ s2. Let i
be a natural number, and let d2, d3 be data-locations, and let l1 be an
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instruction-location of SCM, and let I be an instruction of SCM. If
I = CurInstr((Computation(s1))(i)), then if I = d2:=d3 and d2 ∈ dom p,
then (Computation(s1))(i)(d3) = (Computation(s2))(i)(d3).

(89) Let p be an autonomic non programmed finite partial state of SCM
and let s1, s2 be states of SCM. Suppose p ⊆ s1 and p ⊆ s2. Let
i be a natural number, and let d2, d3 be data-locations, and let l1 be
an instruction-location of SCM, and let I be an instruction of SCM.
Suppose I = CurInstr((Computation(s1))(i)). If I = AddTo(d2, d3) and
d2 ∈ dom p, then (Computation(s1))(i)(d2)+(Computation(s1))(i)(d3) =
(Computation(s2))(i)(d2) + (Computation(s2))(i)(d3).

(90) Let p be an autonomic non programmed finite partial state of SCM
and let s1, s2 be states of SCM. Suppose p ⊆ s1 and p ⊆ s2. Let
i be a natural number, and let d2, d3 be data-locations, and let l1 be
an instruction-location of SCM, and let I be an instruction of SCM.
Suppose I = CurInstr((Computation(s1))(i)). If I = SubFrom(d2, d3) and
d2 ∈ dom p, then (Computation(s1))(i)(d2)− (Computation(s1))(i)(d3) =
(Computation(s2))(i)(d2)− (Computation(s2))(i)(d3).

(91) Let p be an autonomic non programmed finite partial state of SCM
and let s1, s2 be states of SCM. Suppose p ⊆ s1 and p ⊆ s2. Let
i be a natural number, and let d2, d3 be data-locations, and let l1 be
an instruction-location of SCM, and let I be an instruction of SCM.
Suppose I = CurInstr((Computation(s1))(i)). If I = MultBy(d2, d3) and
d2 ∈ dom p, then (Computation(s1))(i)(d2) · (Computation(s1))(i)(d3) =
(Computation(s2))(i)(d2) · (Computation(s2))(i)(d3).

(92) Let p be an autonomic non programmed finite partial state of SCM and
let s1, s2 be states of SCM. Suppose p ⊆ s1 and p ⊆ s2. Let i be a natural
number, and let d2, d3 be data-locations, and let l1 be an instruction-
location of SCM, and let I be an instruction of SCM. Suppose I =
CurInstr((Computation(s1))(i)). If I = Divide(d2, d3) and d2 ∈ dom p
and d2 6= d3, then (Computation(s1))(i)(d2)÷(Computation(s1))(i)(d3) =
(Computation(s2))(i)(d2)÷ (Computation(s2))(i)(d3).

(93) Let p be an autonomic non programmed finite partial state of SCM and
let s1, s2 be states of SCM. Suppose p ⊆ s1 and p ⊆ s2. Let i be a natural
number, and let d2, d3 be data-locations, and let l1 be an instruction-
location of SCM, and let I be an instruction of SCM. Suppose I =
CurInstr((Computation(s1))(i)). If I = Divide(d2, d3) and d3 ∈ dom p and
d2 6= d3, then (Computation(s1))(i)(d2) mod (Computation(s1))(i)(d3) =
(Computation(s2))(i)(d2) mod (Computation(s2))(i)(d3).

(94) Let p be an autonomic non programmed finite partial state of SCM
and let s1, s2 be states of SCM. Suppose p ⊆ s1 and p ⊆ s2. Let
i be a natural number, and let d2, d3 be data-locations, and let l1 be
an instruction-location of SCM, and let I be an instruction of SCM.
Suppose I = CurInstr((Computation(s1))(i)). If I = if d2 = 0 goto l1
and l1 6= Next(IC(Computation(s1))(i)), then (Computation(s1))(i)(d2) = 0
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iff (Computation(s2))(i)(d2) = 0.

(95) Let p be an autonomic non programmed finite partial state of SCM
and let s1, s2 be states of SCM. Suppose p ⊆ s1 and p ⊆ s2. Let
i be a natural number, and let d2, d3 be data-locations, and let l1 be
an instruction-location of SCM, and let I be an instruction of SCM.
Suppose I = CurInstr((Computation(s1))(i)). If I = if d2 > 0 goto l1
and l1 6= Next(IC(Computation(s1))(i)), then (Computation(s1))(i)(d2) > 0
iff (Computation(s2))(i)(d2) > 0.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-
ematics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
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Summary. This article is a continuation of an article on defining
functions on trees (see [6]). In this article we develop terminology special-
ized for binary trees, first defining binary trees and binary grammars. We
recast the induction principle for the set of parse trees of binary gram-
mars and the scheme of defining functions inductively with the set as
domain. We conclude with defining the scheme of defining such functions
by lambda-like expressions.

MML Identifier: BINTREE1.

The terminology and notation used here are introduced in the following articles:
[12], [14], [15], [13], [8], [9], [5], [7], [11], [10], [1], [3], [4], [2], and [6].

Let D be a non empty set and let t be a tree decorated with elements of D.
The root label of t is an element of D and is defined by:

(Def.1) The root label of t = t(ε).

One can prove the following two propositions:

(1) Let D be a non empty set and let t be a tree decorated with elements
of D. Then the roots of 〈t〉 = 〈the root label of t〉.

(2) Let D be a non empty set and let t1, t2 be trees decorated with elements
of D. Then the roots of 〈t1, t2〉 = 〈the root label of t1, the root label of
t2〉.

A tree is binary if:

(Def.2) For every element t of it such that t /∈ Leaves(it) holds succ t = {t �
〈0〉, t � 〈1〉}.

The following propositions are true:

1This work was partially supported by NSERC Grant OGP9207 while the first author
visited University of Alberta, May-June 1993.
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(3) For every tree T and for every element t of T holds t ∈ Leaves(T ) iff
t � 〈0〉 /∈ T.

(4) For every tree T and for every element t of T holds t ∈ Leaves(T ) iff it
is not true that there exists a natural number n such that t � 〈n〉 ∈ T.

(5) For every tree T and for every element t of T holds succ t = ∅ iff
t ∈ Leaves(T ).

(6) The elementary tree of 0 is binary.

(7) The elementary tree of 2 is binary.

Let us note that there exists a tree which is binary and finite.
A decorated tree is binary if:

(Def.3) dom it is binary.

Let D be a non empty set. Observe that there exists a tree decorated with
elements of D which is binary and finite.

Let us mention that there exists a decorated tree which is binary and finite.
Let us observe that every tree which is binary is also finite-order.
We now state four propositions:

(8) Let T0, T1 be trees and let t be an element of
︷ ︸︸ ︷
T0, T1. Then

(i) for every element p of T0 such that t = 〈0〉 � p holds t ∈ Leaves(
︷ ︸︸ ︷
T0, T1)

iff p ∈ Leaves(T0), and

(ii) for every element p of T1 such that t = 〈1〉 � p holds t ∈ Leaves(
︷ ︸︸ ︷
T0, T1)

iff p ∈ Leaves(T1).

(9) Let T0, T1 be trees and let t be an element of
︷ ︸︸ ︷
T0, T1. Then

(i) if t = ε, then succ t = {t � 〈0〉, t � 〈1〉},
(ii) for every element p of T0 such that t = 〈0〉 � p and for every finite

sequence s1 holds s1 ∈ succ p iff 〈0〉 � s1 ∈ succ t, and
(iii) for every element p of T1 such that t = 〈1〉 � p and for every finite

sequence s1 holds s1 ∈ succ p iff 〈1〉 � s1 ∈ succ t.

(10) For all trees T1, T2 holds T1 is binary and T2 is binary iff
︷ ︸︸ ︷
T1, T2 is binary.

(11) For all decorated trees T1, T2 and for arbitrary x holds T1 is binary and
T2 is binary iff x-tree(T1, T2) is binary.

Let D be a non empty set, let x be an element of D, and let T1, T2 be binary
finite trees decorated with elements of D. Then x-tree(T1, T2) is a binary finite
tree decorated with elements of D.

A non empty tree construction structure is binary if:

(Def.4) For every symbol s of it and for every finite sequence p such that s⇒ p
there exist symbols x1, x2 of it such that p = 〈x1, x2〉.

One can check that there exists a non empty tree construction structure which
is binary and strict and has terminals, nonterminals, and useful nonterminals.

The scheme BinDTConstrStrEx concerns a non empty set A and a ternary
predicate P, and states that:
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There exists a binary strict non empty tree construction structure
G such that the carrier of G = A and for all symbols x, y, z of G
holds x⇒ 〈y, z〉 iff P[x, y, z]

for all values of the parameters.

One can prove the following proposition

(12) Let G be a binary non empty tree construction structure with terminals
and nonterminals, and let t3 be a finite sequence of elements of TS(G),
and let n1 be a symbol of G. Suppose n1 ⇒ the roots of t3. Then

(i) n1 is a nonterminal of G,

(ii) dom t3 = {1, 2},
(iii) 1 ∈ dom t3,

(iv) 2 ∈ dom t3, and

(v) there exist elements t4, t5 of TS(G) such that the roots of t3 = 〈the
root label of t4, the root label of t5〉 and t4 = t3(1) and t5 = t3(2) and
n1-tree(t3) = n1-tree(t4, t5) and t4 ∈ rng t3 and t5 ∈ rng t3.

Now we present three schemes. The scheme BinDTConstrInd concerns a
binary non empty tree construction structureA with terminals and nonterminals
and a unary predicate P, and states that:

For every element t of TS(A) holds P[t]

provided the parameters have the following properties:

• For every terminal s of A holds P[the root tree of s],

• Let n1 be a nonterminal of A and let t4, t5 be elements of TS(A).
Suppose n1 ⇒ 〈the root label of t4, the root label of t5〉 and P[t4]
and P[t5]. Then P[n1-tree(t4, t5)].

The scheme BinDTConstrIndDef concerns a binary non empty tree construc-
tion structure A with terminals, nonterminals, and useful nonterminals, a non
empty set B, a unary functor F yielding an element of B, and a 5-ary functor
G yielding an element of B, and states that:

There exists a function f from TS(A) into B such that

(i) for every terminal t of A holds f(the root tree of t) = F(t),
and

(ii) for every nonterminal n1 of A and for all elements t4, t5 of
TS(A) and for all symbols r1, r2 of A such that r1 = the root label
of t4 and r2 = the root label of t5 and n1 ⇒ 〈r1, r2〉 and for all
elements x3, x4 of B such that x3 = f(t4) and x4 = f(t5) holds
f(n1-tree(t4, t5)) = G(n1, r1, r2, x3, x4)

for all values of the parameters.

The scheme BinDTConstrUniqDef deals with a binary non empty tree con-
struction structure A with terminals, nonterminals, and useful nonterminals, a
non empty set B, functions C, D from TS(A) into B, a unary functor F yielding
an element of B, and a 5-ary functor G yielding an element of B, and states that:

C = D
provided the following requirements are met:
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• (i) For every terminal t of A holds C(the root tree of t) = F(t),
and
(ii) for every nonterminal n1 of A and for all elements t4, t5 of
TS(A) and for all symbols r1, r2 of A such that r1 = the root label
of t4 and r2 = the root label of t5 and n1 ⇒ 〈r1, r2〉 and for all
elements x3, x4 of B such that x3 = C(t4) and x4 = C(t5) holds
C(n1-tree(t4, t5)) = G(n1, r1, r2, x3, x4),

• (i) For every terminal t of A holds D(the root tree of t) = F(t),
and
(ii) for every nonterminal n1 of A and for all elements t4, t5 of
TS(A) and for all symbols r1, r2 of A such that r1 = the root label
of t4 and r2 = the root label of t5 and n1 ⇒ 〈r1, r2〉 and for all
elements x3, x4 of B such that x3 = D(t4) and x4 = D(t5) holds
D(n1-tree(t4, t5)) = G(n1, r1, r2, x3, x4).

Let A, B, C be non empty sets, let a be an element of A, let b be an element
of B, and let c be an element of C. Then 〈〈a, b, c〉〉 is an element of [:A, B, C :].

Now we present two schemes. The scheme BinDTC DefLambda deals with a
binary non empty tree construction structure A with terminals, nonterminals,
and useful nonterminals, non empty sets B, C, a binary functor F yielding an
element of C, and a 4-ary functor G yielding an element of C, and states that:

There exists a function f from TS(A) into CB such that
(i) for every terminal t of A there exists a function g from B into
C such that g = f(the root tree of t) and for every element a of B
holds g(a) = F(t, a), and
(ii) for every nonterminal n1 of A and for all elements t1, t2 of
TS(A) and for all symbols r1, r2 of A such that r1 = the root label
of t1 and r2 = the root label of t2 and n1 ⇒ 〈r1, r2〉 there exist
functions g, f1, f2 from B into C such that g = f(n1-tree(t1, t2))
and f1 = f(t1) and f2 = f(t2) and for every element a of B holds
g(a) = G(n1, f1, f2, a)

for all values of the parameters.
The scheme BinDTC DefLambdaUniq deals with a binary non empty tree

construction structure A with terminals, nonterminals, and useful nonterminals,
non empty sets B, C, functions D, E from TS(A) into CB, a binary functor F
yielding an element of C, and a 4-ary functor G yielding an element of C, and
states that:

D = E
provided the parameters satisfy the following conditions:
• (i) For every terminal t of A there exists a function g from B

into C such that g = D(the root tree of t) and for every element a
of B holds g(a) = F(t, a), and
(ii) for every nonterminal n1 of A and for all elements t1, t2 of
TS(A) and for all symbols r1, r2 of A such that r1 = the root label
of t1 and r2 = the root label of t2 and n1 ⇒ 〈r1, r2〉 there exist
functions g, f1, f2 from B into C such that g = D(n1-tree(t1, t2))
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and f1 = D(t1) and f2 = D(t2) and for every element a of B holds
g(a) = G(n1, f1, f2, a),

• (i) For every terminal t of A there exists a function g from B
into C such that g = E(the root tree of t) and for every element a
of B holds g(a) = F(t, a), and
(ii) for every nonterminal n1 of A and for all elements t1, t2 of
TS(A) and for all symbols r1, r2 of A such that r1 = the root label
of t1 and r2 = the root label of t2 and n1 ⇒ 〈r1, r2〉 there exist
functions g, f1, f2 from B into C such that g = E(n1-tree(t1, t2))
and f1 = E(t1) and f2 = E(t2) and for every element a of B holds
g(a) = G(n1, f1, f2, a).

Let G be a binary non empty tree construction structure with terminals and
nonterminals. Note that every element of TS(G) is binary.
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Summary. We define a set of binary arithmetic expressions with
the following operations: +, −, ·, mod, and div and formalize the com-
mon meaning of the expressions in the set of integers. Then, we define a
compile function that for a given expression results in a program for the
SCM machine defined by Nakamura and Trybulec in [13]. We prove that
the generated program when loaded into the machine and executed com-
putes the value of the expression. The program uses additional memory
and runs in time linear in length of the expression.

MML Identifier: SCM COMP.

The articles [16], [12], [1], [21], [18], [20], [17], [9], [10], [3], [2], [13], [14], [19],
[15], [5], [4], [8], [11], [6], and [7] provide the terminology and notation for this
paper.

The following two propositions are true:

(1) Let I1, I2 be finite sequences of elements of the instructions of SCM,
and let D be a finite sequence of elements of � , and let i1, p1, d1 be natural
numbers. Then every state with instruction counter on i1, with I1 � I2

located from p1, and D from d1 is a state with instruction counter on
i1, with I1 located from p1, and D from d1 and a state with instruction
counter on i1, with I2 located from p1 + len I1, and D from d1.

(2) Let I1, I2 be finite sequences of elements of the instructions of SCM,
and let i1, p1, d1, k, i2 be natural numbers, and let s be a state with
instruction counter on i1, with I1 � I2 located from p1, and ε � from d1,
and let u be a state of SCM. Suppose u = (Computation(s))(k) and

1This work was partially supported by NSERC Grant OGP9207 while the first author
visited University of Alberta, May-June 1993.
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16 grzegorz bancerek and piotr rudnicki

i(i2) = ICu. Then u is a state with instruction counter on i2, with I2

located from p1 + len I1, and ε � from d1.

The binary strict non empty tree construction structure AESCM with termi-
nals, nonterminals, and useful nonterminals is defined by the conditions (Def.1).

(Def.1) (i) The terminals of AESCM = Data-LocSCM,
(ii) the nonterminals of AESCM = [: 1, 5 :], and

(iii) for all symbols x, y, z of AESCM holds x⇒ 〈y, z〉 iff x ∈ [: 1, 5 :].

A binary term is an element of TS(AESCM).

Let n1 be a nonterminal of AESCM and let t1, t2 be binary terms. Then
n1-tree(t1, t2) is a binary term.

Let t be a terminal of AESCM. Then the root tree of t is a binary term.

Let t be a terminal of AESCM. The functor @t yielding a data-location is
defined as follows:

(Def.2) @t = t.

One can prove the following propositions:

(3) For every nonterminal n1 of AESCM holds n1 = 〈〈0, 0〉〉 or n1 = 〈〈0, 1〉〉 or
n1 = 〈〈0, 2〉〉 or n1 = 〈〈0, 3〉〉 or n1 = 〈〈0, 4〉〉.

(4) (i) 〈〈0, 0〉〉 is a nonterminal of AESCM,
(ii) 〈〈0, 1〉〉 is a nonterminal of AESCM,

(iii) 〈〈0, 2〉〉 is a nonterminal of AESCM,
(iv) 〈〈0, 3〉〉 is a nonterminal of AESCM, and

(v) 〈〈0, 4〉〉 is a nonterminal of AESCM.

Let t3, t4 be binary terms. The functor t3 + t4 yields a binary term and is
defined as follows:

(Def.3) t3 + t4 = 〈〈0, 0〉〉-tree(t3, t4).

The functor t3 − t4 yielding a binary term is defined as follows:

(Def.4) t3 − t4 = 〈〈0, 1〉〉-tree(t3, t4).

The functor t3 · t4 yields a binary term and is defined by:

(Def.5) t3 · t4 = 〈〈0, 2〉〉-tree(t3, t4).

The functor t3 ÷ t4 yields a binary term and is defined by:

(Def.6) t3 ÷ t4 = 〈〈0, 3〉〉-tree(t3, t4).

The functor t3 mod t4 yielding a binary term is defined as follows:

(Def.7) t3 mod t4 = 〈〈0, 4〉〉-tree(t3, t4).

We now state the proposition

(5) Let t5 be a binary term. Then

(i) there exists a terminal t of AESCM such that t5 = the root tree of t, or
(ii) there exist binary terms t1, t2 such that t5 = t1 + t2 or t5 = t1 − t2 or

t5 = t1 · t2 or t5 = t1 ÷ t2 or t5 = t1 mod t2.

Let o be a nonterminal of AESCM and let i, j be integers. The functor o(i, j)
yielding an integer is defined as follows:
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(Def.8) (i) o(i, j) = i+ j if o = 〈〈0, 0〉〉,
(ii) o(i, j) = i− j if o = 〈〈0, 1〉〉,

(iii) o(i, j) = i · j if o = 〈〈0, 2〉〉,
(iv) o(i, j) = i÷ j if o = 〈〈0, 3〉〉,
(v) o(i, j) = imod j if o = 〈〈0, 4〉〉.
Let s be a state of SCM and let t be a terminal of AESCM. Then s(t) is an

integer.
� is a non empty subset of � .
One can verify that every element of � is integer.
Let D be a non empty set, let f be a function from � into D, and let x be

an integer. Then f(x) is an element of D.
Let s be a state of SCM and let t5 be a binary term. The functor t5

@ s
yields an integer and is defined by the condition (Def.9).

(Def.9) There exists a function f from TS(AESCM) into � such that
(i) t5

@ s = f(t5),
(ii) for every terminal t of AESCM holds f(the root tree of t) = s(t), and

(iii) for every nonterminal n1 of AESCM and for all binary terms t1, t2 and
for all symbols r1, r2 of AESCM such that r1 = the root label of t1 and
r2 = the root label of t2 and n1 ⇒ 〈r1, r2〉 and for all elements x1, x2 of �
such that x1 = f(t1) and x2 = f(t2) holds f(n1-tree(t1, t2)) = n1(x1, x2).

One can prove the following three propositions:

(6) For every state s of SCM and for every terminal t of AESCM holds (the
root tree of t) @ s = s(t).

(7) For every state s of SCM and for every nonterminal n1 of AESCM and
for all binary terms t1, t2 holds (n1-tree(t1, t2)) @ s = n1(t1

@ s, t2
@ s).

(8) Let s be a state of SCM and let t1, t2 be binary terms. Then (t1 +
t2) @ s = (t1

@ s) + (t2
@ s) and (t1 − t2) @ s = (t1

@ s) − (t2
@ s) and

t1 · t2 @ s = (t1
@ s) · (t2 @ s) and (t1 ÷ t2) @ s = (t1

@ s) ÷ (t2
@ s) and

(t1 mod t2) @ s = (t1
@ s) mod (t2

@ s).

Let n1 be a nonterminal of AESCM and let n be a natural number. The func-
tor Selfwork(n1, n) yielding an element of (the instructions of SCM qua set)∗

is defined as follows:

(Def.10) (i) Selfwork(n1, n) = 〈AddTo(dn,dn+1)〉 if n1 = 〈〈0, 0〉〉,
(ii) Selfwork(n1, n) = 〈SubFrom(dn,dn+1)〉 if n1 = 〈〈0, 1〉〉,

(iii) Selfwork(n1, n) = 〈MultBy(dn,dn+1)〉 if n1 = 〈〈0, 2〉〉,
(iv) Selfwork(n1, n) = 〈Divide(dn,dn+1)〉 if n1 = 〈〈0, 3〉〉,
(v) Selfwork(n1, n) = 〈Divide(dn,dn+1),dn:=dn+1〉 if n1 = 〈〈0, 4〉〉.
Let t5 be a binary term and let a1 be a natural number. The functor

Compile(t5, a1) yielding a finite sequence of elements of the instructions of SCM
is defined by the condition (Def.11).

(Def.11) There exists a function f from TS(AESCM) into ((the instructions of
SCM qua set)∗) � such that

(i) Compile(t5, a1) = (f(t5) qua element of ((the instructions of SCM
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qua set)∗) � )(a1),

(ii) for every terminal t of AESCM there exists a function g from � into
(the instructions of SCM qua set)∗ such that g = f(the root tree of t)
and for every natural number n holds g(n) = 〈dn:=@t〉, and

(iii) for every nonterminal n1 of AESCM and for all binary terms t3, t4 and
for all symbols r1, r2 of AESCM such that r1 = the root label of t3 and r2 =
the root label of t4 and n1 ⇒ 〈r1, r2〉 there exist functions g, f1, f2 from �
into (the instructions of SCM qua set)∗ such that g = f(n1-tree(t3, t4))
and f1 = f(t3) and f2 = f(t4) and for every natural number n holds
g(n) = f1(n) � f2(n+ 1) � Selfwork(n1, n).

One can prove the following propositions:

(9) For every terminal t of AESCM and for every natural number n holds
Compile(the root tree of t, n) = 〈dn:=@t〉.

(10) Let n1 be a nonterminal of AESCM, and let t3, t4 be binary terms, and
let n be a natural number, and let r1, r2 be symbols of AESCM. Suppose
r1 = the root label of t3 and r2 = the root label of t4 and n1 ⇒ 〈r1, r2〉.
Then Compile(n1-tree(t3, t4), n) = (Compile(t3, n)) � Compile(t4, n+ 1) �
Selfwork(n1, n).

Let t be a terminal of AESCM. The functor d−1(t) yielding a natural number
is defined as follows:

(Def.12) dd−1(t) = t.

Let n2, n3 be natural numbers. Then max(n2, n3) is a natural number.

Let t5 be a binary term. The functor maxDL(t5) yielding a natural number
is defined by the condition (Def.13).

(Def.13) There exists a function f from TS(AESCM) into � such that

(i) maxDL(t5) = f(t5),

(ii) for every terminal t of AESCM holds f(the root tree of t) = d−1(t),
and

(iii) for every nonterminal n1 of AESCM and for all binary terms t1, t2 and
for all symbols r1, r2 of AESCM such that r1 = the root label of t1 and
r2 = the root label of t2 and n1 ⇒ 〈r1, r2〉 and for all natural numbers
x1, x2 such that x1 = f(t1) and x2 = f(t2) holds f(n1-tree(t1, t2)) =
max(x1, x2).

One can prove the following propositions:

(11) For every terminal t of AESCM holds maxDL(the root tree of t) = d−1(t).

(12) For every nonterminal n1 of AESCM and for all binary terms t1, t2 holds
maxDL(n1-tree(t1, t2)) = max(maxDL(t1),maxDL(t2)).

(13) Let t5 be a binary term and let s1, s2 be states of SCM. Suppose that
for every natural number d2 such that d2 ≤ maxDL(t5) holds s1(d(d2)) =

s2(d(d2)). Then t5
@ s1 = t5

@ s2.

(14) Let t5 be a binary term, and let a1, n, k be natural numbers, and let
s be a state with instruction counter on n, with Compile(t5, a1) located
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from n, and ε � from k. Suppose a1 > maxDL(t5). Then there exists a
natural number i and there exists a state u of SCM such that

(i) u = (Computation(s))(i+ 1),
(ii) i+ 1 = len Compile(t5, a1),

(iii) IC(Computation(s))(i) = in+i,
(iv) ICu = in+(i+1),

(v) u(d(a1)) = t5
@ s, and

(vi) for every natural number d2 such that d2 < a1 holds s(d(d2)) = u(d(d2)).

(15) Let t5 be a binary term, and let a1, n, k be natural numbers, and
let s be a state with instruction counter on n, with (Compile(t5, a1)) �
〈haltSCM〉 located from n, and ε � from k. Suppose a1 > maxDL(t5).
Then s is halting and (Result(s))(d(a1)) = t5

@ s and the complexity of
s = len Compile(t5, a1).
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The papers [8], [10], [4], [5], [6], [1], [2], [3], [7], and [9] provide the terminology
and notation for this paper.

The scheme FunctXD YD concerns a non empty set A, a non empty set B,
and a binary predicate P, and states that:

There exists a function F from A into B such that for every element
x of A holds P[x, F (x)]

provided the following condition is satisfied:
• For every element x of A there exists an element y of B such that
P[x, y].

Let X, Y be non empty sets. Note that Y X is non empty.
We now state a number of propositions:

(1) There exists a function F from � into [: � , � :] such that F is one-to-one
and domF = � and rngF = [: � , � :].

(2) For every function F from � into � such that F is non-negative holds
0 � ≤∑F.

(3) Let F be a function from � into � and let x be a Real number. Suppose
there exists a natural number n such that x ≤ F (n) and F is non-negative.
Then x ≤∑F.

(4) For every Real number x such that there exists a Real number y such
that y < x holds x 6= −∞.

(5) For every Real number x such that there exists a Real number y such
that x < y holds x 6= +∞.

(6) For all Real numbers x, y holds x ≤ y iff x < y or x = y.

(7) Let x, y be Real numbers and let p, q be real numbers. If x = p and
y = q, then p ≤ q iff x ≤ y.

(8) For all Real numbers x, y such that x is a real number holds (y−x)+x =
y and (y + x)− x = y.

(9) For all Real numbers x, y such that x ∈ � holds x+ y = y + x.
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(10) For all Real numbers x, y, z such that z ∈ � and y < x holds (z + x)−
(z + y) = x− y.

(11) For all Real numbers x, y, z such that z ∈ � and x ≤ y holds z+x ≤ z+y
and x+ z ≤ y + z and x− z ≤ y − z.

(12) For all Real numbers x, y, z such that z ∈ � and x < y holds z+x < z+y
and x+ z < y + z and x− z < y − z.

Let x be a real number. The functor � (x) yields a Real number and is defined
as follows:

(Def.1) � (x) = x.

The following propositions are true:

(13) For all real numbers x, y holds x ≤ y iff � (x) ≤ � (y).

(14) For all real numbers x, y holds x < y iff � (x) < � (y).

(15) For all Real numbers x, y, z such that x < y and y < z holds y is a real
number.

(16) Let x, y, z be Real numbers. Suppose x is a real number and z is a real
number and x ≤ y and y ≤ z. Then y is a real number.

(17) For all Real numbers x, y, z such that x is a real number and x ≤ y and
y < z holds y is a real number.

(18) For all Real numbers x, y, z such that x < y and y ≤ z and z is a real
number holds y is a real number.

(19) For all Real numbers x, y such that 0 � < x and x < y holds 0 � < y−x.
(20) For all Real numbers x, y, z such that 0 � ≤ x and 0 � ≤ z and z+x < y

holds z < y − x.
(21) For every Real number x holds x− 0 � = x.

(22) For all Real numbers x, y, z such that 0 � ≤ x and 0 � ≤ z and z+x < y
holds z ≤ y.

(23) For every Real number x such that 0 � < x there exists a Real number y
such that 0 � < y and y < x.

(24) Let x, z be Real numbers. Suppose 0 � < x and x < z. Then there exists
a Real number y such that 0 � < y and x+ y < z and y ∈ � .

(25) Let x, z be Real numbers. Suppose 0 � ≤ x and x < z. Then there exists
a Real number y such that 0 � < y and x+ y < z and y ∈ � .

(26) For every Real number x such that 0 � < x there exists a Real number y
such that 0 � < y and y + y < x.

Let x be a Real number. Let us assume that 0 � < x. The functor Seg x yields
a non empty subset of � and is defined by:

(Def.2) For every Real number y holds y ∈ Seg x iff 0 � < y and y + y < x.

Let x be a Real number. Let us assume that 0 � < x. The functor lenx
yielding a Real number is defined as follows:

(Def.3) lenx = sup Seg x.

Next we state several propositions:
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(27) For every Real number x such that 0 � < x holds 0 � < len x.

(28) For every Real number x such that 0 � < x holds len x ≤ x.
(29) For every Real number x such that 0 � < x and x < +∞ holds len x is

a real number.

(30) For every Real number x such that 0 � < x holds len x+ lenx ≤ x.
(31) Let e1 be a Real number. Suppose 0 � < e1. Then there exists a function

F from � into � such that for every natural number n holds 0 � < F (n)
and

∑
F < e1.

(32) Let e1 be a Real number and let X be a non empty subset of � . Suppose
0 � < e1 and inf X is a real number. Then there exists a Real number x
such that x ∈ X and x < infX + e1.

(33) Let e1 be a Real number and let X be a non empty subset of � . Suppose
0 � < e1 and supX is a real number. Then there exists a Real number x
such that x ∈ X and supX − e1 < x.

(34) Let F be a function from � into � . Suppose F is non-negative and∑
F < +∞. Let n be a natural number. Then F (n) ∈ � .

−∞ is a Real number.
+∞ is a Real number.
We now state a number of propositions:

(35) � is an interval and � = ]−∞,+∞[ and � = [−∞,+∞] and � =
[−∞,+∞[ and � = ]−∞,+∞].

(36) For all Real numbers a, b such that b = −∞ holds ]a, b[ = ∅ and [a, b] = ∅
and [a, b[ = ∅ and ]a, b] = ∅.

(37) For all Real numbers a, b such that a = +∞ holds ]a, b[ = ∅ and [a, b] = ∅
and [a, b[ = ∅ and ]a, b] = ∅.

(38) Let A be an interval and let a, b be Real numbers. Suppose A = ]a, b[.
Let c, d be real numbers. Suppose c ∈ A and d ∈ A. Let e be a real
number. If c ≤ e and e ≤ d, then e ∈ A.

(39) Let A be an interval and let a, b be Real numbers. Suppose A = [a, b].
Let c, d be real numbers. Suppose c ∈ A and d ∈ A. Let e be a real
number. If c ≤ e and e ≤ d, then e ∈ A.

(40) Let A be an interval and let a, b be Real numbers. Suppose A = ]a, b].
Let c, d be real numbers. Suppose c ∈ A and d ∈ A. Let e be a real
number. If c ≤ e and e ≤ d, then e ∈ A.

(41) Let A be an interval and let a, b be Real numbers. Suppose A = [a, b[.
Let c, d be real numbers. Suppose c ∈ A and d ∈ A. Let e be a real
number. If c ≤ e and e ≤ d, then e ∈ A.

(42) Let A be a non empty subset of � and let m, M be Real numbers.
Suppose m = inf A and M = supA. Suppose that

(i) for all real numbers c, d such that c ∈ A and d ∈ A and for every real
number e such that c ≤ e and e ≤ d holds e ∈ A,

(ii) m /∈ A, and
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(iii) M /∈ A.
Then A = ]m,M [.

(43) Let A be a non empty subset of � and let m, M be Real numbers.
Suppose m = inf A and M = supA. Suppose that

(i) for all real numbers c, d such that c ∈ A and d ∈ A and for every real
number e such that c ≤ e and e ≤ d holds e ∈ A,

(ii) m ∈ A,
(iii) M ∈ A, and
(iv) A ⊆ � .

Then A = [m,M ].

(44) Let A be a non empty subset of � and let m, M be Real numbers.
Suppose m = inf A and M = supA. Suppose that

(i) for all real numbers c, d such that c ∈ A and d ∈ A and for every real
number e such that c ≤ e and e ≤ d holds e ∈ A,

(ii) m ∈ A,
(iii) M /∈ A, and
(iv) A ⊆ � .

Then A = [m,M [.

(45) Let A be a non empty subset of � and let m, M be Real numbers.
Suppose m = inf A and M = supA. Suppose that

(i) for all real numbers c, d such that c ∈ A and d ∈ A and for every real
number e such that c ≤ e and e ≤ d holds e ∈ A,

(ii) m /∈ A,
(iii) M ∈ A, and
(iv) A ⊆ � .

Then A = ]m,M ].

(46) Let A be a subset of � . Then A is an interval if and only if for all real
numbers a, b such that a ∈ A and b ∈ A and for every real number c such
that a ≤ c and c ≤ b holds c ∈ A.

Let A, B be intervals. Then A ∪B is a subset of � .
Next we state the proposition

(47) For all intervals A, B such that A ∩B 6= ∅ holds A ∪B is an interval.

Let A be an interval. Let us assume that A 6= ∅. The functor inf A yields a
Real number and is defined as follows:

(Def.4) There exists a Real number b such that inf A ≤ b but A = ]inf A, b[ or
A = ]inf A, b] or A = [inf A, b] or A = [inf A, b[.

Let A be an interval. Let us assume that A 6= ∅. The functor supA yielding
a Real number is defined as follows:

(Def.5) There exists a Real number a such that a ≤ supA but A = ]a, supA[ or
A = ]a, supA] or A = [a, supA] or A = [a, supA[.

Next we state a number of propositions:

(48) For every interval A such that A is open interval and A 6= ∅ holds
inf A ≤ supA and A = ]inf A, supA[.
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(49) For every interval A such that A is closed interval and A 6= ∅ holds
inf A ≤ supA and A = [inf A, supA].

(50) For every interval A such that A is right open interval and A 6= ∅ holds
inf A ≤ supA and A = [inf A, supA[.

(51) For every interval A such that A is left open interval and A 6= ∅ holds
inf A ≤ supA and A = ]inf A, supA].

(52) For every interval A such that A 6= ∅ holds inf A ≤ supA but
A = ]inf A, supA[ or A = ]inf A, supA] or A = [inf A, supA] or A =
[inf A, supA[.

(53) For all intervals A, B such that A = ∅ or B = ∅ holds A ∪ B is an
interval.

(54) For every interval A and for every real number a such that a ∈ A holds
inf A ≤ � (a) and � (a) ≤ supA.

(55) For all intervals A, B and for all real numbers a, b such that a ∈ A and
b ∈ B holds if supA ≤ inf B, then a ≤ b.

(56) For every interval A and for every Real number a such that a ∈ A holds
inf A ≤ a and a ≤ supA.

(57) For every interval A such that A 6= ∅ and for every Real number a such
that inf A < a and a < supA holds a ∈ A.

(58) For all intervals A, B such that supA = inf B but supA ∈ A or inf B ∈
B holds A ∪B is an interval.

Let A be a subset of � and let x be a real number. The functor x+A yields
a subset of � and is defined by:

(Def.6) For every real number y holds y ∈ x+ A iff there exists a real number
z such that z ∈ A and y = x+ z.

One can prove the following propositions:

(59) For every subset A of � and for every real number x holds−x+(x+A) =
A.

(60) For every real number x and for every subset A of � such that A = �
holds x+A = A.

(61) For every real number x holds x+ ∅ = ∅.
(62) For every interval A and for every real number x holds A is open interval

iff x+A is open interval.

(63) For every interval A and for every real number x holds A is closed
interval iff x+A is closed interval.

(64) Let A be an interval and let x be a real number. Then A is right open
interval if and only if x+A is right open interval.

(65) Let A be an interval and let x be a real number. Then A is left open
interval if and only if x+A is left open interval.

(66) For every interval A and for every real number x holds x + A is an
interval.
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Let A be an interval and let x be a real number. Note that x+A is interval.
The following proposition is true

(67) For every interval A and for every real number x holds vol(A) = vol(x+
A).
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Summary. This article is a continuation of [6] and presents the
concepts of binary arithmetic operations for integers. There is introduced
2’s complement representation of integers and natural numbers to inte-
gers are expanded. The binary addition and subtraction for integers are
defined and theorems on the relationship between binary and numerical
operations presented.

MML Identifier: BINARI 2.

The notation and terminology used here are introduced in the following papers:
[8], [5], [4], [9], [11], [7], [2], [1], [3], [10], and [6].

Let X be a non empty set, let D be a non empty subset of X, let x, y be
arbitrary, and let a, b be elements of D. Then (x = y → a, b) is an element of
D.

We follow the rules: i will be a natural number, n will be a non empty natural
number, and x, y, z1, z2 will be tuples of n and Boolean .

Let us consider n. The functor Bin1(n) yielding a tuple of n and Boolean is
defined by:

(Def.1) For every i such that i ∈ Seg n holds πi Bin1(n) = (i = 1→ true, false).

Let us consider n, x. The functor Neg2(x) yielding a tuple of n and Boolean
is defined by:

(Def.2) Neg2(x) = ¬x+ Bin1(n).

Let us consider n, x. The functor Intval(x) yielding an integer is defined by:

(Def.3) (i) Intval(x) = Absval(x) if πnx = false ,
(ii) Intval(x) = Absval(x)− (the n-th power of 2), otherwise.

Let us consider n, z1, z2. The functor Int add ovfl(z1, z2) yields an element
of Boolean and is defined by:
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(Def.4) Int add ovfl(z1, z2) = ¬πnz1 ∧ ¬πnz2 ∧ πn carry(z1, z2).

Let us consider n, z1, z2. The functor Int add udfl(z1, z2) yields an element
of Boolean and is defined by:

(Def.5) Int add udfl(z1, z2) = πnz1 ∧ πnz2 ∧ ¬πn carry(z1, z2).

The following propositions are true:

(1) For every tuple z1 of 1 and Boolean such that z1 = 〈false〉 holds
Absval(z1) = 0.

(2) For every tuple z1 of 1 and Boolean such that z1 = 〈true〉 holds
Absval(z1) = 1.

(3) For every tuple z1 of 2 and Boolean such that z1 = 〈false〉 � 〈false〉 holds
Intval(z1) = 0.

(4) For every tuple z1 of 2 and Boolean such that z1 = 〈true〉 � 〈false〉 holds
Intval(z1) = 1.

(5) For every tuple z1 of 2 and Boolean such that z1 = 〈false〉 � 〈true〉 holds
Intval(z1) = −2.

(6) For every tuple z1 of 2 and Boolean such that z1 = 〈true〉 � 〈true〉 holds
Intval(z1) = −1.

(7) For every i such that i ∈ Seg n and i = 1 holds πi Bin1(n) = true.

(8) For every i such that i ∈ Seg n and i 6= 1 holds πi Bin1(n) = false.

(9) For every n holds Bin1(n+ 1) = (Bin1(n)) � 〈false〉.
(10) For every n holds Intval((Bin1(n)) � 〈false〉) = 1.

(11) For every n and for every tuple z of n and Boolean and for every element
d of Boolean holds ¬(z � 〈d〉) = (¬z) � 〈¬d〉.

(12) Given n, and let z be a tuple of n and Boolean , and let d be an element
of Boolean . Then Intval(z � 〈d〉) = Absval(z)− ((d = false → 0, the n-th
power of 2) qua natural number).

(13) Given n, and let z1, z2 be tuples of n and Boolean , and let d1, d2 be
elements of Boolean . Then (Intval(z1 � 〈d1〉+z2 � 〈d2〉)+(Int add ovfl(z1 �
〈d1〉, z2 � 〈d2〉) = false → 0, the n+ 1-th power of 2)) −(Int add udfl(z1 �
〈d1〉, z2 � 〈d2〉) = false → 0, the n+ 1-th power of 2) = Intval(z1 � 〈d1〉) +
Intval(z2 � 〈d2〉).

(14) Given n, and let z1, z2 be tuples of n and Boolean , and let d1, d2 be
elements of Boolean . Then Intval(z1 � 〈d1〉 + z2 � 〈d2〉) = ((Intval(z1 �
〈d1〉)+Intval(z2 � 〈d2〉))−(Int add ovfl(z1 � 〈d1〉, z2 � 〈d2〉) = false → 0, the
n+ 1-th power of 2)) +(Int add udfl(z1 � 〈d1〉, z2 � 〈d2〉) = false → 0, the
n+ 1-th power of 2).

(15) For every n and for every tuple x of n and Boolean holds Absval(¬x) =
(−Absval(x) + (the n-th power of 2)) −1.

(16) For every n and for every tuple z of n and Boolean and for ev-
ery element d of Boolean holds Neg2(z � 〈d〉) = (Neg2(z)) � 〈¬d ⊕
add ovfl(¬z,Bin1(n))〉.
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(17) Given n, and let z be a tuple of n and Boolean , and let d be an element
of Boolean . Then Intval(Neg2(z � 〈d〉))+(Int add ovfl(¬(z � 〈d〉),Bin1(n+
1)) = false → 0, the n+ 1-th power of 2) = −Intval(z � 〈d〉).

(18) For every n and for every tuple z of n and Boolean and for every element
d of Boolean holds Neg2(Neg2(z � 〈d〉)) = z � 〈d〉.

Let us consider n, x, y. The functor x− y yielding a tuple of n and Boolean
is defined as follows:

(Def.6) For every i such that i ∈ Segn holds πi(x − y) = πix ⊕ πi Neg2(y) ⊕
πi carry(x,Neg2(y)).

One can prove the following three propositions:

(19) For every n and for all tuples x, y of n and Boolean holds x − y =
x+ Neg2(y).

(20) For every n and for all tuples z1, z2 of n and Boolean and for all elements
d1, d2 of Boolean holds z1 � 〈d1〉−z2 � 〈d2〉 = (z1 +Neg2(z2)) � 〈d1⊕¬d2⊕
add ovfl(¬z2,Bin1(n))⊕ add ovfl(z1,Neg2(z2))〉.

(21) Given n, and let z1, z2 be tuples of n and Boolean , and let d1,
d2 be elements of Boolean . Then ((Intval(z1 � 〈d1〉 − z2 � 〈d2〉) +
(Int add ovfl(z1 � 〈d1〉,Neg2(z2 � 〈d2〉)) = false → 0, the n + 1-th power
of 2)) −(Int add udfl(z1 � 〈d1〉,Neg2(z2 � 〈d2〉)) = false → 0, the n+ 1-th
power of 2)) +(Int add ovfl(¬(z2 � 〈d2〉),Bin1(n + 1)) = false → 0, the
n+ 1-th power of 2) = Intval(z1 � 〈d1〉)− Intval(z2 � 〈d2〉).
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The article [1] provides the terminology and notation for this paper.

1. General lattice

We follow the rules: L will be a lattice and X, Y , Z, V will be elements of
the carrier of L.

Let us consider L, X, Y . The functor X \Y yielding an element of the carrier
of L is defined by:

(Def.1) X \ Y = X u Y c.

Let us consider L, X, Y . The functor X−. Y yields an element of the carrier
of L and is defined by:

(Def.2) X−. Y = (X \ Y ) t (Y \X).

Let us consider L, X, Y . Let us observe that X = Y if and only if:

(Def.3) X v Y and Y v X.
Let us consider L, X, Y . We say that X meets Y if and only if:

(Def.4) X u Y 6= ⊥L.
We introduce X misses Y as an antonym of X meets Y .

We now state a number of propositions:

(1) X v X t Y and Y v X t Y.
(3)1 If X t Y v Z, then X v Z and Y v Z.
(4) X u Y v X t Z.
(5) If X v Y, then X u Z v Y u Z and Z uX v Z u Y.
(6) If X v Z, then X \ Y v Z.
1The proposition (2) has been removed.
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(7) If X v Y, then X \ Z v Y \ Z.
(8) X \ Y v X.
(9) X \ Y v X−. Y.

(10) If X \ Y v Z and Y \X v Z, then X−. Y v Z.
(11) X = Y t Z iff Y v X and Z v X and for every V such that Y v V

and Z v V holds X v V.
(12) X = Y u Z iff X v Y and X v Z and for every V such that V v Y

and V v Z holds V v X.
(13) If X t Y = Y or Y tX = Y, then X v Y.
(14) X u (Y \ Z) = X u Y \ Z.
(15) If X meets Y , then Y meets X.

(16) X meets X iff X 6= ⊥L.
(17) X−. Y = Y−. X.

2. Modular lattice

In the sequel L will denote a modular lattice and X, Y will denote elements
of the carrier of L.

The following three propositions are true:

(18) If Y v X and X u Y = ⊥L, then Y = ⊥L.
(20)2 If X v Y, then X t Y = Y and Y tX = Y.

(21) If X misses Y , then Y misses X.

3. Distributive lattice

In the sequel L will denote a distributive lattice and X, Y , Z will denote
elements of the carrier of L.

Next we state three propositions:

(22) If X u Y tX u Z = X, then X v Y t Z.
(23) X u Y t Y u Z t Z uX = (X t Y ) u (Y t Z) u (Z tX).

(24) (X t Y ) \ Z = (X \ Z) t (Y \ Z).

2The proposition (19) has been removed.
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4. Distributive lower bounded lattice

In the sequel L will denote a lower bound lattice and X, Y , Z will denote
elements of the carrier of L.

The following propositions are true:

(25) If X v ⊥L, then X = ⊥L.
(26) If X v Y and X v Z and Y u Z = ⊥L, then X = ⊥L.
(27) X t Y = ⊥L iff X = ⊥L and Y = ⊥L.
(28) If X v Y and Y u Z = ⊥L, then X u Z = ⊥L.
(29) ⊥L \X = ⊥L.
(30) If X meets Y and Y v Z, then X meets Z.

(31) If X meets Y u Z, then X meets Y and X meets Z.

(32) If X meets Y \ Z, then X meets Y .

(33) X misses ⊥L.

(34) If X misses Z and Y v Z, then X misses Y .

(35) If X misses Y or X misses Z, then X misses Y u Z.
(36) If X v Y and X v Z and Y misses Z, then X = ⊥L.
(37) If X misses Y , then Z uX misses Z u Y and X u Z misses Y u Z.

5. Boolean lattice

We follow a convention: L will be a Boolean lattice and X, Y , Z, V will be
elements of the carrier of L.

Next we state a number of propositions:

(38) If X \ Y v Z, then X v Y t Z.
(39) If X v Y, then Z \ Y v Z \X.
(40) If X v Y and Z v V, then X \ V v Y \ Z.
(41) If X v Y t Z, then X \ Y v Z and X \ Z v Y.
(42) Xc v (X u Y )c and Y c v (X u Y )c.

(43) (X t Y )c v Xc and (X t Y )c v Y c.

(44) If X v Y \X, then X = ⊥L.
(45) If X v Y, then Y = X t (Y \X) and Y = (Y \X) tX.
(46) X \ Y = ⊥L iff X v Y.
(47) If X v Y t Z and X u Z = ⊥L, then X v Y.
(48) X t Y = (X \ Y ) t Y.
(49) X \ (X t Y ) = ⊥L and X \ (Y tX) = ⊥L.
(50) X \X u Y = X \ Y and X \ Y uX = X \ Y.
(51) (X \ Y ) u Y = ⊥L and Y u (X \ Y ) = ⊥L.
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(52) X t (Y \X) = X t Y and (Y \X) tX = Y tX.
(53) X u Y t (X \ Y ) = X and (X \ Y ) tX u Y = X.

(54) X \ (Y \ Z) = (X \ Y ) tX u Z.
(55) X \ (X \ Y ) = X u Y.
(56) (X t Y ) \ Y = X \ Y.
(57) X u Y = ⊥L iff X \ Y = X.

(58) X \ (Y t Z) = (X \ Y ) u (X \ Z).

(59) X \ Y u Z = (X \ Y ) t (X \ Z).

(60) X u (Y \ Z) = X u Y \X u Z and (Y \ Z) uX = Y uX \ Z uX.
(61) (X t Y ) \X u Y = (X \ Y ) t (Y \X).

(62) X \ Y \ Z = X \ (Y t Z).

(63) If X \ Y = Y \X, then X = Y.

(64) (⊥L)c = >L.
(65) (>L)c = ⊥L.
(66) X \X = ⊥L.
(67) X \ ⊥L = X.

(68) (X \ Y )c = Xc t Y.
(69) X meets Y t Z iff X meets Y or X meets Z.

(70) X u Y misses X \ Y.
(71) X misses Y t Z iff X misses Y and X misses Z.

(72) X \ Y misses Y .

(73) If X misses Y , then (X t Y ) \ Y = X and (X t Y ) \X = Y.

(74) If Xc t Y c = X t Y and X misses Xc and Y misses Y c, then X = Y c

and Y = Xc.

(75) If Xc t Y c = X t Y and Y misses Xc and X misses Y c, then X = Xc

and Y = Y c.

(76) X−. ⊥L = X and ⊥L−. X = X.

(77) X−. X = ⊥L.
(78) X u Y misses X−. Y.
(79) X t Y = X−. (Y \X).

(80) X−. X u Y = X \ Y.
(81) X t Y = (X−. Y ) tX u Y.
(82) X−. Y−. X u Y = X t Y.
(83) X−. Y−. (X t Y ) = X u Y.
(84) X−. Y = (X t Y ) \X u Y.
(85) (X−. Y ) \ Z = (X \ (Y t Z)) t (Y \ (X t Z)).

(86) X \ (Y−. Z) = (X \ (Y t Z)) tX u Y u Z.
(87) (X−. Y )−. Z = X−. (Y−. Z).

(88) (X−. Y )c = X u Y tXc u Y c.
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Summary. The basic purpose of the paper is to prepare pre-
liminaries of the theory of many sorted algebras. The concept of the
signature of a many sorted algebra is introduced as well as the concept
of many sorted algebra itself. Some auxiliary related notions are defined.
The correspondence between (1 sorted) universal algebras [9] and many
sorted algebras with one sort only is described by introducing two func-
tors mapping one into the other. The construction is done this way that
the composition of both functors is the identity on universal algebras.

MML Identifier: MSUALG 1.

The articles [12], [14], [5], [6], [2], [10], [7], [4], [1], [11], [13], [3], [8], and [9]
provide the notation and terminology for this paper.

1. Preliminaries

In this paper i, j are arbitrary and I is a set.
Next we state the proposition

(1) It is not true that there exists a non-empty many sorted set M of I
such that ∅ ∈ rngM.

In this article we present several logical schemes. The scheme MSSEx deals
with a set A and a binary predicate P, and states that:

There exists a many sorted set f of A such that for every i such
that i ∈ A holds P[i, f(i)]

provided the following condition is met:
• For every i such that i ∈ A there exists j such that P[i, j].
The scheme MSSLambda concerns a set A and a unary functor F yielding

arbitrary, and states that:
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There exists a many sorted set f of A such that for every i such
that i ∈ A holds f(i) = F(i)

for all values of the parameters.
Let I be a set and let M be a many sorted set of I. A component of M is

an element of rngM.
Next we state two propositions:

(2) Let I be a non empty set, and let M be a many sorted set of I, and
let A be a component of M . Then there exists i such that i ∈ I and
A = M(i).

(3) For every many sorted set M of I and for every i such that i ∈ I holds
M(i) is a component of M .

Let us consider I and let B be a many sorted set of I. A many sorted set of
I is said to be an element of B if:

(Def.1) For every i such that i ∈ I holds it(i) is an element of B(i).

2. Auxiliary functors

Let us consider I, let A be a many sorted set of I, and let B be a many
sorted set of I. A many sorted set of I is called a many sorted function from A
into B if:

(Def.2) For every i such that i ∈ I holds it(i) is a function from A(i) into B(i).

Let us consider I, let A be a many sorted set of I, and let B be a many
sorted set of I. Note that every many sorted function from A into B is function
yielding.

Let I be a set and let M be a many sorted set of I. The functor M# yielding
a many sorted set of I∗ is defined by:

(Def.3) For every element i of I∗ holds M#(i) =
∏

(M · i).
Let I be a set and let M be a non-empty many sorted set of I. Note that

M# is non-empty.
Let us consider I, let J be a non empty set, let O be a function from I into

J , and let F be a many sorted set of J . Then F · O is a many sorted set of I.
Let us consider I, let J be a non empty set, let O be a function from I into

J , and let F be a non-empty many sorted set of J . Then F · O is a non-empty
many sorted set of I.

Let a be arbitrary. The functor � 7−→ a yields a function from � into {a}∗
and is defined as follows:

(Def.4) For every natural number n holds ( � 7−→ a)(n) = n 7→ a.

In the sequel D denotes a non empty set and n denotes a natural number.
The following propositions are true:

(4) For arbitrary a, b holds ({a} 7−→ b) · (n 7→ a) = n 7→ b.

(5) For arbitrary a and for every many sorted set M of {a} such that
M = {a} 7−→ D holds (M# · ( � 7−→ a))(n) = DSeg n.



many sorted algebras 39

Let us consider I, i. Then I 7−→ i is a function from I into {i}.
Let C be a set, let A, B be non empty sets, let F be a partial function from

C to A, and let G be a function from A into B. Then G · F is a function from
domF into B.

3. Many sorted signatures

We introduce many sorted signatures which are extensions of 1-sorted struc-
ture and are systems
〈 a carrier, operation symbols, an arity, a result sort 〉,

where the carrier is a set, the operation symbols constitute a set, the arity is a
function from the operation symbols into the carrier∗, and the result sort is a
function from the operation symbols into the carrier.

A many sorted signature is void if:

(Def.5) The operation symbols of it = ∅.
One can verify that there exists a many sorted signature which is void strict

and non empty and there exists a many sorted signature which is non void strict
and non empty.

In the sequel S is a non empty many sorted signature.
Let us consider S. A sort symbol of S is an element of the carrier of S. An

operation symbol of S is an element of the operation symbols of S.
Let S be a non void non empty many sorted signature and let o be an oper-

ation symbol of S. The functor Arity(o) yields an element of (the carrier of S)∗

and is defined as follows:

(Def.6) Arity(o) = (the arity of S)(o).

The result sort of o yielding an element of the carrier of S is defined by:

(Def.7) The result sort of o = (the result sort of S)(o).

4. Many sorted algebras

Let S be a 1-sorted structure. We consider many-sorted structures over S as
systems
〈 sorts 〉,

where the sorts constitute a many sorted set of the carrier of S.
Let us consider S. We consider algebras over S as extensions of many-sorted

structure over S as systems
〈 sorts, a characteristics 〉,

where the sorts constitute a many sorted set of the carrier of S and the char-
acteristics is a many sorted function from the sorts# · (the arity of S) into (the
sorts) ·(the result sort of S).

Let us consider S and let A be an algebra over S. We say that A is non-empty
if and only if:
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(Def.8) The sorts of A is non-empty.

Let us consider S. Observe that there exists an algebra over S which is strict
and non-empty.

Let us consider S and let A be a non-empty algebra over S. One can verify
that the sorts of A is non-empty.

Let us consider S and let A be a non-empty algebra over S. One can check
that every component of the sorts of A is non empty and every component of
the sorts of A # is non empty.

Let S be a non void non empty many sorted signature, let o be an operation
symbol of S, and let A be an algebra over S. The functor Args(o,A) yielding a
component of (the sorts of A)# is defined by:

(Def.9) Args(o,A) = ((the sorts of A)# · (the arity of S))(o).

The functor Result(o,A) yields a component of the sorts of A and is defined as
follows:

(Def.10) Result(o,A) = ((the sorts of A) · (the result sort of S))(o).

Let S be a non void non empty many sorted signature, let o be an operation
symbol of S, and let A be an algebra over S. The functor Den(o,A) yielding a
function from Args(o,A) into Result(o,A) is defined as follows:

(Def.11) Den(o,A) = (the characteristics of A)(o).

The following proposition is true

(6) Let S be a non void non empty many sorted signature, and let o be an
operation symbol of S, and let A be a non-empty algebra over S. Then
Den(o,A) is non empty.

5. Universal algebras as many sorted

We now state two propositions:

(8)1 For every homogeneous quasi total non empty partial function h from
D∗ to D holds domh = DSeg arity h.

(9) For every universal algebra A holds signatureA is non empty.

6. Universal algebras for many sorted algebras with one sort

Let A be a universal algebra. Then signatureA is a finite sequence of elements
of � .

A many sorted signature is segmental if:

(Def.12) There exists n such that the operation symbols of it = Seg n.

The following proposition is true

1The proposition (7) has been removed.
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(10) Let S be a non empty many sorted signature. Suppose S is trivial. Let
A be an algebra over S and let c1, c2 be components of the sorts of A.
Then c1 = c2.

Let us mention that there exists a many sorted signature which is segmental
trivial non void strict and non empty.

Let A be a universal algebra. The functor MSSign(A) yields a non void strict
segmental trivial many sorted signature and is defined by:

(Def.13) MSSign(A) = 〈{0},dom signatureA, ( � 7−→ 0) · signatureA,
dom signatureA 7−→ 0〉.

Let A be a universal algebra. One can check that MSSign(A) is non empty.
Let A be a universal algebra. The functor MSSorts(A) yields a non-empty

many sorted set of the carrier of MSSign(A) and is defined as follows:

(Def.14) MSSorts(A) = {0} 7−→ the carrier of A.

Let A be a universal algebra. The functor MSCharact(A) yields a many
sorted function from (MSSorts(A))# ·(the arity of MSSign(A)) into MSSorts(A)·
(the result sort of MSSign(A)) and is defined by:

(Def.15) MSCharact(A) = the characteristic of A.

Let A be a universal algebra. The functor MSAlg(A) yielding a strict algebra
over MSSign(A) is defined by:

(Def.16) MSAlg(A) = 〈MSSorts(A),MSCharact(A)〉.
Let A be a universal algebra. Note that MSAlg(A) is non-empty.

Let M1 be a trivial non empty many sorted signature and let A be an algebra
over M1. The sort of A yielding a set is defined as follows:

(Def.17) There exists a component c of the sorts of A such that the sort of A = c.

Let M1 be a trivial non empty many sorted signature and let A be a non-
empty algebra over M1. Observe that the sort of A is non empty.

We now state four propositions:

(11) Let M1 be a segmental trivial non void non empty many sorted signa-
ture, and let i be an operation symbol of M1, and let A be a non-empty
algebra over M1. Then Args(i, A) = (the sort of A)len Arity(i).

(12) For every non empty set A and for every n holds An ⊆ A∗.
(13) Let M1 be a segmental trivial non void non empty many sorted signa-

ture, and let i be an operation symbol of M1, and let A be a non-empty
algebra over M1. Then Args(i, A) ⊆ (the sort of A)∗.

(14) LetM1 be a segmental trivial non void non empty many sorted signature
and let A be a non-empty algebra over M1. Then the characteristics of A
is a finite sequence of elements of (the sort of A)∗→̇the sort of A.

Let M1 be a segmental trivial non void non empty many sorted signature
and let A be a non-empty algebra over M1. The functor charact(A) yielding a
finite sequence of operational functions of the sort of A is defined by:

(Def.18) charact(A) = the characteristics of A.
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In the sequel M1 will denote a segmental trivial non void non empty many
sorted signature and A will denote a non-empty algebra over M1.

Let us consider M1, A. The functor Alg1(A) yields a non-empty strict uni-
versal algebra and is defined as follows:

(Def.19) Alg1(A) = 〈the sort of A, charact(A)〉.
We now state the proposition

(15) For every strict universal algebra A holds A = Alg1(MSAlg(A)).
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The notation and terminology used in this paper are introduced in the following
articles: [6], [2], [3], [1], [5], [11], [4], [9], [10], [7], [8], and [12].

For simplicity we adopt the following rules: G denotes a strict group, H
denotes a subgroup of G, a, b, x denote elements of G, and h denotes a homo-
morphism from G to G.

One can prove the following proposition

(1) For all a, b such that b is an element of H holds ba ∈ H iff H is normal.

Let us consider G. One can verify that Z(G) is normal.
Let us consider G. The functor Aut(G) yields a non empty set of functions

from the carrier of G to the carrier of G and is defined as follows:

(Def.1) Every element of Aut(G) is a homomorphism from G to G and for every
h holds h ∈ Aut(G) iff h is one-to-one and an epimorphism.

We now state several propositions:

(2) For every h holds h ∈ Aut(G) iff h is one-to-one and an epimorphism.

(3) Aut(G) ⊆ (the carrier of G)the carrier of G.

(4) id(the carrier of G) is an element of Aut(G).

(5) For every h holds h ∈ Aut(G) iff h is an isomorphism.

(6) For every element f of Aut(G) holds f−1 is a homomorphism from G
to G.

(7) For every element f of Aut(G) holds f−1 is an element of Aut(G).

(8) For all elements f1, f2 of Aut(G) holds f1 · f2 is an element of Aut(G).

Let us consider G. The functor AutComp(G) yielding a binary operation on
Aut(G) is defined as follows:

(Def.2) For all elements x, y of Aut(G) holds (AutComp(G))(x, y) = x · y.
Let us consider G. The functor AutGroup(G) yields a strict group and is

defined by:
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(Def.3) AutGroup(G) = 〈Aut(G),AutComp(G)〉.
The following three propositions are true:

(9) For all elements x, y of AutGroup(G) and for all elements f , g of Aut(G)
such that x = f and y = g holds x · y = f · g.

(10) id(the carrier of G) = 1AutGroup(G).

(11) For every element f of Aut(G) and for every element g of AutGroup(G)
such that f = g holds f−1 = g−1.

Let us considerG. The functor InnAut(G) yields a non empty set of functions
from the carrier of G to the carrier of G and is defined by the condition (Def.4).

(Def.4) Let f be an element of (the carrier of G)the carrier of G. Then f ∈
InnAut(G) if and only if there exists a such that for every x holds
f(x) = xa.

Next we state several propositions:

(12) InnAut(G) ⊆ (the carrier of G)the carrier of G.

(13) Every element of InnAut(G) is an element of Aut(G).

(14) InnAut(G) ⊆ Aut(G).

(15) For all elements f , g of InnAut(G) holds (AutComp(G))(f, g) = f · g.
(16) id(the carrier of G) is an element of InnAut(G).

(17) For every element f of InnAut(G) holds f−1 is an element of InnAut(G).

(18) For all elements f , g of InnAut(G) holds f ·g is an element of InnAut(G).

Let us consider G. The functor InnAutGroup(G) yields a normal strict
subgroup of AutGroup(G) and is defined by:

(Def.5) The carrier of InnAutGroup(G) = InnAut(G).

Next we state three propositions:

(20)1 For all elements x, y of InnAutGroup(G) and for all elements f , g of
InnAut(G) such that x = f and y = g holds x · y = f · g.

(21) id(the carrier of G) = 1InnAutGroup(G).

(22) For every element f of InnAut(G) and for every element g of
InnAutGroup(G) such that f = g holds f−1 = g−1.

Let us consider G, b. The functor Conjugate(b) yields an element of
InnAut(G) and is defined by:

(Def.6) For every a holds (Conjugate(b))(a) = ab.

The following propositions are true:

(23) For all a, b holds Conjugate(a · b) = Conjugate(b) · Conjugate(a).

(24) Conjugate(1G) = id(the carrier of G).

(25) For every a holds (Conjugate(1G))(a) = a.

(26) For every a holds Conjugate(a) · Conjugate(a−1) = Conjugate(1G).

(27) For every a holds Conjugate(a−1) · Conjugate(a) = Conjugate(1G).

(28) For every a holds Conjugate(a−1) = (Conjugate(a))−1.

1The proposition (19) has been removed.
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(29) For every a holds Conjugate(a) · Conjugate(1G) = Conjugate(a) and
Conjugate(1G) · Conjugate(a) = Conjugate(a).

(30) For every element f of InnAut(G) holds f · Conjugate(1G) = f and
Conjugate(1G) · f = f.

(31) For every G holds InnAutGroup(G) and G/Z(G) are isomorphic.

(32) For every G such that G is a commutative group and for every element
f of InnAutGroup(G) holds f = 1InnAutGroup(G).
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The articles [12], [13], [5], [6], [2], [8], [9], [7], [4], [14], [3], [1], [11], and [10]
provide the notation and terminology for this paper.

1. Auxilary Facts about Many Sorted Sets

In this paper x will be arbitrary.
The scheme LambdaB concerns a non empty set A and a unary functor F

yielding arbitrary, and states that:
There exists a function f such that dom f = A and for every ele-
ment d of A holds f(d) = F(d)

for all values of the parameters.
Let I be a set, let X be a many sorted set of I, and let Y be a non-empty

many sorted set of I. Observe that X∪Y is non-empty and Y ∪X is non-empty.
Next we state two propositions:

(1) Let I be a set, and let X be a many sorted set of I, and let Y be a
non-empty many sorted set of I. Then X ∪ Y is non-empty and Y ∪X is
non-empty.

(2) For every non empty set I and for all many sorted sets X, Y of I and
for every element i of I∗ holds

∏
((X ∩ Y ) · i) =

∏
(X · i) ∩∏(Y · i).

Let I be a set and let M be a many sorted set of I. A many sorted set of I
is said to be a many sorted subset of M if:

(Def.1) It ⊆M.

Let I be a set and let M be a non-empty many sorted set of I. Observe that
there exists a many sorted subset of M which is non-empty.
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2. Constants of a Many Sorted Algebra

We follow the rules: S will denote a non void non empty many sorted signa-
ture, o will denote an operation symbol of S, and U0, U1, U2 will denote algebras
over S.

Let S be a non empty many sorted signature and let U0 be an algebra over
S. A subset of U0 is a many sorted subset of the sorts of U0.

Let S be a non empty many sorted signature. A sort symbol of S has
constants if:

(Def.2) There exists an operation symbol o of S such that (the arity of S)(o) = ε
and (the result sort of S)(o) = it.

A non empty many sorted signature has constant operations if:

(Def.3) Every sort symbol of it has constants.

Let A be a non empty set, let B be a set, let a be a function from B into
A∗, and let r be a function from B into A. Note that 〈A,B, a, r〉 is non empty.

Let us observe that there exists a non empty many sorted signature which is
non void and strict and has constant operations.

Let S be a non void non empty many sorted signature, let U0 be an algebra
over S, and let s be a sort symbol of S. The functor Constants(U0, s) yielding
a subset of (the sorts of U0)(s) is defined by:

(Def.4) (i) There exists a non empty set A such that A = (the sorts of U0)(s)
and Constants(U0, s) = {a : a ranges over elements of A,

∨
o (the arity of

S)(o) = ε ∧ (the result sort of S)(o) = s ∧ a ∈ rng Den(o, U0)} if (the
sorts of U0)(s) 6= ∅,

(ii) Constants(U0, s) = ∅, otherwise.

Let S be a non void non empty many sorted signature and let U0 be an
algebra over S. The functor Constants(U0) yielding a subset of U0 is defined as
follows:

(Def.5) For every sort symbol s of S holds (Constants(U0))(s) =
Constants(U0, s).

Let S be a non void non empty many sorted signature with constant oper-
ations, let U0 be a non-empty algebra over S, and let s be a sort symbol of S.
One can verify that Constants(U0, s) is non empty.

Let S be a non void non empty many sorted signature with constant op-
erations and let U0 be a non-empty algebra over S. One can verify that
Constants(U0) is non-empty.

3. Subalgebras of a Many Sorted Algebra

Let S be a non void non empty many sorted signature, let U0 be an algebra
over S, let o be an operation symbol of S, and let A be a subset of U0. We say
that A is closed on o if and only if:
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(Def.6) rng(Den(o, U0)
�

(A# · (the arity of S))(o)) ⊆ (A · (the result sort of
S))(o).

Let S be a non void non empty many sorted signature, let U0 be an algebra
over S, and let A be a subset of U0. We say that A is operations closed if and
only if:

(Def.7) For every operation symbol o of S holds A is closed on o.

One can prove the following proposition

(3) Let S be a non void non empty many sorted signature, and let o be an
operation symbol of S, and let U0 be an algebra over S, and let B0, B1 be
subsets of U0. If B0 ⊆ B1, then (B0

# · (the arity of S))(o) ⊆ (B1
# · (the

arity of S))(o).

Let S be a non void non empty many sorted signature, let U0 be an algebra
over S, let o be an operation symbol of S, and let A be a subset of U0. Let us
assume that A is closed on o. The functor oA yielding a function from (A# · (the
arity of S))(o) into (A · (the result sort of S))(o) is defined as follows:

(Def.8) oA = Den(o, U0)
�
(A# · (the arity of S))(o).

Let S be a non void non empty many sorted signature, let U0 be an algebra
over S, and let A be a subset of U0. The functor Opers(U0, A) yielding a many
sorted function from A# · (the arity of S) into A · (the result sort of S) is defined
by:

(Def.9) For every operation symbol o of S holds (Opers(U0, A))(o) = oA.

Next we state two propositions:

(4) Let U0 be an algebra over S and let B be a subset of U0. Suppose
B = the sorts of U0. Then B is operations closed and for every o holds
oB = Den(o, U0).

(5) For every subset B of U0 such that B = the sorts of U0 holds
Opers(U0, B) = the characteristics of U0.

Let S be a non void non empty many sorted signature and let U0 be an
algebra over S. An algebra over S is called a subalgebra of U0 if it satisfies the
conditions (Def.10).

(Def.10) (i) The sorts of it is a subset of U0, and

(ii) for every subset B of U0 such that B = the sorts of it holds B is
operations closed and the characteristics of it = Opers(U0, B).

Let S be a non void non empty many sorted signature and let U0 be an
algebra over S. One can check that there exists a subalgebra of U0 which is
strict.

Let S be a non void non empty many sorted signature and let U0 be a non-
empty algebra over S. Observe that there exists a subalgebra of U0 which is
non-empty and strict.

One can prove the following propositions:

(6) U0 is a subalgebra of U0.
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(7) If U0 is a subalgebra of U1 and U1 is a subalgebra of U2, then U0 is a
subalgebra of U2.

(8) If U1 is a strict subalgebra of U2 and U2 is a strict subalgebra of U1,
then U1 = U2.

(9) For all subalgebras U1, U2 of U0 such that the sorts of U1 ⊆ the sorts
of U2 holds U1 is a subalgebra of U2.

(10) For all strict subalgebras U1, U2 of U0 such that the sorts of U1 = the
sorts of U2 holds U1 = U2.

(11) Let S be a non void non empty many sorted signature, and let U0 be
an algebra over S, and let U1 be a subalgebra of U0. Then Constants(U0)
is a subset of U1.

(12) Let S be a non void non empty many sorted signature with constant
operations, and let U0 be a non-empty algebra over S, and let U1 be a
non-empty subalgebra of U0. Then Constants(U0) is a non-empty subset
of U1.

(13) Let S be a non void non empty many sorted signature with constant
operations, and let U0 be a non-empty algebra over S, and let U1, U2 be
non-empty subalgebras of U0. Then (the sorts of U1) ∩ (the sorts of U2)
is non-empty.

4. Many Sorted Subsets of Many Sorted Algebra

Let S be a non void non empty many sorted signature, let U0 be an algebra
over S, and let A be a subset of U0. The functor SubSorts(A) yielding a non
empty set is defined by the condition (Def.11).

(Def.11) Let x be arbitrary. Then x ∈ SubSorts(A) if and only if the following
conditions are satisfied:

(i) x ∈ (2
⋃

(the sorts of U0))the carrier of S,
(ii) x is a subset of U0, and

(iii) for every subset B of U0 such that B = x holds B is operations closed
and Constants(U0) ⊆ B and A ⊆ B.

Let S be a non void non empty many sorted signature and let U0 be an
algebra over S. The functor SubSorts(U0) yields a non empty set and is defined
by the condition (Def.12).

(Def.12) Let x be arbitrary. Then x ∈ SubSorts(U0) if and only if the following
conditions are satisfied:

(i) x ∈ (2
⋃

(the sorts of U0))the carrier of S,
(ii) x is a subset of U0, and

(iii) for every subset B of U0 such that B = x holds B is operations closed.

Let S be a non void non empty many sorted signature, let U0 be an algebra
over S, and let e be an element of SubSorts(U0). The functor @e yielding a
subset of U0 is defined as follows:
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(Def.13) @e = e.

Next we state two propositions:

(14) For all subsets A, B of U0 holds B ∈ SubSorts(A) iff B is operations
closed and Constants(U0) ⊆ B and A ⊆ B.

(15) For every subset B of U0 holds B ∈ SubSorts(U0) iff B is operations
closed.

Let S be a non void non empty many sorted signature, let U0 be an algebra
over S, let A be a subset of U0, and let s be a sort symbol of S. The functor
SubSort(A, s) yields a non empty set and is defined as follows:

(Def.14) For arbitrary x holds x ∈ SubSort(A, s) iff there exists a subset B of
U0 such that B ∈ SubSorts(A) and x = B(s).

Let S be a non void non empty many sorted signature, let U0 be an algebra
over S, and let A be a subset of U0. The functor MSSubSort(A) yields a subset
of U0 and is defined as follows:

(Def.15) For every sort symbol s of S holds (MSSubSort(A))(s) =⋂
SubSort(A, s).

We now state several propositions:

(16) For every subset A of U0 holds Constants(U0) ∪A ⊆ MSSubSort(A).

(17) For every subset A of U0 such that Constants(U0) ∪ A is non-empty
holds MSSubSort(A) is non-empty.

(18) Let A be a subset of U0 and let B be a subset of U0. If B ∈ SubSorts(A),
then ((MSSubSort(A))# · (the arity of S))(o) ⊆ (B# · (the arity of S))(o).

(19) Let A be a subset of U0 and let B be a subset of U0. Suppose
B ∈ SubSorts(A). Then rng(Den(o, U0)

�
((MSSubSort(A))# · (the arity

of S))(o)) ⊆ (B · (the result sort of S))(o).

(20) For every subset A of U0 holds rng(Den(o, U0)
�
((MSSubSort(A))# ·(the

arity of S))(o)) ⊆ (MSSubSort(A) · (the result sort of S))(o).

(21) For every subset A of U0 holds MSSubSort(A) is operations closed and
A ⊆ MSSubSort(A).

5. Operations on Many Sorted Algebra and its Subalgebras

Let S be a non void non empty many sorted signature, let U0 be an algebra
over S, and let A be a subset of U0. Let us assume that A is operations closed.
The functor U0

�
A yields a strict subalgebra of U0 and is defined as follows:

(Def.16) U0
�
A = 〈A, (Opers(U0, A) qua many sorted function from A# · (the

arity of S) into A · (the result sort of S))〉.
Let S be a non void non empty many sorted signature, let U0 be an algebra

over S, and let U1, U2 be subalgebras of U0. The functor U1 ∩ U2 yielding a
strict subalgebra of U0 is defined by the conditions (Def.17).
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(Def.17) (i) The sorts of U1 ∩ U2 = (the sorts of U1) ∩ (the sorts of U2), and
(ii) for every subset B of U0 such that B = the sorts of U1 ∩U2 holds B is

operations closed and the characteristics of U1 ∩ U2 = Opers(U0, B).

Let S be a non void non empty many sorted signature, let U0 be an alge-
bra over S, and let A be a subset of U0. The functor Gen(A) yields a strict
subalgebra of U0 and is defined by the conditions (Def.18).

(Def.18) (i) A is a subset of Gen(A), and
(ii) for every subalgebra U1 of U0 such that A is a subset of U1 holds

Gen(A) is a subalgebra of U1.

Let S be a non void non empty many sorted signature, let U0 be a non-empty
algebra over S, and let A be a non-empty subset of U0. Observe that Gen(A)
is non-empty.

We now state three propositions:

(22) Let S be a non void non empty many sorted signature, and let U0 be a
strict algebra over S, and let B be a subset of U0. If B = the sorts of U0,
then Gen(B) = U0.

(23) Let S be a non void non empty many sorted signature, and let U0 be
an algebra over S, and let U1 be a strict subalgebra of U0, and let B be
a subset of U0. If B = the sorts of U1, then Gen(B) = U1.

(24) Let S be a non void non empty many sorted signature with constant
operations, and let U0 be a non-empty algebra over S, and let U1 be a
subalgebra of U0. Then Gen(Constants(U0))∩U1 = Gen(Constants(U0)).

Let S be a non void non empty many sorted signature, let U0 be a non-
empty algebra over S, and let U1, U2 be subalgebras of U0. The functor U1

⊔
U2

yielding a strict subalgebra of U0 is defined as follows:

(Def.19) For every subset A of U0 such that A = (the sorts of U1)∪ (the sorts of
U2) holds U1

⊔
U2 = Gen(A).

Next we state several propositions:

(25) Let S be a non void non empty many sorted signature, and let U0 be a
non-empty algebra over S, and let U1 be a subalgebra of U0, and let A, B
be subsets of U0. If B = A∪the sorts of U1, then Gen(A)

⊔
U1 = Gen(B).

(26) Let S be a non void non empty many sorted signature, and let U0 be
a non-empty algebra over S, and let U1 be a subalgebra of U0, and let B
be a subset of U0. If B = the sorts of U0, then Gen(B)

⊔
U1 = Gen(B).

(27) Let S be a non void non empty many sorted signature, and let U0 be
a non-empty algebra over S, and let U1, U2 be subalgebras of U0. Then
U1
⊔
U2 = U2

⊔
U1.

(28) Let S be a non void non empty many sorted signature, and let U0 be
a non-empty algebra over S, and let U1, U2 be strict subalgebras of U0.
Then U1 ∩ (U1

⊔
U2) = U1.

(29) Let S be a non void non empty many sorted signature with constant
operations, and let U0 be a non-empty algebra over S, and let U1, U2 be
strict subalgebras of U0. Then U1 ∩ U2

⊔
U2 = U2.
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6. Lattice of Subalgebras of Many Sorted Algebra

Let S be a non void non empty many sorted signature and let U0 be an
algebra over S. The functor Subalgebras(U0) yielding a non empty set is defined
as follows:

(Def.20) For every x holds x ∈ Subalgebras(U0) iff x is a strict subalgebra of U0.

Let S be a non void non empty many sorted signature and let U0 be a non-
empty algebra over S. The functor MSAlgJoin(U0) yields a binary operation on
Subalgebras(U0) and is defined by:

(Def.21) For all elements x, y of Subalgebras(U0) and for all strict subalgebras
U1, U2 of U0 such that x = U1 and y = U2 holds (MSAlgJoin(U0))(x,
y) = U1

⊔
U2.

Let S be a non void non empty many sorted signature and let U0 be a non-
empty algebra over S. The functor MSAlgMeet(U0) yielding a binary operation
on Subalgebras(U0) is defined by:

(Def.22) For all elements x, y of Subalgebras(U0) and for all strict subalgebras
U1, U2 of U0 such that x = U1 and y = U2 holds (MSAlgMeet(U0))(x,
y) = U1 ∩ U2.

In the sequel U0 is a non-empty algebra over S.
We now state four propositions:

(30) MSAlgJoin(U0) is commutative.

(31) MSAlgJoin(U0) is associative.

(32) Let S be a non void non empty many sorted signature with constant op-
erations and let U0 be a non-empty algebra over S. Then MSAlgMeet(U0)
is commutative.

(33) Let S be a non void non empty many sorted signature with constant op-
erations and let U0 be a non-empty algebra over S. Then MSAlgMeet(U0)
is associative.

Let S be a non void non empty many sorted signature with constant opera-
tions and let U0 be a non-empty algebra over S. The lattice of subalgebras of
U0 yields a strict lattice and is defined as follows:

(Def.23) The lattice of subalgebras of U0 = 〈Subalgebras(U0),MSAlgJoin(U0),
MSAlgMeet(U0)〉.

The following proposition is true

(34) Let S be a non void non empty many sorted signature with constant
operations and let U0 be a non-empty algebra over S. Then the lattice of
subalgebras of U0 is bounded.

Let S be a non void non empty many sorted signature with constant op-
erations and let U0 be a non-empty algebra over S. Note that the lattice of
subalgebras of U0 is bounded.

We now state three propositions:
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(35) Let S be a non void non empty many sorted signature with con-
stant operations and let U0 be a non-empty algebra over S. Then
⊥the lattice of subalgebras of U0 = Gen(Constants(U0)).

(36) Let S be a non void non empty many sorted signature with constant
operations, and let U0 be a non-empty algebra over S, and let B be a
subset of U0. If B = the sorts of U0, then >the lattice of subalgebras of U0 =
Gen(B).

(37) Let S be a non void non empty many sorted signature with con-
stant operations and let U0 be a strict non-empty algebra over S. Then
>the lattice of subalgebras of U0 = U0.
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Summary. Product of two many sorted universal algebras and
product of family of many sorted universal algebras are defined in this
article. Operations on functions, such that commute, Frege, are also
introduced.
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The papers [17], [18], [9], [10], [6], [7], [13], [11], [14], [4], [8], [2], [1], [3], [5], [16],
[12], and [15] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity we follow the rules: I, J denote sets, A, B denote many sorted
sets of I, i, j, x are arbitrary, and S denotes a non empty many sorted signature.

A set has common domain if:

(Def.1) For all functions f , g such that f ∈ it and g ∈ it holds dom f = dom g.

Let us mention that there exists a set which is functional and non empty and
has common domain.

The following proposition is true

(1) {∅} is a functional set with common domain.

Let X be a functional set with common domain. The functor DOM(X)
yielding a set is defined as follows:

(Def.2) (i) For every function x such that x ∈ X holds DOM(X) = domx if
X 6= ∅,

(ii) DOM(X) = ∅, otherwise.

We now state the proposition

(2) For every functional set X with common domain such that X = {∅}
holds DOM(X) = ∅.
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Let I be a set and let M be a non-empty many sorted set of I. Observe that∏
M is functional and non empty and has common domain.

2. Operations on Functions

The scheme LambdaDMS deals with a non empty set A and a unary functor
F yielding arbitrary, and states that:

There exists a many sorted set X of A such that for every element
d of A holds X(d) = F(d)

for all values of the parameters.
Let f be a function. The functor commute(f) yields a function yielding

function and is defined as follows:

(Def.5) 1 commute(f) = curry′ uncurry f.

We now state several propositions:

(3) For every function f and for arbitrary x such that x ∈ dom commute(f)
holds (commute(f))(x) is a function.

(4) For all sets A, B, C and for every function f such that A 6= ∅ and B 6= ∅
and f ∈ (CB)A holds commute(f) ∈ (CA)B .

(5) Let A, B, C be sets and let f be a function. Suppose A 6= ∅ and
B 6= ∅ and f ∈ (CB)A. Let g, h be functions and let x, y be arbitrary.
Suppose x ∈ A and y ∈ B and f(x) = g and (commute(f))(y) = h. Then
h(x) = g(y) and domh = A and dom g = B and rng h ⊆ C and rng g ⊆ C.

(6) For all sets A, B, C and for every function f such that A 6= ∅ and B 6= ∅
and f ∈ (CB)A holds commute(commute(f)) = f.

(7) commute( � ) = � .
Let F be a function. The functor 	 commute(F ) yielding a function is defined

by the conditions (Def.6).

(Def.6) (i) For every x holds x ∈ dom 	 commute(F ) iff there exists a function
f such that f ∈ domF and x = commute(f), and

(ii) for every function f such that f ∈ dom 	 commute(F ) holds
( 	 commute(F ))(f) = F (commute(f)).

The following proposition is true

(8) For every function F such that domF = {∅} holds 	 commute(F ) = F.

Let F be a function yielding function and let f be a function. The functor
F 
 f yielding a function is defined by:

(Def.7) dom(F 
 f) = domF and for arbitrary x and for every function g such
that x ∈ domF and g = F (x) holds (F 
 f)(x) = g(f(x)).

Let f be a function yielding function. The functor Frege(f) yields a many
sorted function of

∏
(domκ f(κ)) and is defined as follows:

1The definitions (Def.3) and (Def.4) have been removed.
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(Def.8) For every function g such that g ∈ ∏(domκ f(κ)) holds (Frege(f))(g) =
f 
 g.

Let us consider I, A, B. The functor [[A,B]] yielding a many sorted set of I
is defined by:

(Def.9) For every i such that i ∈ I holds [[A,B]](i) = [:A(i), B(i) :].

Let us consider I and let A, B be non-empty many sorted sets of I. Note
that [[A,B]] is non-empty.

Next we state the proposition

(9) Let I be a non empty set, and let J be a set, and let A, B be many
sorted sets of I, and let f be a function from J into I. Then [[A,B]] · f =
[[A · f,B · f ]].

Let I be a non empty set, let us consider J , let A, B be non-empty many
sorted sets of I, let p be a function from J into I ∗, let r be a function from J
into I, let j be arbitrary, let f be a function from (A# · p)(j) into (A · r)(j), and
let g be a function from (B# · p)(j) into (B · r)(j). Let us assume that j ∈ J.
The functor eef, gdd yields a function from ([[A,B]]# · p)(j) into ([[A,B]] · r)(j)
and is defined as follows:

(Def.10) For every function h such that h ∈ ([[A,B]]# · p)(j) holds eef, gdd(h) =
〈〈f(pr1(h)), g(pr2(h))〉〉.

Let I be a non empty set, let us consider J , let A, B be non-empty many
sorted sets of I, let p be a function from J into I ∗, let r be a function from J
into I, let F be a many sorted function from A# · p into A · r, and let G be
a many sorted function from B# · p into B · r. The functor eeF,Gdd yielding a

many sorted function from [[A,B]]# · p into [[A,B]] · r is defined by the condition
(Def.11).

(Def.11) Given j. Suppose j ∈ J. Let f be a function from (A# · p)(j) into
(A · r)(j) and let g be a function from (B# · p)(j) into (B · r)(j). If
f = F (j) and g = G(j), then eeF,Gdd(j) =eef, gdd.

3. Family of Many Sorted Universal Algebras

Let us consider I, S. A many sorted set of I is said to be an algebra family
of I over S if:

(Def.12) For every i such that i ∈ I holds it(i) is a non-empty algebra over S.

Let I be a non empty set, let us consider S, let A be an algebra family of I
over S, and let i be an element of I. Then A(i) is a non-empty algebra over S.

Let S be a non empty many sorted signature and let U1 be a non-empty
algebra over S. The functor |U1| yields a non empty set and is defined as
follows:

(Def.13) |U1| =
⋃

rng (the sorts of U1).
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Let I be a non empty set, let S be a non empty many sorted signature, and
let A be an algebra family of I over S. The functor |A| yields a non empty set
and is defined as follows:

(Def.14) |A| = ⋃{|A(i)| : i ranges over elements of I}.

4. Product of Many Sorted Universal Algebras

We now state two propositions:

(10) Let S be a non void non empty many sorted signature, and let U0

be an algebra over S, and let o be an operation symbol of S. Then
Args(o, U0) =

∏
((the sorts of U0) · Arity(o)) and dom((the sorts of U0) ·

Arity(o)) = dom Arity(o) and Result(o, U0) = (the sorts of U0)(the result
sort of o).

(11) Let S be a non void non empty many sorted signature, and let U0 be
an algebra over S, and let o be an operation symbol of S. If Arity(o) = ε,
then Args(o, U0) = { � }.

Let us consider S and let U1, U2 be non-empty algebras over S. The functor
[:U1, U2 :] yields a strict algebra over S and is defined as follows:

(Def.15) [:U1, U2 :] = 〈[[the sorts of U1, the sorts of U2]], eethe characteristics of
U1, (the characteristics of U2)dd〉.

Let I be a non empty set, let us consider S, let s be a sort symbol of S,
and let A be an algebra family of I over S. The functor Carrier(A, s) yielding
a non-empty many sorted set of I is defined as follows:

(Def.16) For every element i of I holds (Carrier(A, s))(i) = (the sorts of A(i))(s).

Let I be a non empty set, let us consider S, and let A be an algebra family
of I over S. The functor SORTS(A) yields a non-empty many sorted set of the
carrier of S and is defined as follows:

(Def.17) For every sort symbol s of S holds (SORTS(A))(s) =
∏

Carrier(A, s).

Let I be a non empty set, let S be a non empty many sorted signature, and
let A be an algebra family of I over S. The functor OPER(A) yields a many
sorted function of I and is defined by:

(Def.18) For every element i of I holds (OPER(A))(i) = the characteristics of
A(i).

We now state two propositions:

(12) Let I be a non empty set, and let S be a non empty many
sorted signature, and let A be an algebra family of I over S. Then
dom uncurry OPER(A) = [: I, the operation symbols of S :].

(13) Let I be a non empty set, and let S be a non void non empty
many sorted signature, and let A be an algebra family of I over S,
and let o be an operation symbol of S. Then commute(OPER(A)) ∈
((rng uncurry OPER(A))I)the operation symbols of S .
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Let I be a non empty set, let S be a non void non empty many sorted
signature, let A be an algebra family of I over S, and let o be an operation
symbol of S. The functor A(o) yielding a many sorted function of I is defined
by:

(Def.19) A(o) = (commute(OPER(A)))(o).

We now state several propositions:

(14) Let I be a non empty set, and let i be an element of I, and let S
be a non void non empty many sorted signature, and let A be an algebra
family of I over S, and let o be an operation symbol of S. Then A(o)(i) =
Den(o,A(i)).

(15) Let I be a non empty set, and let S be a non void non empty many
sorted signature, and let A be an algebra family of I over S, and let o be
an operation symbol of S, and let x be arbitrary. If x ∈ rng Frege(A(o)),
then x is a function.

(16) Let I be a non empty set, and let S be a non void non empty many
sorted signature, and let A be an algebra family of I over S, and let o be
an operation symbol of S, and let f be a function. If f ∈ rng Frege(A(o)),
then dom f = I and for every element i of I holds f(i) ∈ Result(o,A(i)).

(17) Let I be a non empty set, and let S be a non void non empty many
sorted signature, and let A be an algebra family of I over S, and let
o be an operation symbol of S, and let f be a function. Suppose f ∈
dom Frege(A(o)). Then dom f = I and for every element i of I holds
f(i) ∈ Args(o,A(i)) and rng f ⊆ |A|dom Arity(o).

(18) Let I be a non empty set, and let S be a non void non empty many
sorted signature, and let A be an algebra family of I over S, and let o be
an operation symbol of S. Then dom(domκA(o)(κ)) = I and for every
element i of I holds (domκA(o)(κ))(i) = Args(o,A(i)).

Let I be a non empty set, let S be a non void non empty many sorted signa-
ture, and let A be an algebra family of I over S. The functor OPS(A) yielding a
many sorted function from (SORTS(A))# · (the arity of S) into SORTS(A) · (the
result sort of S) is defined by:

(Def.20) For every operation symbol o of S holds (OPS(A))(o) = (Arity(o) =
ε→ commute(A(o)), 	 commute(Frege(A(o)))).

Let I be a non empty set, let S be a non void non empty many sorted
signature, and let A be an algebra family of I over S. The functor

∏
A yields a

strict algebra over S and is defined as follows:

(Def.21)
∏
A = 〈SORTS(A),OPS(A)〉.

We now state two propositions:

(19) Let I be a non empty set, and let S be a non void non empty many
sorted signature, and let A be an algebra family of I over S. Then

∏
A =

〈SORTS(A),OPS(A)〉.
(20) Let I be a non empty set, and let S be a non void non empty many

sorted signature, and let A be an algebra family of I over S. Then the
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sorts of
∏
A = SORTS(A) and the characteristics of

∏
A = OPS(A).
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1. Preliminaries

For simplicity we follow the rules: S is a non void non empty many sorted
signature, U1, U2, U3 are non-empty algebras over S, o is an operation symbol
of S, and n is a natural number.

Let I be a non empty set, let A, B be non-empty many sorted sets of I, let
F be a many sorted function from A into B, and let i be an element of I. Then
F (i) is a function from A(i) into B(i).

Let us consider S, U1, U2. A many sorted function from U1 into U2 is a many
sorted function from the sorts of U1 into the sorts of U2.

Let I be a set and let A be a many sorted set of I. The functor idA yields a
many sorted function from A into A and is defined as follows:

(Def.1) For arbitrary i such that i ∈ I holds idA(i) = idA(i).

A function is “1-1” if:

(Def.2) For arbitrary i and for every function f such that i ∈ dom it and it(i) =
f holds f is one-to-one.

Let I be a set. Observe that there exists a many sorted function of I which
is “1-1”.

We now state the proposition
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(1) Let I be a set and let F be a many sorted function of I. Then F is
“1-1” if and only if for arbitrary i and for every function f such that i ∈ I
and F (i) = f holds f is one-to-one.

Let I be a set and let A, B be many sorted sets of I. A many sorted function
from A into B is “onto” if:

(Def.3) For arbitrary i and for every function f from A(i) into B(i) such that
i ∈ I and it(i) = f holds rng f = B(i).

Let F , G be function yielding functions. The functorG◦F yielding a function
yielding function is defined by the conditions (Def.4).

(Def.4) (i) dom(G ◦ F ) = domF ∩ domG, and

(ii) for arbitrary i and for every function f and for every function g such
that i ∈ dom(G ◦ F ) and f = F (i) and g = G(i) holds (G ◦ F )(i) = g · f.

We now state the proposition

(2) Let I be a set, and let A be a many sorted set of I, and let B, C be
non-empty many sorted sets of I, and let F be a many sorted function
from A into B, and let G be a many sorted function from B into C. Then

(i) dom(G ◦ F ) = I, and

(ii) for arbitrary i and for every function f from A(i) into B(i) and for
every function g from B(i) into C(i) such that i ∈ I and f = F (i) and
g = G(i) holds (G ◦ F )(i) = g · f.

Let I be a set, let A be a many sorted set of I, let B, C be non-empty many
sorted sets of I, let F be a many sorted function from A into B, and let G be
a many sorted function from B into C. Then G ◦ F is a many sorted function
from A into C.

Next we state two propositions:

(3) Let I be a set, and let A, B be non-empty many sorted sets of I, and
let F be a many sorted function from A into B. Then F ◦ idA = F.

(4) Let I be a set, and let A be a many sorted set of I, and let B be a
non-empty many sorted set of I, and let F be a many sorted function
from A into B. Then idB ◦ F = F.

Let I be a set, let A, B be non-empty many sorted sets of I, and let F be a
many sorted function from A into B. Let us assume that F is “1-1” and “onto”.
The functor F−1 yielding a many sorted function from B into A is defined as
follows:

(Def.5) For arbitrary i and for every function f from A(i) into B(i) such that
i ∈ I and f = F (i) holds F−1(i) = f−1.

We now state the proposition

(5) Let I be a set, and let A, B be non-empty many sorted sets of I, and
let H be a many sorted function from A into B, and let H1 be a many
sorted function from B into A. If H is “1-1” and “onto” and H1 = H−1,
then H ◦H1 = idB and H1 ◦H = idA.
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Let I be a set, let A be a many sorted set of I, and let F be a many sorted
function of I. The functor F ◦ A yields a many sorted set of I and is defined as
follows:

(Def.6) For arbitrary i and for every function f such that i ∈ I and f = F (i)
holds (F ◦ A)(i) = f ◦A(i).

Let us consider S, U1, o. Observe that every element of Args(o, U1) is
function-like and relation-like.

2. Homomorphisms of Many Sorted Algebras

One can prove the following proposition

(6) Let x be an element of Args(o, U1). Then domx = dom Arity(o) and
for arbitrary y such that y ∈ dom((the sorts of U1) · Arity(o)) holds
x(y) ∈ ((the sorts of U1) ·Arity(o))(y).

Let us consider S, U1, U2, o, let F be a many sorted function from U1 into U2,
and let x be an element of Args(o, U1). The functor F#x yielding an element
of Args(o, U2) is defined by:

(Def.7) For every n such that n ∈ domx holds (F#x)(n) =
F (πn Arity(o))(x(n)).

The following two propositions are true:

(7) For all S, o, U1 and for every element x of Args(o, U1) holds x =
id(the sorts of U1)#x.

(8) Let H1 be a many sorted function from U1 into U2, and let H2 be a many
sorted function from U2 into U3, and let x be an element of Args(o, U1).
Then (H2 ◦H1)#x = H2#(H1#x).

Let us consider S, U1, U2 and let F be a many sorted function from U1 into
U2. We say that F is a homomorphism of U1 into U2 if and only if:

(Def.8) For every operation symbol o of S and for every element x of Args(o, U1)
holds F (the result sort of o)((Den(o, U1))(x)) = (Den(o, U2))(F#x).

Next we state two propositions:

(9) id(the sorts of U1) is a homomorphism of U1 into U1.

(10) Let H1 be a many sorted function from U1 into U2 and let H2 be a
many sorted function from U2 into U3. Suppose H1 is a homomorphism
of U1 into U2 and H2 is a homomorphism of U2 into U3. Then H2 ◦H1 is
a homomorphism of U1 into U3.

Let us consider S, U1, U2 and let F be a many sorted function from U1 into
U2. We say that F is an epimorphism of U1 onto U2 if and only if:

(Def.9) F is a homomorphism of U1 into U2 and “onto”.

One can prove the following proposition
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(11) Let F be a many sorted function from U1 into U2 and let G be a many
sorted function from U2 into U3. Suppose F is an epimorphism of U1 onto
U2 and G is an epimorphism of U2 onto U3. Then G◦F is an epimorphism
of U1 onto U3.

Let us consider S, U1, U2 and let F be a many sorted function from U1 into
U2. We say that F is a monomorphism of U1 into U2 if and only if:

(Def.10) F is a homomorphism of U1 into U2 and “1-1”.

The following proposition is true

(12) Let F be a many sorted function from U1 into U2 and let G be a
many sorted function from U2 into U3. Suppose F is a monomorphism
of U1 into U2 and G is a monomorphism of U2 into U3. Then G ◦ F is a
monomorphism of U1 into U3.

Let us consider S, U1, U2 and let F be a many sorted function from U1 into
U2. We say that F is an isomorphism of U1 and U2 if and only if:

(Def.11) F is an epimorphism of U1 onto U2 and a monomorphism of U1 into U2.

The following propositions are true:

(13) Let F be a many sorted function from U1 into U2. Then F is an iso-
morphism of U1 and U2 if and only if F is a homomorphism of U1 into U2

“onto” and “1-1”.

(14) Let H be a many sorted function from U1 into U2 and let H1 be a many
sorted function from U2 into U1. Suppose H is an isomorphism of U1 and
U2 and H1 = H−1. Then H1 is an isomorphism of U2 and U1.

(15) Let H be a many sorted function from U1 into U2 and let H1 be a
many sorted function from U2 into U3. Suppose H is an isomorphism of
U1 and U2 and H1 is an isomorphism of U2 and U3. Then H1 ◦ H is an
isomorphism of U1 and U3.

Let us consider S, U1, U2. We say that U1 and U2 are isomorphic if and only
if:

(Def.12) There exists many sorted function from U1 into U2 which is an isomor-
phism of U1 and U2.

Next we state three propositions:

(16) U1 and U1 are isomorphic.

(17) If U1 and U2 are isomorphic, then U2 and U1 are isomorphic.

(18) If U1 and U2 are isomorphic and U2 and U3 are isomorphic, then U1

and U3 are isomorphic.

Let us consider S, U1, U2 and let F be a many sorted function from U1 into
U2. Let us assume that F is a homomorphism of U1 into U2. The functor ImF
yields a strict non-empty subalgebra of U2 and is defined as follows:

(Def.13) The sorts of ImF = F ◦ (the sorts of U1).

We now state several propositions:
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(19) Let U2 be a strict non-empty algebra over S and let F be a many sorted
function from U1 into U2. Suppose F is a homomorphism of U1 into U2.
Then F is an epimorphism of U1 onto U2 if and only if ImF = U2.

(20) Let F be a many sorted function from U1 into U2 and let G be a
many sorted function from U1 into ImF. Suppose F = G and F is a
homomorphism of U1 into U2. Then G is an epimorphism of U1 onto
ImF.

(21) Let F be a many sorted function from U1 into U2. Suppose F is a
homomorphism of U1 into U2. Then there exists a many sorted function
G from U1 into ImF such that F = G and G is an epimorphism of U1

onto ImF.

(22) Let U2 be a strict non-empty subalgebra of U1 and let G be a many
sorted function from U2 into U1. If G = id(the sorts of U2), then G is a
monomorphism of U2 into U1.

(23) Let F be a many sorted function from U1 into U2. Suppose F is a
homomorphism of U1 into U2. Then there exists a many sorted function
F1 from U1 into ImF and there exists a many sorted function F2 from
ImF into U2 such that F1 is an epimorphism of U1 onto ImF and F2 is
a monomorphism of ImF into U2 and F = F2 ◦ F1.
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1. Preliminaries

The following proposition is true

(1) Let I be a set, and let J be a non empty set, and let f be a function
from I into J∗, and let X be a many sorted set of J , and let p be an
element of J∗, and let x be arbitrary. If x ∈ I and p = f(x), then
(X# · f)(x) =

∏
(X · p).

Let I be a set, let A, B be many sorted sets of I, let C be a many sorted
subset of A, and let F be a many sorted function from A into B. The functor
F

�
C yielding a many sorted function from C into B is defined as follows:

(Def.1) For arbitrary i such that i ∈ I and for every function f from A(i) into
B(i) such that f = F (i) holds (F

�
C)(i) = f

�
C(i).

Let I be a set, let X be a many sorted set of I, and let i be arbitrary. Let
us assume that i ∈ I. The functor coprod(i,X) yields a set and is defined as
follows:

(Def.2) For arbitrary x holds x ∈ coprod(i,X) iff there exists arbitrary a such
that a ∈ X(i) and x = 〈〈a, i〉〉.

Let I be a set and let X be a many sorted set of I. Then disjointX is a
many sorted set of I and it can be characterized by the condition:

(Def.3) For arbitrary i such that i ∈ I holds (disjointX)(i) = coprod(i,X).
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We introduce coprod(X) as a synonym of disjointX.
Let I be a non empty set and let X be a non-empty many sorted set of I.

One can verify that coprod(X) is non-empty.
Let I be a non empty set and let X be a non-empty many sorted set of I.

One can check that
⋃
X is non empty.

We now state the proposition

(2) Let I be a set, and let X be a many sorted set of I, and let i be arbitrary.
If i ∈ I, then X(i) 6= ∅ iff (coprod(X))(i) 6= ∅.

2. Free Many Sorted Universal Algebra - General Notions

Let S be a non void non empty many sorted signature and let U0 be an
algebra over S. A subset of U0 is said to be a generator set of U0 if:

(Def.4) The sorts of Gen(it) = the sorts of U0.

Next we state the proposition

(3) Let S be a non void non empty many sorted signature, and let U0 be a
strict non-empty algebra over S, and let A be a subset of U0. Then A is
a generator set of U0 if and only if Gen(A) = U0.

Let S be a non void non empty many sorted signature and let U0 be a non-
empty algebra over S. A generator set of U0 is free if it satisfies the condition
(Def.5).

(Def.5) Let U1 be a non-empty algebra over S and let f be a many sorted
function from it into the sorts of U1. Then there exists a many sorted
function h from U0 into U1 such that h is a homomorphism of U0 into U1

and h
�
it = f.

Let S be a non void non empty many sorted signature. A non-empty algebra
over S is free if:

(Def.6) There exists generator set of it which is free.

The following proposition is true

(4) Let S be a non void non empty many sorted signature and let X be a
many sorted set of the carrier of S. Then

⋃
coprod(X) ∩ [: the operation

symbols of S, {the carrier of S} :] = ∅.

3. Semidisjoint Many Sorted Signature

Let S be a non void many sorted signature. Note that the operation symbols
of S is non empty.

Let S be a non void non empty many sorted signature and let X be a
many sorted set of the carrier of S. The functor REL(X) yields a relation
between [: the operation symbols of S, {the carrier of S} :] ∪ ⋃ coprod(X) and
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([: the operation symbols of S, {the carrier of S} :] ∪ ⋃ coprod(X))∗ and is de-
fined by the condition (Def.9).

(Def.9) 1 Let a be an element of [: the operation symbols of S,
{the carrier of S} :] ∪ ⋃

coprod(X) and let b be an element of
([: the operation symbols of S, {the carrier of S} :] ∪ ⋃ coprod(X))∗. Then
〈〈a, b〉〉 ∈ REL(X) if and only if the following conditions are satisfied:

(i) a ∈ [: the operation symbols of S, {the carrier of S} :], and

(ii) for every operation symbol o of S such that 〈〈o, the carrier of S〉〉 = a
holds len b = len Arity(o) and for arbitrary x such that x ∈ dom b holds
if b(x) ∈ [: the operation symbols of S, {the carrier of S} :], then for
every operation symbol o1 of S such that 〈〈o1, the carrier of S〉〉 = b(x)
holds the result sort of o1 = Arity(o)(x) and if b(x) ∈ ⋃ coprod(X), then
b(x) ∈ coprod(Arity(o)(x), X).

In the sequel S will be a non void non empty many sorted
signature, X will be a many sorted set of the carrier of S, o
will be an operation symbol of S, and b will be an element of
([: the operation symbols of S, {the carrier of S} :] ∪ ⋃ coprod(X))∗.

Next we state the proposition

(5) 〈〈〈〈o, the carrier of S〉〉, b〉〉 ∈ REL(X) if and only if the following condi-
tions are satisfied:

(i) len b = len Arity(o), and

(ii) for arbitrary x such that x ∈ dom b holds if b(x) ∈ [: the operation sym-
bols of S, {the carrier of S} :], then for every operation symbol o1 of S such
that 〈〈o1, the carrier of S〉〉 = b(x) holds the result sort of o1 = Arity(o)(x)
and if b(x) ∈ ⋃ coprod(X), then b(x) ∈ coprod(Arity(o)(x), X).

Let S be a non void non empty many sorted signature and let X be a many
sorted set of the carrier of S. The functor DTConMSA(X) yielding a strict tree
construction structure is defined as follows:

(Def.10) DTConMSA(X) = 〈[: the operation symbols of S, {the carrier of S} :]∪⋃
coprod(X),REL(X)〉.

Let S be a non void non empty many sorted signature and let X be a many
sorted set of the carrier of S. Observe that DTConMSA(X) is non empty.

We now state the proposition

(6) Let S be a non void non empty many sorted signature and let X be a
non-empty many sorted set of the carrier of S. Then the nonterminals of
DTConMSA(X) = [: the operation symbols of S, {the carrier of S} :] and
the terminals of DTConMSA(X) =

⋃
coprod(X).

Let S be a non void non empty many sorted signature and let X be a non-
empty many sorted set of the carrier of S. Observe that DTConMSA(X) has
terminals, nonterminals, and useful nonterminals.

One can prove the following proposition

1The definitions (Def.7) and (Def.8) have been removed.
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(7) Let S be a non void non empty many sorted signature, and let X be
a non-empty many sorted set of the carrier of S, and let t be arbitrary.
Then t ∈ the terminals of DTConMSA(X) if and only if there exists a
sort symbol s of S and there exists arbitrary x such that x ∈ X(s) and
t = 〈〈x, s〉〉.

Let S be a non void non empty many sorted signature, let X be a non-empty
many sorted set of the carrier of S, and let o be an operation symbol of S. The
functor Sym(o,X) yielding a symbol of DTConMSA(X) is defined by:

(Def.11) Sym(o,X) = 〈〈o, the carrier of S〉〉.
Let S be a non void non empty many sorted signature, let X be a non-empty

many sorted set of the carrier of S, and let s be a sort symbol of S. The functor
FreeSort(X, s) yielding a non empty subset of TS(DTConMSA(X)) is defined
by the condition (Def.12).

(Def.12) FreeSort(X, s) = {a : a ranges over elements of TS(DTConMSA(X)),∨
x x ∈ X(s) ∧ a = the root tree of 〈〈x, s〉〉 ∨ ∨

o 〈〈o, the carrier of
S〉〉 = a(ε) ∧ the result sort of o = s}.

Let S be a non void non empty many sorted signature and let X be a non-
empty many sorted set of the carrier of S. The functor FreeSorts(X) yielding a
non-empty many sorted set of the carrier of S is defined by:

(Def.13) For every sort symbol s of S holds (FreeSorts(X))(s) = FreeSort(X, s).

The following propositions are true:

(8) Let S be a non void non empty many sorted signature, and let
X be a non-empty many sorted set of the carrier of S, and let o
be an operation symbol of S, and let x be arbitrary. Suppose x ∈
((FreeSorts(X))# · (the arity of S))(o). Then x is a finite sequence of
elements of TS(DTConMSA(X)).

(9) Let S be a non void non empty many sorted signature, and let X
be a non-empty many sorted set of the carrier of S, and let o be an
operation symbol of S, and let p be a finite sequence of elements of
TS(DTConMSA(X)). Then p ∈ ((FreeSorts(X))# · (the arity of S))(o) if
and only if dom p = dom Arity(o) and for every natural number n such
that n ∈ dom p holds p(n) ∈ FreeSort(X,πn Arity(o)).

(10) Let S be a non void non empty many sorted signature, and let X
be a non-empty many sorted set of the carrier of S, and let o be an
operation symbol of S, and let p be a finite sequence of elements of
TS(DTConMSA(X)). Then Sym(o,X) ⇒ the roots of p if and only if
p ∈ ((FreeSorts(X))# · (the arity of S))(o).

(11) Let S be a non void non empty many sorted signature, and let X be a
non-empty many sorted set of the carrier of S, and let o be an operation
symbol of S. Then (FreeSorts(X) · (the result sort of S))(o) 6= ∅.

(12) Let S be a non void non empty many sorted signature and let X be a
non-empty many sorted set of the carrier of S. Then

⋃
rng FreeSorts(X) =

TS(DTConMSA(X)).
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(13) Let S be a non void non empty many sorted signature, and let X be
a non-empty many sorted set of the carrier of S, and let s1, s2 be sort
symbols of S. If s1 6= s2, then (FreeSorts(X))(s1)∩ (FreeSorts(X))(s2) =
∅.

Let S be a non void non empty many sorted signature, let X be a non-empty
many sorted set of the carrier of S, and let o be an operation symbol of S. The
functor DenOp(o,X) yielding a function from ((FreeSorts(X))# · (the arity of
S))(o) into (FreeSorts(X) · (the result sort of S))(o) is defined by:

(Def.14) For every finite sequence p of elements of TS(DTConMSA(X)) such that
Sym(o,X)⇒ the roots of p holds (DenOp(o,X))(p) = Sym(o,X)-tree(p).

Let S be a non void non empty many sorted signature and let X be a non-
empty many sorted set of the carrier of S. The functor FreeOperations(X)
yielding a many sorted function from (FreeSorts(X))# · (the arity of S) into
FreeSorts(X) · (the result sort of S) is defined as follows:

(Def.15) For every operation symbol o of S holds (FreeOperations(X))(o) =
DenOp(o,X).

Let S be a non void non empty many sorted signature and let X be a non-
empty many sorted set of the carrier of S. The functor Free(X) yields a strict
non-empty algebra over S and is defined by:

(Def.16) Free(X) = 〈FreeSorts(X),FreeOperations(X)〉.
Let S be a non void non empty many sorted signature, let X be a non-

empty many sorted set of the carrier of S, and let s be a sort symbol of S. The
functor FreeGenerator(s,X) yields a non empty subset of (FreeSorts(X))(s) and
is defined as follows:

(Def.17) For arbitrary x holds x ∈ FreeGenerator(s,X) iff there exists arbitrary
a such that a ∈ X(s) and x = the root tree of 〈〈a, s〉〉.

The following proposition is true

(14) Let S be a non void non empty many sorted signature, and let X be a
non-empty many sorted set of the carrier of S, and let s be a sort symbol of
S. Then FreeGenerator(s,X) = {the root tree of t: t ranges over symbols
of DTConMSA(X), t ∈ the terminals of DTConMSA(X) ∧ t2 = s}.

Let S be a non void non empty many sorted signature and let X be a non-
empty many sorted set of the carrier of S. The functor FreeGenerator(X) yield-
ing a generator set of Free(X) is defined as follows:

(Def.18) For every sort symbol s of S holds (FreeGenerator(X))(s) =
FreeGenerator(s,X).

We now state two propositions:

(15) Let S be a non void non empty many sorted signature and let X be a
non-empty many sorted set of the carrier of S. Then FreeGenerator(X)
is non-empty.

(16) Let S be a non void non empty many sorted signature and let
X be a non-empty many sorted set of the carrier of S. Then
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⋃
rng FreeGenerator(X) = {the root tree of t: t ranges over symbols

of DTConMSA(X), t ∈ the terminals of DTConMSA(X)}.
Let S be a non void non empty many sorted signature, let X be a non-empty

many sorted set of the carrier of S, and let s be a sort symbol of S. The functor
Reverse(s,X) yielding a function from FreeGenerator(s,X) into X(s) is defined
as follows:

(Def.19) For every symbol t of DTConMSA(X) such that the root tree of t ∈
FreeGenerator(s,X) holds (Reverse(s,X))(the root tree of t) = t1.

Let S be a non void non empty many sorted signature and let X be a non-
empty many sorted set of the carrier of S. The functor Reverse(X) yielding a
many sorted function from FreeGenerator(X) into X is defined by:

(Def.20) For every sort symbol s of S holds (Reverse(X))(s) = Reverse(s,X).

Let S be a non void non empty many sorted signature, let X be a non-empty
many sorted set of the carrier of S, let A be a non-empty many sorted set of the
carrier of S, let F be a many sorted function from FreeGenerator(X) into A,
and let t be a symbol of DTConMSA(X). Let us assume that t ∈ the terminals
of DTConMSA(X). The functor π(F,A, t) yielding an element of

⋃
A is defined

as follows:

(Def.21) For every function f such that f = F (t2) holds π(F,A, t) = f(the root
tree of t).

Let S be a non void non empty many sorted signature, let X be a non-empty
many sorted set of the carrier of S, and let t be a symbol of DTConMSA(X).
Let us assume that there exists a finite sequence p such that t⇒ p. The functor
@(X, t) yielding an operation symbol of S is defined by:

(Def.22) 〈〈@(X, t), the carrier of S〉〉 = t.

Let S be a non void non empty many sorted signature, let U0 be a non-empty
algebra over S, let o be an operation symbol of S, and let p be a finite sequence.
Let us assume that p ∈ Args(o, U0). The functor π(o, U0, p) yielding an element
of
⋃

(the sorts of U0) is defined by:

(Def.23) π(o, U0, p) = (Den(o, U0))(p).

Next we state two propositions:

(17) Let S be a non void non empty many sorted signature and let X be a
non-empty many sorted set of the carrier of S. Then FreeGenerator(X)
is free.

(18) Let S be a non void non empty many sorted signature and let X be a
non-empty many sorted set of the carrier of S. Then Free(X) is free.

Let S be a non void non empty many sorted signature. One can check that
there exists a non-empty algebra over S which is free and strict.

Let S be a non void non empty many sorted signature and let U0 be a free
non-empty algebra over S. One can verify that there exists a generator set of
U0 which is free.

One can prove the following propositions:
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(19) Let S be a non void non empty many sorted signature and let U1 be
a non-empty algebra over S. Then there exists a strict free non-empty
algebra U0 over S such that there exists many sorted function from U0

into U1 which is an epimorphism of U0 onto U1.

(20) Let S be a non void non empty many sorted signature and let U1 be a
strict non-empty algebra over S. Then there exists a strict free non-empty
algebra U0 over S and there exists a many sorted function F from U0 into
U1 such that F is an epimorphism of U0 onto U1 and ImF = U1.
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The papers [7], [10], [9], [1], [2], [4], [3], [6], [5], and [8] provide the terminology
and notation for this paper.

The following two propositions are true:

(1) Let A, B be non empty sets and let R1, R2 be relations between A and
B. Suppose that for every element x of A and for every element y of B
holds 〈〈x, y〉〉 ∈ R1 iff 〈〈x, y〉〉 ∈ R2. Then R1 = R2.

(2) Let X, Y be non empty sets, and let f be a function from X into Y ,
and let A be a subset of X. Suppose that for all elements x1, x2 of X
such that x1 ∈ A and f(x1) = f(x2) holds x2 ∈ A. Then f −1 f◦A = A.

Let T , S be topological spaces. We say that T and S are homeomorphic if
and only if:

(Def.1) There exists map from T into S which is a homeomorphism.

Let T , S be topological spaces and let f be a map from T into S. We say
that f is open if and only if:

(Def.2) For every subset A of T such that A is open holds f ◦A is open.

Let T be a topological space. The functor Indiscernibility(T ) yielding an
equivalence relation of the carrier of T is defined by the condition (Def.3).

(Def.3) Let p, q be points of T . Then 〈〈p, q〉〉 ∈ Indiscernibility(T ) if and only if
for every subset A of T such that A is open holds p ∈ A iff q ∈ A.

Let T be a topological space. The functor T/ Indiscernibility T yields a non empty
partition of the carrier of T and is defined as follows:

(Def.4) T/ Indiscernibility T = Classes Indiscernibility(T ).

Let T be a topological space. The functor T0-reflex(T ) yields a topological
space and is defined as follows:

(Def.5) T0-reflex(T ) = the decomposition space of T/ Indiscernibility T .
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Let T be a topological space. The functor T0-map(T ) yielding a continuous
map from T into T0-reflex(T ) is defined as follows:

(Def.6) T0-map(T ) = the projection onto T/ Indiscernibility T .

One can prove the following propositions:

(3) For every topological space T and for every point p of T holds p ∈
(T0-map(T ))(p).

(4) For every topological space T holds dom T0-map(T ) = the carrier of T
and rng T0-map(T ) ⊆ the carrier of T0-reflex(T ).

(5) Let T be a topological space. Then the carrier of T0-reflex(T ) =
T/ Indiscernibility T and the topology of T0-reflex(T ) = {A : A ranges over
subsets of T/ Indiscernibility T ,

⋃
A ∈ the topology of T}.

(6) For every topological space T and for every subset V of T0-reflex(T )
holds V is open iff

⋃
V ∈ the topology of T .

(7) Let T be a topological space and let C be arbitrary. Then C is a
point of T0-reflex(T ) if and only if there exists a point p of T such that
C = [p]Indiscernibility(T ).

(8) For every topological space T and for every point p of T holds
(T0-map(T ))(p) = [p]Indiscernibility(T ).

(9) For every topological space T and for all points p, q of T holds
(T0-map(T ))(q) = (T0-map(T ))(p) iff 〈〈q, p〉〉 ∈ Indiscernibility(T ).

(10) Let T be a topological space and let A be a subset of T . Suppose
A is open. Let p, q be points of T . If p ∈ A and (T0-map(T ))(p) =
(T0-map(T ))(q), then q ∈ A.

(11) Let T be a topological space and let A be a subset of T . Suppose A is
open. Let C be a subset of T . If C ∈ T/ Indiscernibility T and C meets A,
then C ⊆ A.

(12) For every topological space T holds T0-map(T ) is open.

A topological structure is discernible if it satisfies the condition (Def.7).

(Def.7) Let x, y be points of it. Suppose x 6= y. Then there exists a subset V
of it such that V is open but x ∈ V and y /∈ V or y ∈ V and x /∈ V.

Let us note that there exists a topological space which is discernible.

A T0-space is a discernible topological space.

One can prove the following propositions:

(13) For every topological space T holds T0-reflex(T ) is a T0-space.

(14) Let T , S be topological spaces. Given a map h from T0-reflex(S) into
T0-reflex(T ) such that h is a homeomorphism and T0-map(T ) and h ·
T0-map(S) are fiberwise equipotent. Then T and S are homeomorphic.

(15) Let T be a topological space, and let T0 be a T0-space, and let f be
a continuous map from T into T0, and let p, q be points of T . If 〈〈p,
q〉〉 ∈ Indiscernibility(T ), then f(p) = f(q).
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(16) Let T be a topological space, and let T0 be a T0-space, and let f be
a continuous map from T into T0, and let p be a point of T . Then
f◦([p]Indiscernibility(T )) = {f(p)}.

(17) Let T be a topological space, and let T0 be a T0-space, and let f be a
continuous map from T into T0. Then there exists a continuous map h
from T0-reflex(T ) into T0 such that f = h · T0-map(T ).
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Summary. This article introduces the construction of a many
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The notation and terminology used here are introduced in the following papers:
[13], [15], [5], [16], [10], [6], [2], [4], [1], [14], [12], [8], [11], [3], [7], and [9].

1. Many Sorted Relation

In this paper S will be a non void non empty many sorted signature and o
will be an operation symbol of S.

A function is binary relation yielding if:

(Def.1) For arbitrary x such that x ∈ dom it holds it(x) is a binary relation.

Let I be a set. Observe that there exists a many sorted set of I which is
binary relation yielding.

Let I be a set. A many sorted relation of I is a binary relation yielding many
sorted set of I.

Let I be a set and let A, B be many sorted sets of I. A many sorted set of
I is said to be a many sorted relation between A and B if:

(Def.2) For arbitrary i such that i ∈ I holds it(i) is a relation between A(i) and
B(i).

Let I be a set and let A, B be many sorted sets of I. Note that every many
sorted relation between A and B is binary relation yielding.

Let I be a set and let A be a many sorted set of I. A many sorted relation
of A is a many sorted relation between A and A.
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Let I be a set and let A be a many sorted set of I. A many sorted relation
of A is equivalence if it satisfies the condition (Def.3).

(Def.3) Let i be arbitrary and let R be a binary relation on A(i). If i ∈ I and
it(i) = R, then R is an equivalence relation of A(i).

Let I be a non empty set, let A, B be many sorted sets of I, let F be a many
sorted relation between A and B, and let i be an element of I. Then F (i) is a
relation between A(i) and B(i).

Let S be a non empty many sorted signature and let U1 be an algebra over
S.

(Def.4) A many sorted relation of the sorts of U1 is said to be a many sorted
relation of U1.

Let S be a non empty many sorted signature and let U1 be an algebra over
S. A many sorted relation of U1 is equivalence if:

(Def.5) It is equivalence.

Let S be a non void non empty many sorted signature and let U1 be an
algebra over S. Note that there exists a many sorted relation of U1 which is
equivalence.

One can prove the following proposition

(1) Let S be a non void non empty many sorted signature, and let U1 be
an algebra over S, and let R be an equivalence many sorted relation of
U1, and let s be a sort symbol of S. Then R(s) is an equivalence relation
of (the sorts of U1)(s).

Let S be a non void non empty many sorted signature and let U1 be a non-
empty algebra over S. An equivalence many sorted relation of U1 is called a
congruence of U1 if it satisfies the condition (Def.6).

(Def.6) Let o be an operation symbol of S and let x, y be elements of
Args(o, U1). Suppose that for every natural number n such that
n ∈ domx holds 〈〈x(n), y(n)〉〉 ∈ it(πn Arity(o)). Then 〈〈(Den(o, U1))(x),
(Den(o, U1))(y)〉〉 ∈ it(the result sort of o).

Let S be a non void non empty many sorted signature, let U1 be an algebra
over S, let R be an equivalence many sorted relation of U1, and let i be an
element of the carrier of S. Then R(i) is an equivalence relation of (the sorts of
U1)(i).

Let S be a non void non empty many sorted signature, let U1 be an algebra
over S, let R be an equivalence many sorted relation of U1, let i be an element
of the carrier of S, and let x be an element of (the sorts of U1)(i). The functor
[x]R yields a subset of (the sorts of U1)(i) and is defined by:

(Def.7) [x]R = [x]R(i).

Let us consider S, let U1 be a non-empty algebra over S, and let R be a
congruence of U1. The functor ClassesR yields a non-empty many sorted set of
the carrier of S and is defined by:

(Def.8) For every element s of the carrier of S holds (ClassesR)(s) =
ClassesR(s).
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2. Many Sorted Quotient Algebra

Let us consider S, let M1, M2 be many sorted sets of the operation symbols
of S, let F be a many sorted function from M1 into M2, and let o be an operation
symbol of S. Then F (o) is a function from M1(o) into M2(o).

Let I be a non empty set, let p be a finite sequence of elements of I, and let
X be a non-empty many sorted set of I. Then X ·p is a non-empty many sorted
set of dom p.

Let us consider S, o, let A be a non-empty algebra over S, let R be a
congruence of A, and let x be an element of Args(o,A). The functor R#x yields
an element of

∏
(ClassesR ·Arity(o)) and is defined as follows:

(Def.9) For every natural number n such that n ∈ dom Arity(o) holds
(R#x)(n) = [x(n)]R(πn Arity(o)).

Let us consider S, o, let A be a non-empty algebra over S, and let R be
a congruence of A. The functor QuotRes(R, o) yielding a function from ((the
sorts of A) · (the result sort of S))(o) into (ClassesR · (the result sort of S))(o)
is defined as follows:

(Def.10) For every element x of (the sorts of A)(the result sort of o) holds
(QuotRes(R, o))(x) = [x]R.

The functor QuotArgs(R, o) yielding a function from ((the sorts of A)# · (the
arity of S))(o) into ((ClassesR)# · (the arity of S))(o) is defined as follows:

(Def.11) For every element x of Args(o,A) holds (QuotArgs(R, o))(x) = R#x.

Let us consider S, let A be a non-empty algebra over S, and let R be a
congruence of A. The functor QuotRes(R) yielding a many sorted function
from (the sorts of A) · (the result sort of S) into ClassesR · (the result sort of S)
is defined as follows:

(Def.12) For every operation symbol o of S holds (QuotRes(R))(o) =
QuotRes(R, o).

The functor QuotArgs(R) yielding a many sorted function from (the sorts of
A)# · (the arity of S) into (ClassesR)# · (the arity of S) is defined as follows:

(Def.13) For every operation symbol o of S holds (QuotArgs(R))(o) =
QuotArgs(R, o).

Next we state the proposition

(2) Let A be a non-empty algebra over S, and let R be a congruence of A,
and let x be arbitrary. Suppose x ∈ ((ClassesR)# · (the arity of S))(o).
Then there exists an element a of Args(o,A) such that x = R#a.

Let us consider S, o, let A be a non-empty algebra over S, and let R be
a congruence of A. The functor QuotCharact(R, o) yields a function from
((ClassesR)# · (the arity of S))(o) into (ClassesR · (the result sort of S))(o)
and is defined as follows:
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(Def.14) For every element a of Args(o,A) such that R#a ∈ ((ClassesR)# ·
(the arity of S))(o) holds (QuotCharact(R, o))(R#a) = (QuotRes(R, o) ·
Den(o,A))(a).

Let us consider S, let A be a non-empty algebra over S, and let R be a
congruence of A. The functor QuotCharact(R) yielding a many sorted function
from (ClassesR)# ·(the arity of S) into ClassesR ·(the result sort of S) is defined
as follows:

(Def.15) For every operation symbol o of S holds (QuotCharact(R))(o) =
QuotCharact(R, o).

Let us consider S, let U1 be a non-empty algebra over S, and let R be
a congruence of U1. The functor QuotMSAlg(R) yielding a strict non-empty
algebra over S is defined by:

(Def.16) QuotMSAlg(R) = 〈ClassesR,QuotCharact(R)〉.
Let us consider S, let U1 be a non-empty algebra over S, let R be a congruence

of U1, and let s be a sort symbol of S. The functor MSNatHom(U1, R, s) yielding
a function from (the sorts of U1)(s) into (ClassesR)(s) is defined as follows:

(Def.17) For arbitrary x such that x ∈ (the sorts of U1)(s) holds
(MSNatHom(U1, R, s))(x) = [x]R(s).

Let us consider S, let U1 be a non-empty algebra over S, and let R be
a congruence of U1. The functor MSNatHom(U1, R) yielding a many sorted
function from U1 into QuotMSAlg(R) is defined by:

(Def.18) For every sort symbol s of S holds (MSNatHom(U1, R))(s) =
MSNatHom(U1, R, s).

Next we state the proposition

(3) Let S be a non void non empty many sorted signature, and let U1 be
a non-empty algebra over S, and let R be a congruence of U1. Then
MSNatHom(U1, R) is an epimorphism of U1 onto QuotMSAlg(R).

Let us consider S, let U1, U2 be non-empty algebras over S, let F be a many
sorted function from U1 into U2, and let s be a sort symbol of S. The functor
Congruence(F, s) yields an equivalence relation of (the sorts of U1)(s) and is
defined as follows:

(Def.19) For all elements x, y of (the sorts of U1)(s) holds 〈〈x, y〉〉 ∈
Congruence(F, s) iff F (s)(x) = F (s)(y).

Let us consider S, let U1, U2 be non-empty algebras over S, and let F be a
many sorted function from U1 into U2. Let us assume that F is a homomorphism
of U1 into U2. The functor Congruence(F ) yielding a congruence of U1 is defined
by:

(Def.20) For every sort symbol s of S holds (Congruence(F ))(s) =
Congruence(F, s).

Let us consider S, let U1, U2 be non-empty algebras over S, let F be a many
sorted function from U1 into U2, and let s be a sort symbol of S. Let us assume
that F is a homomorphism of U1 into U2. The functor MSHomQuot(F, s) yields
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a function from (the sorts of QuotMSAlg(Congruence(F )))(s) into (the sorts of
U2)(s) and is defined as follows:

(Def.21) For every element x of (the sorts of U1)(s) holds (MSHomQuot(F, s))
([x]Congruence(F,s)) = F (s)(x).

Let us consider S, let U1, U2 be non-empty algebras over S, and let F be a
many sorted function from U1 into U2. Let us assume that F is a homomorphism
of U1 into U2. The functor MSHomQuot(F ) yields a many sorted function from
QuotMSAlg(Congruence(F )) into U2 and is defined by:

(Def.22) For every sort symbol s of S holds (MSHomQuot(F ))(s) =
MSHomQuot(F, s).

The following propositions are true:

(4) Let S be a non void non empty many sorted signature, and let U1,
U2 be non-empty algebras over S, and let F be a many sorted function
from U1 into U2. Suppose F is a homomorphism of U1 into U2. Then
MSHomQuot(F ) is a monomorphism of QuotMSAlg(Congruence(F )) into
U2.

(5) Let S be a non void non empty many sorted signature, and let U1,
U2 be non-empty algebras over S, and let F be a many sorted function
from U1 into U2. Suppose F is an epimorphism of U1 onto U2. Then
MSHomQuot(F ) is an isomorphism of QuotMSAlg(Congruence(F )) and
U2.

(6) Let S be a non void non empty many sorted signature, and let U1,
U2 be non-empty algebras over S, and let F be a many sorted func-
tion from U1 into U2. If F is an epimorphism of U1 onto U2, then
QuotMSAlg(Congruence(F )) and U2 are isomorphic.
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The notation and terminology used in this paper are introduced in the following
papers: [12], [11], [14], [7], [8], [6], [9], [16], [2], [3], [1], [13], and [4].

Let X be a set and let Y be a subset of 2X . Then
⋃
Y is a subset of X.

In this article we present several logical schemes. The scheme DenestFraenkel
concerns a non empty set A, a non empty set B, a unary functor F yielding
arbitrary, a unary functor G yielding an element of B, and a unary predicate P,
and states that:

{F(a) : a ranges over elements of B, a ∈ {G(b) : b ranges over
elements of A, P[b]}} = {F(G(a)) : a ranges over elements of A,
P[a]}

for all values of the parameters.
The scheme EmptyFraenkel deals with a non empty set A, a unary functor

F yielding arbitrary, and a unary predicate P, and states that:
{F(a) : a ranges over elements of A, P[a]} = ∅

provided the following requirement is met:
• It is not true that there exists an element a of A such that P[a].
We now state two propositions:

(1) Let L1, L2 be non empty lattice structures. Suppose the lattice struc-
ture of L1 = the lattice structure of L2. Let a1, b1 be elements of L1,
and let a2, b2 be elements of L2, and let X be a set. Suppose a1 = a2

and b1 = b2. Then a1 t b1 = a2 t b2 and a1 u b1 = a2 u b2 and a1 v b1 iff
a2 v b2.

(2) Let L1, L2 be non empty lattice structures. Suppose the lattice struc-
ture of L1 = the lattice structure of L2. Let a be an element of L1, and
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let b be an element of L2, and let X be a set. If a = b, then a v X iff
b v X and a w X iff b w X.

Let L be a 1-sorted structure. A binary operation on L is a binary operation
on the carrier of L. A unary operation on L is a unary operation on the carrier
of L.

Let L be a non empty lattice structure and let X be a subset of L. We say
that X is directed if and only if:

(Def.1) For every finite subset Y of X there exists an element x of L such that⊔
L Y v x and x ∈ X.

The following proposition is true

(3) For every non empty lattice structure L and for every subset X of L
such that X is directed holds X is non empty.

We introduce quantale structures which are extensions of lattice structure
and half group structure and are systems
〈 a carrier, a join operation, a meet operation, a multiplication 〉,

where the carrier is a set and the join operation, the meet operation, and the
multiplication are binary operations on the carrier.

Let us mention that there exists a quantale structure which is non empty.
We consider quasinet structures as extensions of quantale structure and mul-

tiplicative loop structure as systems
〈 a carrier, a join operation, a meet operation, a multiplication, a unity 〉,

where the carrier is a set, the join operation, the meet operation, and the mul-
tiplication are binary operations on the carrier, and the unity is an element of
the carrier.

Let us note that there exists a quasinet structure which is non empty.
A non empty half group structure has left-zero if:

(Def.2) There exists an element a of it such that for every element b of it holds
a · b = a.

A non empty half group structure has right-zero if:

(Def.3) There exists an element b of it such that for every element a of it holds
a · b = b.

A non empty half group structure has zero if:

(Def.4) It has left-zero and right-zero.

One can verify that every non empty half group structure which has zero has
also left-zero and right-zero and every non empty half group structure which
has left-zero and right-zero has also zero.

Let us note that there exists a non empty half group structure has zero.
A non empty quantale structure is right-distributive if:

(Def.5) For every element a of it and for every set X holds a⊗⊔itX =
⊔

it{a⊗b :
b ranges over elements of it, b ∈ X}.

A non empty quantale structure is left-distributive if:

(Def.6) For every element a of it and for every set X holds
⊔

itX⊗a =
⊔

it{b⊗a :
b ranges over elements of it, b ∈ X}.
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A non empty quantale structure is ⊗-additive if:

(Def.7) For all elements a, b, c of it holds (a t b) ⊗ c = a ⊗ c t b ⊗ c and
c⊗ (a t b) = c⊗ a t c⊗ b.

A non empty quantale structure is ⊗-continuous if it satisfies the condition
(Def.8).

(Def.8) Let X1, X2 be subsets of it. Suppose X1 is directed and X2 is directed.
Then

⊔
X1 ⊗

⊔
X2 =

⊔
it{a ⊗ b : a ranges over elements of it, b ranges

over elements of it, a ∈ X1 ∧ b ∈ X2}.
The following proposition is true

(4) Let Q be a non empty quantale structure. Suppose the lattice structure
of Q = the lattice of subsets of ∅. Then Q is associative commutative
unital complete right-distributive left-distributive and lattice-like and has
zero.

Let A be a non empty set and let b1, b2, b3 be binary operations on A. Note
that 〈A, b1, b2, b3〉 is non empty.

Let us observe that there exists a non empty quantale structure which is
associative commutative unital left-distributive right-distributive complete and
lattice-like and has zero.

The scheme LUBFraenkelDistr deals with a complete lattice-like non empty
quantale structure A, a binary functor F yielding an element of A, and sets B,
C, and states that:⊔

A{
⊔
A{F(a, b) : b ranges over elements of A, b ∈ C} : a ranges

over elements of A, a ∈ B} =
⊔
A{F(a, b) : a ranges over elements

of A, b ranges over elements of A, a ∈ B ∧ b ∈ C}
for all values of the parameters.

In the sequel Q denotes a left-distributive right-distributive complete lattice-
like non empty quantale structure and a, b, c denote elements of Q.

Next we state two propositions:

(5) For every Q and for all sets X, Y holds
⊔
QX ⊗

⊔
Q Y =

⊔
Q{a⊗ b : a ∈

X ∧ b ∈ Y }.
(6) (a t b)⊗ c = a⊗ c t b⊗ c and c⊗ (a t b) = c⊗ a t c⊗ b.
Let A be a non empty set, let b1, b2, b3 be binary operations on A, and let e

be an element of A. Observe that 〈A, b1, b2, b3, e〉 is non empty.
One can verify that there exists a non empty quasinet structure which is

complete and lattice-like.
Let us note that every complete lattice-like non empty quasinet structure

which is left-distributive and right-distributive is also ⊗-continuous and ⊗-
additive.

Let us observe that there exists a non empty quasinet structure which is
associative commutative well unital left-distributive right-distributive complete
and lattice-like and has zero and left-zero.

A quantale is an associative left-distributive right-distributive complete
lattice-like non empty quantale structure. A quasinet is a well unital associa-
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tive ⊗-continuous ⊗-additive complete lattice-like non empty quasinet structure
with left-zero.

A Blikle net is a non empty quasinet with zero.
The following proposition is true

(7) For every well unital non empty quasinet structure Q such that Q is a
quantale holds Q is a Blikle net.

We adopt the following rules: Q will be a quantale and a, b, c, d, D will be
elements of Q.

The following propositions are true:

(8) If a v b, then a⊗ c v b⊗ c and c⊗ a v c⊗ b.
(9) If a v b and c v d, then a⊗ c v b⊗ d.
Let A be a non empty set. A unary operation on A is idempotent if:

(Def.9) For every element a of A holds it(it(a)) = it(a).

Let L be a non empty lattice structure. A unary operation on L is inflationary
if:

(Def.10) For every element p of L holds p v it(p).

A unary operation on L is deflationary if:

(Def.11) For every element p of L holds it(p) v p.
A unary operation on L is monotone if:

(Def.12) For all elements p, q of L such that p v q holds it(p) v it(q).

A unary operation on L is
⊔

-distributive if:

(Def.13) For every subset X of L holds it(
⊔
X) v ⊔

L{it(a) : a ranges over
elements of L, a ∈ X}.

We now state the proposition

(10) Let L be a complete lattice and let j be a unary operation on L. Suppose
j is monotone. Then j is

⊔
-distributive if and only if for every subset X

of L holds j(
⊔
X) =

⊔
L{j(a) : a ranges over elements of L, a ∈ X}.

Let Q be a non empty quantale structure. A unary operation on Q is ⊗-
monotone if:

(Def.14) For all elements a, b of Q holds it(a) ⊗ it(b) v it(a⊗ b).
Let Q be a non empty quantale structure and let a, b be elements of Q. The

functor a→r b yields an element of Q and is defined by:

(Def.15) a→r b =
⊔
Q{c : c ranges over elements of Q, c⊗ a v b}.

The functor a→l b yields an element of Q and is defined by:

(Def.16) a→l b =
⊔
Q{c : c ranges over elements of Q, a⊗ c v b}.

One can prove the following propositions:

(11) a⊗ b v c iff b v a→l c.

(12) a⊗ b v c iff a v b→r c.

(13) For every quantale Q and for all elements s, a, b of Q such that a v b
holds b→r s v a→r s and b→l s v a→l s.
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(14) Let Q be a quantale, and let s be an element of Q, and let j be a unary
operation on Q. If for every element a of Q holds j(a) = (a→r s)→r s,
then j is monotone.

Let Q be a non empty quantale structure. An element of Q is dualizing if:

(Def.17) For every element a of Q holds (a →r it) →l it = a and (a →l it) →r

it = a.

An element of Q is cyclic if:

(Def.18) For every element a of Q holds a→r it = a→l it.

We now state several propositions:

(15) c is cyclic iff for all a, b such that a⊗ b v c holds b⊗ a v c.
(16) For every quantale Q and for all elements s, a of Q such that s is cyclic

holds a v (a→r s)→r s and a v (a→l s)→l s.

(17) For every quantale Q and for all elements s, a of Q such that s is cyclic
holds a→r s = ((a→r s)→r s)→r s and a→l s = ((a→l s)→l s)→l s.

(18) For every quantale Q and for all elements s, a, b of Q such that s is
cyclic holds ((a→r s)→r s)⊗ ((b→r s)→r s) v (a⊗ b→r s)→r s.

(19) If D is dualizing, then Q is unital and 1the multiplication of Q = D →r D
and 1the multiplication of Q = D →l D.

(20) If a is dualizing, then b →r c = b⊗ (c →l a) →r a and b →l c = (c →r

a)⊗ b→l a.

We introduce Girard quantale structures which are extensions of quasinet
structure and are systems
〈 a carrier, a join operation, a meet operation, a multiplication, a unity,

absurd 〉,
where the carrier is a set, the join operation, the meet operation, and the mul-
tiplication are binary operations on the carrier, and the unity and the absurd
constitute elements of the carrier.

One can check that there exists a Girard quantale structure which is non
empty.

A non empty Girard quantale structure is cyclic if:

(Def.19) The absurd of it is cyclic.

A non empty Girard quantale structure is dualized if:

(Def.20) The absurd of it is dualizing.

The following proposition is true

(21) Let Q be a non empty Girard quantale structure. Suppose the lattice
structure of Q = the lattice of subsets of ∅. Then Q is cyclic and dualized.

Let A be a non empty set, let b1, b2, b3 be binary operations on A, and let
e1, e2 be elements of A. One can verify that 〈A, b1, b2, b3, e1, e2〉 is non empty.

Let us note that there exists a non empty Girard quantale structure which is
associative commutative well unital left-distributive right-distributive complete
lattice-like cyclic dualized and strict.
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A Girard quantale is an associative well unital left-distributive right-
distributive complete lattice-like cyclic dualized non empty Girard quantale
structure.

Let G be a Girard quantale structure. The functor ⊥G yielding an element
of G is defined as follows:

(Def.21) ⊥G = the absurd of G.

Let G be a non empty Girard quantale structure. The functor >G yielding
an element of G is defined by:

(Def.22) >G = ⊥G →r ⊥G.
Let a be an element of G. The functor ⊥a yielding an element of G is defined
by:

(Def.23) ⊥a = a→r ⊥G.
Let G be a non empty Girard quantale structure. The functor Negation(G)

yields a unary operation on G and is defined as follows:

(Def.24) For every element a of G holds (Negation(G))(a) = ⊥a.
Let G be a non empty Girard quantale structure and let u be a unary oper-

ation on G. The functor ⊥u yielding a unary operation on G is defined by:

(Def.25) ⊥u = Negation(G) · u.
Let G be a non empty Girard quantale structure and let o be a binary

operation on G. The functor ⊥o yields a binary operation on G and is defined
as follows:

(Def.26) ⊥o = Negation(G) · o.
We adopt the following convention: Q denotes a Girard quantale, a, a1, a2,

b, b1, b2, c denote elements of Q, and X denotes a set.
We now state several propositions:

(22) ⊥⊥a = a.

(23) If a v b, then ⊥b v ⊥a.
(24) ⊥⊔

Q
X = d−eQ{⊥a : a ∈ X}.

(25) ⊥d−eQX =
⊔
Q{⊥a : a ∈ X}.

(26) ⊥atb = ⊥a u ⊥b and ⊥aub = ⊥a t ⊥b.
Let us consider Q, a, b. The functor a ℘ b yields an element of Q and is

defined as follows:

(Def.27) a ℘ b = ⊥⊥a⊗⊥b .
We now state several propositions:

(27) a⊗⊔QX =
⊔
Q{a⊗ b : b ∈ X} and a ℘ d−eQX = d−eQ{a ℘ c : c ∈ X}.

(28)
⊔
QX ⊗ a =

⊔
Q{b⊗ a : b ∈ X} and d−eQX ℘ a = d−eQ{c ℘ a : c ∈ X}.

(29) a ℘ b u c = (a ℘ b) u (a ℘ c) and b u c ℘ a = (b ℘ a) u (c ℘ a).

(30) If a1 v b1 and a2 v b2, then a1 ℘ a2 v b1 ℘ b2.
(31) (a ℘ b) ℘ c = a ℘ (b ℘ c).

(32) a⊗>Q = a and >Q ⊗ a = a.
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(33) a ℘⊥Q = a and ⊥Q ℘ a = a.

(34) Let Q be a quantale and let j be a unary operation on Q. Suppose j is
monotone idempotent and

⊔
-distributive. Then there exists a complete

lattice L such that the carrier of L = rng j and for every subset X of L
holds

⊔
X = j(

⊔
QX).

References

[1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[2] Grzegorz Bancerek. Filters - part I. Formalized Mathematics, 1(5):813–819, 1990.
[3] Grzegorz Bancerek. Filters - part II. Quotient lattices modulo filters and direct product

of two lattices. Formalized Mathematics, 2(3):433–438, 1991.
[4] Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213–225, 1992.
[5] A. Blikle. An analysis of programs by algebraic means. Banach Center Publications,

2:167–213.
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The papers [12], [3], [4], [11], [8], [10], [1], [2], [5], [6], [9], and [7] provide the
notation and terminology for this paper.

For simplicity we adopt the following rules: f denotes a function, N , n, m
denote natural numbers, q, r, r1, r2 denote real numbers, x is arbitrary, and w,
w1, w2, g denote points of ENT .

Let us consider N . A sequence in ENT is a function from � into the carrier of
ENT .

In the sequel s1, s2, s3, s4, s′1 are sequences in ENT .
Next we state two propositions:

(1) f is a sequence in ENT if and only if dom f = � and for every x such
that x ∈ � holds f(x) is a point of ENT .

(2) f is a sequence in ENT iff dom f = � and for every n holds f(n) is a
point of ENT .

Let us consider N , s1, n. Then s1(n) is a point of ENT .
Let us consider N . A sequence in ENT is non-zero if:

(Def.1) rng it ⊆ (the carrier of ENT ) \ {0ENT }.
We now state several propositions:

(3) s1 is non-zero iff for every x such that x ∈ � holds s1(x) 6= 0ENT .

(4) s1 is non-zero iff for every n holds s1(n) 6= 0EN
T
.

(5) For all N , s1, s2 such that for every x such that x ∈ � holds s1(x) =
s2(x) holds s1 = s2.

(6) For all N , s1, s2 such that for every n holds s1(n) = s2(n) holds s1 = s2.

(7) For every point w of ENT there exists s1 such that rng s1 = {w}.
The scheme ExTopRealNSeq deals with a natural number A and a unary

functor F yielding a point of EAT , and states that:
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There exists a sequence s1 in EAT such that for every n holds s1(n) =
F(n)

for all values of the parameters.
Let us consider N , s2, s3. The functor s2 + s3 yielding a sequence in ENT is

defined by:

(Def.2) For every n holds (s2 + s3)(n) = s2(n) + s3(n).

Let us consider r, N , s1. The functor r · s1 yields a sequence in ENT and is
defined by:

(Def.3) For every n holds (r · s1)(n) = r · s1(n).

Let us consider N , s1. The functor −s1 yields a sequence in ENT and is defined
as follows:

(Def.4) For every n holds (−s1)(n) = −s1(n).

Let us consider N , s2, s3. The functor s2 − s3 yields a sequence in ENT and
is defined by:

(Def.5) s2 − s3 = s2 +−s3.

Let us consider N and let x be a point of ENT . The functor |x| yields a real
number and is defined by:

(Def.6) There exists a finite sequence y of elements of � such that x = y and
|x| = |y|.

Let us consider N , s1. The functor |s1| yielding a sequence of real numbers
is defined by:

(Def.7) For every n holds |s1|(n) = |s1(n)|.
We now state a number of propositions:

(8) |r| · |w| = |r · w|.
(9) |r · s1| = |r| |s1|.

(10) s2 + s3 = s3 + s2.

(11) (s2 + s3) + s4 = s2 + (s3 + s4).

(12) −s1 = (−1) · s1.

(13) r · (s2 + s3) = r · s2 + r · s3.

(14) (r · q) · s1 = r · (q · s1).

(15) r · (s2 − s3) = r · s2 − r · s3.

(16) s2 − (s3 + s4) = s2 − s3 − s4.

(17) 1 · s1 = s1.

(18) −−s1 = s1.

(19) s2 −−s3 = s2 + s3.

(20) s2 − (s3 − s4) = (s2 − s3) + s4.

(21) s2 + (s3 − s4) = (s2 + s3)− s4.

(22) If r 6= 0 and s1 is non-zero, then r · s1 is non-zero.

(23) If s1 is non-zero, then −s1 is non-zero.

(24) |0ENT | = 0.
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(25) If |w| = 0, then w = 0ENT .

(26) |w| ≥ 0.

(27) |−w| = |w|.
(28) |w1 − w2| = |w2 − w1|.
(29) |w1 − w2| = 0 iff w1 = w2.

(30) |w1 + w2| ≤ |w1|+ |w2|.
(31) |w1 − w2| ≤ |w1|+ |w2|.
(32) |w1| − |w2| ≤ |w1 + w2|.
(33) |w1| − |w2| ≤ |w1 − w2|.
(34) If w1 6= w2, then |w1 − w2| > 0.

(35) |w1 − w2| ≤ |w1 − w|+ |w − w2|.
(36) If 0 ≤ |w1| and 0 ≤ r1 and |w1| < |w2| and r1 < r2, then |w1| · r1 <

|w2| · r2.

(38)1 −|w| < r and r < |w| iff |r| < |w|.
Let us consider N . A sequence in ENT is bounded if:

(Def.8) There exists r such that for every n holds |it(n)| < r.

The following proposition is true

(39) For every n there exists r such that 0 < r and for every m such that
m ≤ n holds |s1(m)| < r.

Let us consider N . A sequence in ENT is convergent if:

(Def.9) There exists g such that for every r such that 0 < r there exists n such
that for every m such that n ≤ m holds |it(m)− g| < r.

Let us consider N , s1. Let us assume that s1 is convergent. The functor
lim s1 yields a point of ENT and is defined by:

(Def.10) For every r such that 0 < r there exists n such that for every m such
that n ≤ m holds |s1(m)− lim s1| < r.

The following propositions are true:

(40) Suppose s1 is convergent. Then lim s1 = g if and only if for every r
such that 0 < r there exists n such that for every m such that n ≤ m
holds |s1(m)− g| < r.

(41) If s1 is convergent and s′1 is convergent, then s1 + s′1 is convergent.

(42) If s1 is convergent and s′1 is convergent, then lim(s1 + s′1) = lim s1 +
lim s′1.

(43) If s1 is convergent, then r · s1 is convergent.

(44) If s1 is convergent, then lim(r · s1) = r · lim s1.

(45) If s1 is convergent, then −s1 is convergent.

(46) If s1 is convergent, then lim(−s1) = −lim s1.

(47) If s1 is convergent and s′1 is convergent, then s1 − s′1 is convergent.

1The proposition (37) has been removed.
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(48) If s1 is convergent and s′1 is convergent, then lim(s1 − s′1) = lim s1 −
lim s′1.

(50)2 If s1 is convergent, then s1 is bounded.

(51) If s1 is convergent, then if lim s1 6= 0ENT , then there exists n such that

for every m such that n ≤ m holds | lim s1|
2 < |s1(m)|.
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[4] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.
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The terminology and notation used in this paper are introduced in the following
articles: [18], [2], [12], [17], [21], [19], [22], [6], [15], [10], [16], [1], [7], [3], [5], [13],
[4], [8], [20], [9], [14], and [11].

1. Preliminaries

One can prove the following propositions:

(1) For every finite sequence f holds f is trivial iff len f < 2.

(2) For every finite set A holds A is trivial iff cardA < 2.

(3) For every set A holds A is non trivial iff there exist arbitrary a1, a2

such that a1 ∈ A and a2 ∈ A and a1 6= a2.

(4) Let D be a non empty set and let A be a subset of D. Then A is non
trivial if and only if there exist elements d1, d2 of D such that d1 ∈ A and
d2 ∈ A and d1 6= d2.

We follow a convention: n, i, k, m will denote natural numbers and r, r1, r2,
s, s1, s2 will denote real numbers.

Next we state a number of propositions:

(5) If n ≤ k, then n− 1 ≤ k and n− 1 < k and n ≤ k + 1 and n < k + 1.
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(6) If n < k, then n − 1 ≤ k and n− 1 < k and n + 1 ≤ k and n ≤ k − 1
and n ≤ k + 1 and n < k + 1.

(7) If 1 ≤ k−m and k−m ≤ n, then k−m ∈ Seg n and k−m is a natural
number.

(8) If r1 ≥ 0 and r2 ≥ 0 and r1 + r2 = 0, then r1 = 0 and r2 = 0.

(9) If r1 ≤ 0 and r2 ≤ 0 and r1 + r2 = 0, then r1 = 0 and r2 = 0.

(10) If 0 ≤ r1 and r1 ≤ 1 and 0 ≤ r2 and r2 ≤ 1 and r1 · r2 = 1, then r1 = 1
and r2 = 1.

(11) If r1 ≥ 0 and r2 ≥ 0 and s1 ≥ 0 and s2 ≥ 0 and r1 · s1 + r2 · s2 = 0, then
r1 = 0 or s1 = 0 but r2 = 0 or s2 = 0.

(12) If 0 ≤ r and r ≤ 1 and s1 ≥ 0 and s2 ≥ 0 and r · s1 + (1 − r) · s2 = 0,
then r = 0 and s2 = 0 or r = 1 and s1 = 0 or s1 = 0 and s2 = 0.

(13) If r < r1 and r < r2, then r < min(r1, r2).

(14) If r > r1 and r > r2, then r > max(r1, r2).

In this article we present several logical schemes. The scheme FinSeqFam
deals with a non empty set A, a finite sequence B of elements of A, a binary
functor F yielding a set, and a unary predicate P, and states that:

{F(B, i) : i ∈ domB ∧ P[i]} is finite
for all values of the parameters.

The scheme FinSeqFam’ concerns a non empty set A, a finite sequence B of
elements of A, a binary functor F yielding a set, and a unary predicate P, and
states that:

{F(B, i) : 1 ≤ i ∧ i ≤ lenB ∧ P[i]} is finite
for all values of the parameters.

Next we state several propositions:

(15) For all elements x1, x2, x3 of Rn holds |x1−x2| − |x2−x3| ≤ |x1−x3|.
(16) For all elements x1, x2, x3 of Rn holds |x2−x1| − |x2−x3| ≤ |x3−x1|.
(17) Every point of EnT is an element of Rn and a point of En.

(18) Every point of En is an element of Rn and a point of EnT.

(19) Every element of Rn is a point of En and a point of EnT.

2. Properties of line segments

In the sequel p, p1, p2, q1, q2 will denote points of EnT.
One can prove the following propositions:

(20) For all points u1, u2 of En and for all elements v1, v2 of Rn such that
v1 = u1 and v2 = u2 holds ρ(u1, u2) = |v1 − v2|.

(21) For all p, p1, p2 such that p ∈ L(p1, p2) there exists r such that 0 ≤ r
and r ≤ 1 and p = (1− r) · p1 + r · p2.

(22) For all p1, p2, r such that 0 ≤ r and r ≤ 1 holds (1 − r) · p1 + r · p2 ∈
L(p1, p2).
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(23) Given p1, p2 and let P be a non empty subset of EnT. Suppose P is closed
and P ⊆ L(p1, p2). Then there exists s such that (1 − s) · p1 + s · p2 ∈ P
and for every r such that 0 ≤ r and r ≤ 1 and (1 − r) · p1 + r · p2 ∈ P
holds s ≤ r.

(24) For all p1, p2, q1, q2 such that L(q1, q2) ⊆ L(p1, p2) and p1 ∈ L(q1, q2)
holds p1 = q1 or p1 = q2.

(25) For all p1, p2, q1, q2 such that L(p1, p2) = L(q1, q2) holds p1 = q1 and
p2 = q2 or p1 = q2 and p2 = q1.

(26) EnT is a T2 space.

(27) {p} is closed.

(28) L(p1, p2) is compact.

(29) L(p1, p2) is closed.

Let us consider n, p and let P be a subset of EnT. We say that p is extremal
in P if and only if:

(Def.1) p ∈ P and for all p1, p2 such that p ∈ L(p1, p2) and L(p1, p2) ⊆ P holds
p = p1 or p = p2.

We now state several propositions:

(30) For all subsets P , Q of EnT such that p is extremal in P and Q ⊆ P and
p ∈ Q holds p is extremal in Q.

(31) p is extremal in {p}.
(32) p1 is extremal in L(p1, p2).

(33) p2 is extremal in L(p1, p2).

(34) If p is extremal in L(p1, p2), then p = p1 or p = p2.

3. Alternating special sequences

We follow the rules: P , Q will be subsets of E 2
T, f , f1, f2 will be finite

sequences of elements of the carrier of E 2
T, and p, p1, p2, p3, q will be points of

E2
T.

The following proposition is true

(35) For all p1, p2 such that (p1)1 6= (p2)1 and (p1)2 6= (p2)2 there exists p
such that p ∈ L(p1, p2) and p1 6= (p1)1 and p1 6= (p2)1 and p2 6= (p1)2
and p2 6= (p2)2.

Let us consider P . We say that P is horizontal if and only if:

(Def.2) For all p, q such that p ∈ P and q ∈ P holds p2 = q2.

We say that P is vertical if and only if:

(Def.3) For all p, q such that p ∈ P and q ∈ P holds p1 = q1.

Let us observe that every subset of E 2
T which is non trivial and horizontal is

also non vertical and every subset of E 2
T which is non trivial and vertical is also

non horizontal.
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Next we state a number of propositions:

(36) p2 = q2 iff L(p, q) is horizontal.

(37) p1 = q1 iff L(p, q) is vertical.

(38) If p1 ∈ L(p, q) and p2 ∈ L(p, q) and (p1)1 6= (p2)1 and (p1)2 = (p2)2,
then L(p, q) is horizontal.

(39) If p1 ∈ L(p, q) and p2 ∈ L(p, q) and (p1)2 6= (p2)2 and (p1)1 = (p2)1,
then L(p, q) is vertical.

(40) L(f, i) is closed.

(41) If f is special, then L(f, i) is vertical or L(f, i) is horizontal.

(42) If f is one-to-one and 1 ≤ i and i+ 1 ≤ len f, then L(f, i) is non trivial.

(43) If f is one-to-one and 1 ≤ i and i + 1 ≤ len f and L(f, i) is vertical,
then L(f, i) is non horizontal.

(44) For every f holds {L(f, i) : 1 ≤ i ∧ i ≤ len f} is finite.

(45) For every f holds {L(f, i) : 1 ≤ i ∧ i+ 1 ≤ len f} is finite.

(46) For every f holds {L(f, i) : 1 ≤ i ∧ i ≤ len f} is a family of subsets of
E2

T.

(47) For every f holds {L(f, i) : 1 ≤ i ∧ i+ 1 ≤ len f} is a family of subsets
of E2

T.

(48) For every f such that Q =
⋃{L(f, i) : 1 ≤ i ∧ i+ 1 ≤ len f} holds Q

is closed.

(49) L̃(f) is closed.

A finite sequence of elements of E2
T is alternating if:

(Def.4) For every i such that 1 ≤ i and i + 2 ≤ len it holds (πiit)1 6= (πi+2it)1
and (πiit)2 6= (πi+2it)2.

One can prove the following propositions:

(50) If f is special and alternating and 1 ≤ i and i+ 2 ≤ len f and (πif)1 =
(πi+1f)1, then (πi+1f)2 = (πi+2f)2.

(51) If f is special and alternating and 1 ≤ i and i+ 2 ≤ len f and (πif)2 =
(πi+1f)2, then (πi+1f)1 = (πi+2f)1.

(52) Suppose f is special and alternating and 1 ≤ i and i + 2 ≤ len f and
p1 = πif and p2 = πi+1f and p3 = πi+2f. Then (p1)1 = (p2)1 and
(p3)1 6= (p2)1 or (p1)2 = (p2)2 and (p3)2 6= (p2)2.

(53) Suppose f is special and alternating and 1 ≤ i and i + 2 ≤ len f and
p1 = πif and p2 = πi+1f and p3 = πi+2f. Then (p2)1 = (p3)1 and
(p1)1 6= (p2)1 or (p2)2 = (p3)2 and (p1)2 6= (p2)2.

(54) If f is special and alternating and 1 ≤ i and i + 2 ≤ len f, then
L(πif, πi+2f) 6⊆ L(f, i) ∪ L(f, i+ 1).

(55) If f is special and alternating and 1 ≤ i and i+ 2 ≤ len f and L(f, i) is
vertical, then L(f, i+ 1) is horizontal.

(56) If f is special and alternating and 1 ≤ i and i+ 2 ≤ len f and L(f, i) is
horizontal, then L(f, i+ 1) is vertical.
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(57) Suppose f is special and alternating and 1 ≤ i and i+ 2 ≤ len f. Then
L(f, i) is vertical and L(f, i+ 1) is horizontal or L(f, i) is horizontal and
L(f, i+ 1) is vertical.

(58) Suppose f is special and alternating and 1 ≤ i and i + 2 ≤ len f and
πi+1f ∈ L(p, q) and L(p, q) ⊆ L(f, i) ∪ L(f, i + 1). Then πi+1f = p or
πi+1f = q.

(59) If f is special and alternating and 1 ≤ i and i + 2 ≤ len f, then πi+1f
is extremal in L(f, i) ∪ L(f, i+ 1).

(60) Let u be a point of E2. Suppose f is special and alternating and 1 ≤ i
and i + 2 ≤ len f and u = πi+1f and πi+1f ∈ L(p, q) and πi+1f 6= q and
p /∈ L(f, i) ∪ L(f, i+ 1). Given s. If s > 0, then there exists p3 such that
p3 /∈ L(f, i) ∪ L(f, i+ 1) and p3 ∈ L(p, q) and p3 ∈ Ball(u, s).

Let us consider f1, f2, P . We say that f1 and f2 are generators of P if and
only if the conditions (Def.5) are satisfied.

(Def.5) (i) f1 is alternating,
(ii) f2 is alternating,

(iii) π1f1 = π1f2,
(iv) πlen f1f1 = πlen f2f2,
(v) 〈π2f1, π1f1, π2f2〉 is alternating,

(vi) 〈πlen f1−1f1, πlen f1f1, πlen f2−1f2〉 is alternating,
(vii) π1f1 6= πlen f1f1,

(viii) L̃(f1) ∩ L̃(f2) = {π1f1, πlen f1f1}, and

(ix) P = L̃(f1) ∪ L̃(f2).

Next we state the proposition

(61) If f1 and f2 are generators of P and 1 < i and i < len f1, then πif1 is
extremal in P .
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Summary. This article defines the concept of relocating the pro-
gram part of a finite partial state of SCM (data part stays intact). The
relocated program differs from the original program in that all jump in-
structions are adjusted by the relocation factor and other instructions
remain unchanged. The main theorem states that if a program computes
a function then the relocated program computes the same function, and
vice versa.
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The terminology and notation used in this paper have been introduced in the
following articles: [16], [2], [1], [19], [5], [6], [15], [7], [18], [13], [4], [9], [3], [8],
[10], [11], [17], [12], and [14].

1. Relocatability

In this paper j, k, m will be natural numbers.
Let l1 be an instruction-location of SCM and let k be a natural number.

The functor l1 +k yielding an instruction-location of SCM is defined as follows:

(Def.1) There exists a natural number m such that l1 = im and l1 + k = im+k.

The functor l1 −′ k yields an instruction-location of SCM and is defined as
follows:

(Def.2) There exists a natural number m such that l1 = im and l1−′ k = im−′k.
The following three propositions are true:

(1) For every instruction-location l1 of SCM and for every natural number
k holds (l1 + k)−′ k = l1.

1This work was done under guidance and supervision of A. Trybulec and P. Rudnicki.
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(2) For all instructions-locations l2, l3 of SCM and for every natural
number k holds Start-At(l2 + k) = Start-At(l3 + k) iff Start-At(l2) =
Start-At(l3).

(3) For all instructions-locations l2, l3 of SCM and for every natural num-
ber k such that Start-At(l2) = Start-At(l3) holds Start-At(l2 −′ k) =
Start-At(l3 −′ k).

Let I be an instruction of SCM and let k be a natural number. The functor
IncAddr(I, k) yields an instruction of SCM and is defined as follows:

(Def.3) (i) IncAddr(I, k) = goto ((@I)addressT
j + k) if InsCode(I) = 6,

(ii) IncAddr(I, k) = if (@I)addressT
c = 0 goto (@I)addressT

j + k if
InsCode(I) = 7,

(iii) IncAddr(I, k) = if (@I)addressT
c > 0 goto (@I)addressT

j + k if
InsCode(I) = 8,

(iv) IncAddr(I, k) = I, otherwise.

One can prove the following propositions:

(4) For every natural number k holds IncAddr(haltSCM, k) = haltSCM.

(5) For every natural number k and for all data-locations a, b holds
IncAddr(a:=b, k) = a:=b.

(6) For every natural number k and for all data-locations a, b holds
IncAddr(AddTo(a, b), k) = AddTo(a, b).

(7) For every natural number k and for all data-locations a, b holds
IncAddr(SubFrom(a, b), k) = SubFrom(a, b).

(8) For every natural number k and for all data-locations a, b holds
IncAddr(MultBy(a, b), k) = MultBy(a, b).

(9) For every natural number k and for all data-locations a, b holds
IncAddr(Divide(a, b), k) = Divide(a, b).

(10) For every natural number k and for every instruction-location l1 of
SCM holds IncAddr(goto l1, k) = goto (l1 + k).

(11) Let k be a natural number, and let l1 be an instruction-location of
SCM, and let a be a data-location. Then IncAddr(if a = 0 goto l1, k) =
if a = 0 goto l1 + k.

(12) Let k be a natural number, and let l1 be an instruction-location of
SCM, and let a be a data-location. Then IncAddr(if a > 0 goto l1, k) =
if a > 0 goto l1 + k.

(13) For every instruction I of SCM and for every natural number k holds
InsCode(IncAddr(I, k)) = InsCode(I).

(14) Let I1, I be instructions of SCM and let k be a natural num-
ber. Suppose InsCode(I) = 0 or InsCode(I) = 1 or InsCode(I) =
2 or InsCode(I) = 3 or InsCode(I) = 4 or InsCode(I) = 5 but
IncAddr(I1, k) = I. Then I1 = I.

Let p be a programmed finite partial state of SCM and let k be a natural
number. The functor Shift(p, k) yielding a programmed finite partial state of
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SCM is defined by:

(Def.4) dom Shift(p, k) = {im+k : im ∈ dom p} and for every m such that
im ∈ dom p holds (Shift(p, k))(im+k) = p(im).

We now state three propositions:

(15) Let l be an instruction-location of SCM, and let k be a natural number,
and let p be a programmed finite partial state of SCM. If l ∈ dom p, then
(Shift(p, k))(l + k) = p(l).

(16) Let p be a programmed finite partial state of SCM and let k be a natural
number. Then dom Shift(p, k) = {i1 + k : i1 ranges over instructions-
locations of SCM, i1 ∈ dom p}.

(17) Let p be a programmed finite partial state of SCM and let k be a natural
number. Then dom Shift(p, k) ⊆ the instruction locations of SCM.

Let p be a programmed finite partial state of SCM and let k be a natural
number. The functor IncAddr(p, k) yielding a programmed finite partial state
of SCM is defined as follows:

(Def.5) dom IncAddr(p, k) = dom p and for every m such that im ∈ dom p holds
(IncAddr(p, k))(im) = IncAddr(πimp, k).

One can prove the following two propositions:

(18) Let p be a programmed finite partial state of SCM, and let k be a
natural number, and let l be an instruction-location of SCM. If l ∈ dom p,
then (IncAddr(p, k))(l) = IncAddr(πlp, k).

(19) For every natural number i and for every programmed finite partial
state p of SCM holds Shift(IncAddr(p, i), i) = IncAddr(Shift(p, i), i).

Let p be a finite partial state of SCM and let k be a natural number. The
functor Relocated(p, k) yielding a finite partial state of SCM is defined as fol-
lows:

(Def.6) Relocated(p, k) = Start-At(ICp + k) +· IncAddr(Shift(ProgramPart(p),
k), k) +· DataPart(p).

Next we state a number of propositions:

(20) For every finite partial state p of SCM holds
dom IncAddr(Shift(ProgramPart(p), k), k) ⊆ Instr-LocSCM.

(21) For every finite partial state p of SCM and for every natural number
k holds DataPart(Relocated(p, k)) = DataPart(p).

(22) For every finite partial state p of SCM and for every natural number k
holds ProgramPart(Relocated(p, k)) = IncAddr(Shift(ProgramPart(p), k), k).

(23) For every finite partial state p of SCM holds
dom ProgramPart(Relocated(p, k)) = {ij+k : ij ∈ dom ProgramPart(p)}.

(24) Let p be a finite partial state of SCM, and let k be a natural number,
and let l be an instruction-location of SCM. Then l ∈ dom p if and only
if l + k ∈ dom Relocated(p, k).

(25) For every finite partial state p of SCM and for every natural number
k holds ICSCM ∈ dom Relocated(p, k).
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(26) For every finite partial state p of SCM and for every natural number
k holds ICRelocated(p,k) = ICp + k.

(27) Let p be a finite partial state of SCM, and let k be a natural number,
and let l1 be an instruction-location of SCM, and let I be an instruction
of SCM. If l1 ∈ dom ProgramPart(p) and I = p(l1), then IncAddr(I, k) =
(Relocated(p, k))(l1 + k).

(28) For every finite partial state p of SCM and for every natural number
k holds Start-At(ICp + k) ⊆ Relocated(p, k).

(29) Let s be a data-only finite partial state of SCM, and let p be a finite
partial state of SCM, and let k be a natural number. If ICSCM ∈ dom p,
then Relocated(p+· s, k) = Relocated(p, k) +· s.

(30) Let k be a natural number, and let p be an autonomic finite partial state
of SCM, and let s1, s2 be states of SCM. If p ⊆ s1 and Relocated(p, k) ⊆
s2, then p ⊆ s1 +· s2

�
Data-LocSCM.

(31) For every state s of SCM holds Exec(IncAddr(CurInstr(s), k), s +·
Start-At(ICs + k)) = Following(s) +· Start-At(ICFollowing(s) + k).

(32) Let I2 be an instruction of SCM, and let s be a state of SCM,
and let p be a finite partial state of SCM, and let i, j, k be natu-
ral numbers. If ICs = ij+k, then Exec(I2, s +· Start-At(ICs −′ k)) =
Exec(IncAddr(I2, k), s) +· Start-At(ICExec(IncAddr(I2,k),s) −′ k).

2. Main theorems of Relocatability

Next we state several propositions:

(33) Let k be a natural number and let p be an autonomic finite
partial state of SCM. Suppose ICSCM ∈ dom p. Let s be a
state of SCM. Suppose p ⊆ s. Let i be a natural number.
Then (Computation(s +· Relocated(p, k)))(i) = (Computation(s))(i) +·
Start-At(IC(Computation(s))(i) + k) +· ProgramPart(Relocated(p, k)).

(34) Let k be a natural number, and let p be an autonomic finite par-
tial state of SCM, and let s1, s2, s3 be states of SCM. Suppose
ICSCM ∈ dom p and p ⊆ s1 and Relocated(p, k) ⊆ s2 and s3 = s1 +· s2

�
Data-LocSCM. Let i be a natural number. Then IC(Computation(s1))(i) +k =
IC(Computation(s2))(i) and IncAddr(CurInstr((Computation(s1))(i)), k) =
CurInstr((Computation(s2))(i)) and (Computation(s1))(i)

�
dom DataPart

(p) = (Computation(s2))(i)
�

dom DataPart(Relocated(p, k)) and
(Computation(s3))(i)

�
Data-LocSCM = (Computation(s2))(i)

�
Data-LocSCM.

(35) Let p be an autonomic finite partial state of SCM and let k be a
natural number. If ICSCM ∈ dom p, then p is halting iff Relocated(p, k)
is halting.

(36) Let k be a natural number and let p be an autonomic finite
partial state of SCM. Suppose ICSCM ∈ dom p. Let s be a
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state of SCM. Suppose Relocated(p, k) ⊆ s. Let i be a nat-
ural number. Then (Computation(s))(i) = (Computation(s +·
p))(i)+·Start-At(IC(Computation(s+·p))(i) +k)+·s �

dom ProgramPart(p)+·
ProgramPart(Relocated(p, k)).

(37) Let k be a natural number and let p be a finite partial state
of SCM. Suppose ICSCM ∈ dom p. Let s be a state of SCM.
Suppose p ⊆ s and Relocated(p, k) is autonomic. Let i be a
natural number. Then (Computation(s))(i) = (Computation(s +·
Relocated(p, k)))(i) +· Start-At(IC(Computation(s+·Relocated(p,k)))(i) −′ k) +·
s

�
dom ProgramPart(Relocated(p, k)) +· ProgramPart(p).

(38) Let p be a finite partial state of SCM. Suppose ICSCM ∈ dom p. Let
k be a natural number. Then p is autonomic if and only if Relocated(p, k)
is autonomic.

(39) Let p be a halting autonomic finite partial state of SCM. If ICSCM ∈
dom p, then for every natural number k holds DataPart(Result(p)) =
DataPart(Result(Relocated(p, k))).

(40) Let F be a data-only partial function from FinPartSt(SCM) to
FinPartSt(SCM) and let p be a finite partial state of SCM. Suppose
ICSCM ∈ dom p. Let k be a natural number. Then p computes F if and
only if Relocated(p, k) computes F .
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[7] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
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Summary. Let X be a topological space and let A be a subset
of X. A is said to be anti-discrete provided for every open subset G of
X either A ∩ G = ∅ or A ⊆ G; equivalently, for every closed subset F
of X either A ∩ F = ∅ or A ⊆ F . An anti-discrete subset M of X is
said to be maximal anti-discrete provided for every anti-discrete subset
A of X if M ⊆ A then M = A. A subspace of X is maximal anti-
discrete iff its carrier is maximal anti-discrete in X. The purpose is to
list a few properties of maximal anti-discrete sets and subspaces in Mizar
formalism.

It is shown that every x ∈ X is contained in a unique maximal anti-
discrete subset M(x) of X, denoted in the text by MaxADSet(x). Such
subset can be defined by

M(x) =
⋂
{S ⊆ X : x ∈ S, and S is open or closed in X}.

It has the following remarkable properties: (1) y ∈ M(x) iff M(y) =
M(x), (2) either M(x) ∩M(y) = ∅ or M(x) = M(y), (3) M(x) = M(y) iff

{x} = {y}, and (4) M(x) ∩M(y) = ∅ iff {x} 6= {y}. It follows from these
properties that {M(x) : x ∈ X} is the T0-partition of X defined by M.H.
Stone in [7].

Moreover, it is shown that the operation M defined on all subsets of
X by

M(A) =
⋃
{M(x) : x ∈ A},

denoted in the text by MaxADSet(A), satisfies the Kuratowski closure
axioms (see e.g., [4]), i.e., (1) M(A ∪ B) = M(A) ∪ M(B), (2) M(A) =
M(M(A)), (3) A ⊆ M(A),and (4) M(∅) = ∅. Note that this operation
commutes with the usual closure operation of X, and if A is an open (or
a closed) subset of X, then M(A) = A.

MML Identifier: TEX 4.

The articles [11], [12], [8], [10], [5], [6], [13], [9], [3], [1], and [2] provide the
terminology and notation for this paper.
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1. Properties of the Closure and the Interior Operations

Let X be a topological space and let A be a non empty subset of X. Observe
that A is non empty.

Let X be a topological space and let A be an empty subset of X. One can
check that A is empty.

Let X be a topological space and let A be a non proper subset of X. One
can check that A is non proper.

Let X be a non trivial topological space and let A be a non trivial non empty
subset of X. Observe that A is non trivial.

In the sequel X is a topological space.
We now state three propositions:

(1) For every subset A of X holds A =
⋂{F : F ranges over subsets of X,

F is closed ∧ A ⊆ F}.
(2) For every point x of X holds {x} =

⋂{F : F ranges over subsets of X,
F is closed ∧ x ∈ F}.

(3) For all subsets A, B of X such that B ⊆ A holds B ⊆ A.
Let X be a topological space and let A be a non proper subset of X. Note

that IntA is non proper.
Let X be a topological space and let A be a proper subset of X. One can

check that IntA is proper.
Let X be a topological space and let A be an empty subset of X. Note that

IntA is empty.
Next we state two propositions:

(4) For every subset A of X holds IntA =
⋃{G : G ranges over subsets of

X, G is open ∧ G ⊆ A}.
(5) For all subsets A, B of X such that IntA ⊆ B holds IntA ⊆ IntB.

2. Anti-Discrete Subsets of Topological Structures

Let Y be a topological structure. A subset of Y is anti-discrete if:

(Def.1) For every point x of Y and for every subset G of Y such that G is open
and x ∈ G holds if x ∈ it, then it ⊆ G.

Let Y be a non empty topological structure. Let us observe that a subset of
Y is anti-discrete if:

(Def.2) For every point x of Y and for every subset F of Y such that F is closed
and x ∈ F holds if x ∈ it, then it ⊆ F.

Let Y be a topological structure. Let us observe that a subset of Y is anti-
discrete if:

(Def.3) For every subset G of Y such that G is open holds it ∩G = ∅ or it ⊆ G.
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Let Y be a topological structure. Let us observe that a subset of Y is anti-
discrete if:

(Def.4) For every subset F of Y such that F is closed holds it ∩F = ∅ or it
⊆ F.

Next we state the proposition

(6) Let Y0, Y1 be topological structures, and let D0 be a subset of Y0, and
let D1 be a subset of Y1. Suppose the topological structure of Y0 = the
topological structure of Y1 and D0 = D1. If D0 is anti-discrete, then D1

is anti-discrete.

In the sequel Y will denote a non empty topological structure.
Next we state three propositions:

(7) For all subsets A, B of Y such that B ⊆ A holds if A is anti-discrete,
then B is anti-discrete.

(8) For every point x of Y holds {x} is anti-discrete.

(9) Every empty subset of Y is anti-discrete.

Let Y be a topological structure. A family of subsets of Y is anti-discrete-
set-family if:

(Def.5) For every subset A of Y such that A ∈ it holds A is anti-discrete.

One can prove the following propositions:

(10) Let F be a family of subsets of Y . Suppose F is anti-discrete-set-family.
If
⋂
F 6= ∅, then

⋃
F is anti-discrete.

(11) For every family F of subsets of Y such that F is anti-discrete-set-family
holds

⋂
F is anti-discrete.

Let Y be a non empty topological structure and let x be a point of Y . The
functor MaxADSF(x) yields a non empty family of subsets of Y and is defined
by:

(Def.6) MaxADSF(x) = {A : A ranges over subsets of Y , A is anti-
discrete ∧ x ∈ A}.

In the sequel x will denote a point of Y .
We now state four propositions:

(12) MaxADSF(x) is anti-discrete-set-family.

(13) {x} =
⋂

MaxADSF(x).

(14) {x} ⊆ ⋃MaxADSF(x).

(15)
⋃

MaxADSF(x) is anti-discrete.

3. Maximal Anti-Discrete Subsets of Topological Structures

Let Y be a topological structure. A subset of Y is maximal anti-discrete if:

(Def.7) It is anti-discrete and for every subsetD of Y such that D is anti-discrete
and it ⊆ D holds it = D.
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We now state the proposition

(16) Let Y0, Y1 be topological structures, and let D0 be a subset of Y0, and
let D1 be a subset of Y1. Suppose the topological structure of Y0 = the
topological structure of Y1 and D0 = D1. If D0 is maximal anti-discrete,
then D1 is maximal anti-discrete.

In the sequel Y will denote a non empty topological structure.

One can prove the following propositions:

(17) Every empty subset of Y is not maximal anti-discrete.

(18) For every non empty subset A of Y such that A is anti-discrete and
open holds A is maximal anti-discrete.

(19) For every non empty subset A of Y such that A is anti-discrete and
closed holds A is maximal anti-discrete.

Let Y be a non empty topological structure and let x be a point of Y . The
functor MaxADSet(x) yielding a non empty subset of Y is defined by:

(Def.8) MaxADSet(x) =
⋃

MaxADSF(x).

We now state several propositions:

(20) For every point x of Y holds {x} ⊆ MaxADSet(x).

(21) For every subset D of Y and for every point x of Y such that D is
anti-discrete and x ∈ D holds D ⊆ MaxADSet(x).

(22) For every point x of Y holds MaxADSet(x) is maximal anti-discrete.

(23) For all points x, y of Y holds y ∈ MaxADSet(x) iff MaxADSet(y) =
MaxADSet(x).

(24) For all points x, y of Y holds MaxADSet(x) ∩ MaxADSet(y) = ∅ or
MaxADSet(x) = MaxADSet(y).

(25) For every subset F of Y and for every point x of Y such that F is closed
and x ∈ F holds MaxADSet(x) ⊆ F.

(26) For every subset G of Y and for every point x of Y such that G is open
and x ∈ G holds MaxADSet(x) ⊆ G.

(27) Let x be a point of Y . Suppose {F : F ranges over subsets of Y , F is
closed ∧ x ∈ F} 6= ∅. Then MaxADSet(x) ⊆ ⋂{F : F ranges over subsets
of Y , F is closed ∧ x ∈ F}.

(28) Let x be a point of Y . Suppose {G : G ranges over subsets of Y , G is
open ∧ x ∈ G} 6= ∅. Then MaxADSet(x) ⊆ ⋂{G : G ranges over subsets
of Y , G is open ∧ x ∈ G}.

Let Y be a non empty topological structure. Let us observe that a subset of
Y is maximal anti-discrete if:

(Def.9) There exists a point x of Y such that x ∈ it and it = MaxADSet(x).

The following proposition is true

(29) For every subset A of Y and for every point x of Y such that x ∈ A
holds if A is maximal anti-discrete, then A = MaxADSet(x).
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Let Y be a non empty topological structure. Let us observe that a non empty
subset of Y is maximal anti-discrete if:

(Def.10) For every point x of Y such that x ∈ it holds it = MaxADSet(x).

Let Y be a non empty topological structure and let A be a subset of Y . The
functor MaxADSet(A) yielding a subset of Y is defined as follows:

(Def.11) MaxADSet(A) =
⋃{MaxADSet(a) : a ranges over points of Y , a ∈ A}.

Next we state a number of propositions:

(30) For every point x of Y holds MaxADSet(x) = MaxADSet({x}).
(31) For every subset A of Y and for every point x of Y such that

MaxADSet(x) ∩MaxADSet(A) 6= ∅ holds MaxADSet(x) ∩A 6= ∅.
(32) For every subset A of Y and for every point x of Y such

that MaxADSet(x) ∩ MaxADSet(A) 6= ∅ holds MaxADSet(x) ⊆
MaxADSet(A).

(33) For all subsets A, B of Y such that A ⊆ B holds MaxADSet(A) ⊆
MaxADSet(B).

(34) For every subset A of Y holds A ⊆MaxADSet(A).

(35) For every subsetA of Y holds MaxADSet(A) = MaxADSet(MaxADSet(A)).

(36) For all subsets A, B of Y such that A ⊆ MaxADSet(B) holds
MaxADSet(A) ⊆ MaxADSet(B).

(37) For all subsets A, B of Y holds B ⊆ MaxADSet(A) and A ⊆
MaxADSet(B) iff MaxADSet(A) = MaxADSet(B).

(38) For all subsets A, B of Y holds MaxADSet(A ∪B) = MaxADSet(A) ∪
MaxADSet(B).

(39) For all subsets A, B of Y holds MaxADSet(A ∩B) ⊆MaxADSet(A) ∩
MaxADSet(B).

Let Y be a non empty topological structure and let A be a non empty subset
of Y . One can verify that MaxADSet(A) is non empty.

Let Y be a non empty topological structure and let A be an empty subset of
Y . One can verify that MaxADSet(A) is empty.

Let Y be a non empty topological structure and let A be a non proper subset
of Y . Observe that MaxADSet(A) is non proper.

Let Y be a non trivial non empty topological structure and let A be a non
trivial non empty subset of Y . Note that MaxADSet(A) is non trivial.

The following four propositions are true:

(40) For every subset G of Y and for every subset A of Y such that G is
open and A ⊆ G holds MaxADSet(A) ⊆ G.

(41) Let A be a subset of Y . Suppose {G : G ranges over subsets of Y , G is
open ∧ A ⊆ G} 6= ∅. Then MaxADSet(A) ⊆ ⋂{G : G ranges over subsets
of Y , G is open ∧ A ⊆ G}.

(42) For every subset F of Y and for every subset A of Y such that F is
closed and A ⊆ F holds MaxADSet(A) ⊆ F.
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(43) Let A be a subset of Y . Suppose {F : F ranges over subsets of Y , F
is closed ∧ A ⊆ F} 6= ∅. Then MaxADSet(A) ⊆ ⋂{F : F ranges over
subsets of Y , F is closed ∧ A ⊆ F}.

4. Anti-Discrete and Maximal Anti-discrete Subsets of
Topological Spaces

Let X be a topological space. Let us observe that a subset of X is anti-
discrete if:

(Def.12) For every point x of X such that x ∈ it holds it ⊆ {x}.
Let X be a topological space. Let us observe that a subset of X is anti-

discrete if:

(Def.13) For every point x of X such that x ∈ it holds it = {x}.
Let X be a topological space. Let us observe that a subset of X is anti-

discrete if:

(Def.14) For all points x, y of X such that x ∈ it and y ∈ it holds {x} = {y}.
In the sequel X will be a topological space.
The following four propositions are true:

(44) For every point x of X and for every subset D of X such that D is
anti-discrete and {x} ⊆ D holds D = {x}.

(45) Let A be a subset of X. Then A is anti-discrete and closed if and only
if for every point x of X such that x ∈ A holds A = {x}.

(46) For every subset A of X such that A is anti-discrete and A is not open
holds A is boundary.

(47) For every point x of X such that {x} = {x} holds {x} is maximal
anti-discrete.

In the sequel x, y will be points of X.
The following propositions are true:

(48) MaxADSet(x) ⊆ ⋂{G : G ranges over subsets of X, G is open ∧ x ∈ G}.
(49) MaxADSet(x) ⊆ ⋂{F : F ranges over subsets of X, F is closed ∧ x ∈

F}.
(50) MaxADSet(x) ⊆ {x}.
(51) MaxADSet(x) = MaxADSet(y) iff {x} = {y}.
(52) MaxADSet(x) ∩MaxADSet(y) = ∅ iff {x} 6= {y}.

Let X be a topological space and let x be a point of X. Then MaxADSet(x)
is a non empty subset of X and it can be characterized by the condition:

(Def.15) MaxADSet(x) = {x} ∩ ⋂{G : G ranges over subsets of X, G is
open ∧ x ∈ G}.

The following propositions are true:
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(53) Let x, y be points of X. Then {x} ⊆ {y} if and only if
⋂{G : G ranges

over subsets of X, G is open ∧ y ∈ G} ⊆ ⋂{G : G ranges over subsets of
X, G is open ∧ x ∈ G}.

(54) For all points x, y of X holds {x} ⊆ {y} iff MaxADSet(y) ⊆ ⋂{G : G
ranges over subsets of X, G is open ∧ x ∈ G}.

(55) Let x, y be points of X. Then MaxADSet(x) ∩MaxADSet(y) = ∅ if
and only if one of the following conditions is satisfied:

(i) there exists a subset V ofX such that V is open and MaxADSet(x) ⊆ V
and V ∩MaxADSet(y) = ∅, or

(ii) there exists a subset W of X such that W is open and W ∩
MaxADSet(x) = ∅ and MaxADSet(y) ⊆W.

(56) Let x, y be points of X. Then MaxADSet(x) ∩MaxADSet(y) = ∅ if
and only if one of the following conditions is satisfied:

(i) there exists a subset E of X such that E is closed and MaxADSet(x) ⊆
E and E ∩MaxADSet(y) = ∅, or

(ii) there exists a subset F of X such that F is closed and F ∩
MaxADSet(x) = ∅ and MaxADSet(y) ⊆ F.

In the sequel A, B denote subsets of X.
The following propositions are true:

(57) MaxADSet(A) ⊆ ⋂{G : G ranges over subsets of X, G is open ∧ A ⊆
G}.

(58) If A is open, then MaxADSet(A) = A.

(59) MaxADSet(IntA) = IntA.

(60) MaxADSet(A) ⊆ ⋂{F : F ranges over subsets of X, F is closed ∧ A ⊆
F}.

(61) MaxADSet(A) ⊆ A.
(62) If A is closed, then MaxADSet(A) = A.

(63) MaxADSet(A) = A.

(64) MaxADSet(A) = A.

(65) If MaxADSet(A) = MaxADSet(B), then A = B.

(66) If A is closed or B is closed, then MaxADSet(A∩B) = MaxADSet(A)∩
MaxADSet(B).

(67) If A is open or B is open, then MaxADSet(A ∩ B) = MaxADSet(A) ∩
MaxADSet(B).

5. Maximal Anti-Discrete Subspaces

In the sequel Y is a non empty topological structure.
One can prove the following two propositions:

(68) Let Y0 be a subspace of Y and let A be a subset of Y . Suppose A = the
carrier of Y0. If Y0 is anti-discrete, then A is anti-discrete.
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(69) Let Y0 be a subspace of Y . Suppose Y0 is topological space-like. Let
A be a subset of Y . Suppose A = the carrier of Y0. If A is anti-discrete,
then Y0 is anti-discrete.

In the sequel X will be a topological space and Y0 will be a subspace of X.
One can prove the following four propositions:

(70) If for every open subspaceX0 ofX holds Y0 missesX0 or Y0 is a subspace
of X0, then Y0 is anti-discrete.

(71) If for every closed subspace X0 of X holds Y0 misses X0 or Y0 is a
subspace of X0, then Y0 is anti-discrete.

(72) Let Y0 be an anti-discrete subspace of X and let X0 be an open subspace
of X. Then Y0 misses X0 or Y0 is a subspace of X0.

(73) Let Y0 be an anti-discrete subspace of X and let X0 be a closed subspace
of X. Then Y0 misses X0 or Y0 is a subspace of X0.

Let Y be a non empty topological structure. A subspace of Y is maximal
anti-discrete if it satisfies the conditions (Def.16).

(Def.16) (i) It is anti-discrete, and
(ii) for every subspace Y0 of Y such that Y0 is anti-discrete holds if the

carrier of it ⊆ the carrier of Y0, then the carrier of it = the carrier of Y0.

Let Y be a non empty topological structure. Note that every subspace of
Y which is maximal anti-discrete is also anti-discrete and every subspace of Y
which is non anti-discrete is also non maximal anti-discrete.

Next we state the proposition

(74) Let Y0 be a subspace of X and let A be a subset of X. Suppose A = the
carrier of Y0. Then Y0 is maximal anti-discrete if and only if A is maximal
anti-discrete.

Let X be a topological space. One can check the following observations:

∗ every subspace of X which is open and anti-discrete is also maximal
anti-discrete,

∗ every subspace of X which is open and non maximal anti-discrete is
also non anti-discrete,

∗ every subspace of X which is anti-discrete and non maximal anti-
discrete is also non open,

∗ every subspace of X which is closed and anti-discrete is also maximal
anti-discrete,

∗ every subspace of X which is closed and non maximal anti-discrete is
also non anti-discrete, and

∗ every subspace of X which is anti-discrete and non maximal anti-
discrete is also non closed.

Let Y be a non empty topological structure and let x be a point of Y . The
functor MaxADSspace(x) yielding a strict subspace of Y is defined by:

(Def.17) The carrier of MaxADSspace(x) = MaxADSet(x).

We now state three propositions:
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(75) For every point x of Y holds Sspace(x) is a subspace of
MaxADSspace(x).

(76) Let x, y be points of Y . Then y is a point of MaxADSspace(x) if and
only if the topological structure of MaxADSspace(y) = the topological
structure of MaxADSspace(x).

(77) Let x, y be points of Y . Then
(i) the carrier of MaxADSspace(x) misses the carrier of MaxADSspace(y),

or
(ii) the topological structure of MaxADSspace(x) = the topological struc-

ture of MaxADSspace(y).

Let X be a topological space. One can check that there exists a subspace of
X which is maximal anti-discrete and strict.

Let X be a topological space and let x be a point of X. One can check that
MaxADSspace(x) is maximal anti-discrete.

One can prove the following propositions:

(78) Let X0 be a closed subspace of X and let x be a point of X. If x is a
point of X0, then MaxADSspace(x) is a subspace of X0.

(79) Let X0 be an open subspace of X and let x be a point of X. If x is a
point of X0, then MaxADSspace(x) is a subspace of X0.

(80) For every point x of X such that {x} = {x} holds Sspace(x) is maximal
anti-discrete.

Let Y be a non empty topological structure and let A be a non empty subset
of Y . The functor Sspace(A) yielding a strict subspace of Y is defined by:

(Def.18) The carrier of Sspace(A) = A.

One can prove the following propositions:

(81) Every non empty subset of Y is a subset of Sspace(A).

(82) Let Y0 be a subspace of Y and let A be a non empty subset of Y . If A
is a subset of Y0, then Sspace(A) is a subspace of Y0.

Let Y be a non trivial non empty topological structure. Note that there
exists a subspace of Y which is non proper and strict.

Let Y be a non trivial non empty topological structure and let A be a non
trivial non empty subset of Y . Observe that Sspace(A) is non trivial.

Let Y be a non empty topological structure and let A be a non proper non
empty subset of Y . One can verify that Sspace(A) is non proper.

Let Y be a non empty topological structure and let A be a non empty subset
of Y . The functor MaxADSspace(A) yields a strict subspace of Y and is defined
by:

(Def.19) The carrier of MaxADSspace(A) = MaxADSet(A).

We now state several propositions:

(83) Every non empty subset of Y is a subset of MaxADSspace(A).

(84) For every non empty subset A of Y holds Sspace(A) is a subspace of
MaxADSspace(A).
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(85) For every point x of Y holds the topological structure of
MaxADSspace(x) = the topological structure of MaxADSspace({x}).

(86) For all non empty subsets A, B of Y such that A ⊆ B holds
MaxADSspace(A) is a subspace of MaxADSspace(B).

(87) For every non empty subset A of Y holds the topologi-
cal structure of MaxADSspace(A) = the topological structure of
MaxADSspace(MaxADSet(A)).

(88) For all non empty subsets A, B of Y such that A is a sub-
set of MaxADSspace(B) holds MaxADSspace(A) is a subspace of
MaxADSspace(B).

(89) Let A, B be non empty subsets of Y . Then B is a subset of
MaxADSspace(A) and A is a subset of MaxADSspace(B) if and only if
the topological structure of MaxADSspace(A) = the topological structure
of MaxADSspace(B).

Let Y be a non trivial non empty topological structure and let A be a non
trivial non empty subset of Y . One can verify that MaxADSspace(A) is non
trivial.

Let Y be a non empty topological structure and let A be a non proper non
empty subset of Y . One can verify that MaxADSspace(A) is non proper.

The following two propositions are true:

(90) Let X0 be an open subspace of X and let A be a non empty subset of
X. If A is a subset of X0, then MaxADSspace(A) is a subspace of X0.

(91) Let X0 be a closed subspace of X and let A be a non empty subset of
X. If A is a subset of X0, then MaxADSspace(A) is a subspace of X0.
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Summary. Let X be a topological space. X is said to be T0-space
(or Kolmogorov space) provided for every pair of distinct points x, y ∈ X
there exists an open subset of X containing exactly one of these points;
equivalently, for every pair of distinct points x, y ∈ X there exists a closed
subset of X containing exactly one of these points (see [1], [6], [2]).

The purpose is to list some of the standard facts on Kolmogorov
spaces, using Mizar formalism. As a sample we formulate the following
characteristics of such spaces: X is a Kolmogorov space iff for every pair

of distinct points x, y ∈ X the closures {x} and {y} are distinct.
There is also reviewed analogous facts on Kolmogorov subspaces of

topological spaces. In the presented approach T0-subsets are introduced
and some of their properties developed.

MML Identifier: TSP 1.

The articles [10], [11], [9], [7], [8], [5], [4], and [3] provide the terminology and
notation for this paper.

1. Subspaces

Let Y be a non empty topological structure. We see that the subspace of Y
is a non empty topological structure and it can be characterized by the following
(equivalent) condition:

(Def.1) (i) The carrier of it ⊆ the carrier of Y , and
(ii) for every subset G0 of it holds G0 is open iff there exists a subset G of

Y such that G is open and G0 = G ∩ (the carrier of it).

Next we state two propositions:

1Presented at Mizar Conference: Mathematics in Mizar (Bia lystok, September 12–14, 1994).

119
c© 1996 Warsaw University - Bia lystok

ISSN 0777–4028



120 zbigniew karno

(1) Let Y be a non empty topological structure, and let Y0 be a subspace
of Y , and let G0 be a subset of Y0. Then G0 is open if and only if there
exists a subset G of Y such that G is open and G0 = G ∩ (the carrier of
Y0).

(2) Let Y be a non empty topological structure, and let Y0 be a subspace
of Y , and let G be a subset of Y . Suppose G is open. Then there exists
a subset G0 of Y0 such that G0 is open and G0 = G ∩ (the carrier of Y0).

Let Y be a non empty topological structure. We see that the subspace of Y
is a non empty topological structure and it can be characterized by the following
(equivalent) condition:

(Def.2) (i) The carrier of it ⊆ the carrier of Y , and
(ii) for every subset F0 of it holds F0 is closed iff there exists a subset F

of Y such that F is closed and F0 = F ∩ (the carrier of it).

We now state two propositions:

(3) Let Y be a non empty topological structure, and let Y0 be a subspace
of Y , and let F0 be a subset of Y0. Then F0 is closed if and only if there
exists a subset F of Y such that F is closed and F0 = F ∩ (the carrier of
Y0).

(4) Let Y be a non empty topological structure, and let Y0 be a subspace
of Y , and let F be a subset of Y . Suppose F is closed. Then there exists
a subset F0 of Y0 such that F0 is closed and F0 = F ∩ (the carrier of Y0).

2. Kolmogorov Spaces

A topological structure is T0 if it satisfies the condition (Def.3).

(Def.3) Let x, y be points of it. Suppose x 6= y. Then
(i) there exists a subset V of it such that V is open and x ∈ V and y /∈ V,

or
(ii) there exists a subset W of it such that W is open and x /∈ W and

y ∈W.
Let us observe that a non empty topological structure is T0 if it satisfies the

condition (Def.4).

(Def.4) Let x, y be points of it. Suppose x 6= y. Then
(i) there exists a subset E of it such that E is closed and x ∈ E and y /∈ E,

or
(ii) there exists a subset F of it such that F is closed and x /∈ F and y ∈ F.
Let us mention that every non empty topological structure which is trivial is

also T0 and every non empty topological structure which is non T0 is also non
trivial.

One can verify that there exists a topological space which is strict T0 and
non empty and there exists a topological space which is strict non T0 and non
empty.
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One can check the following observations:

∗ every topological space which is discrete is also T0,

∗ every topological space which is non T0 is also non discrete,

∗ every topological space which is anti-discrete and non trivial is also non
T0,

∗ every topological space which is anti-discrete and T0 is also trivial, and

∗ every topological space which is T0 and non trivial is also non anti-
discrete.

Let us observe that a topological space is T0 if:

(Def.5) For all points x, y of it such that x 6= y holds {x} 6= {y}.
Let us observe that a topological space is T0 if:

(Def.6) For all points x, y of it such that x 6= y holds x /∈ {y} or y /∈ {x}.
Let us observe that a topological space is T0 if:

(Def.7) For all points x, y of it such that x 6= y and x ∈ {y} holds {y} 6⊆ {x}.
One can verify the following observations:

∗ every topological space which is almost discrete and T0 is also discrete,

∗ every topological space which is almost discrete and non discrete is also
non T0, and

∗ every topological space which is non discrete and T0 is also non almost
discrete.

A Kolmogorov space is a T0 topological space. A non-Kolmogorov space is
a non T0 topological space.

Let us observe that there exists a Kolmogorov space which is non trivial and
strict and there exists a non-Kolmogorov space which is non trivial and strict.

3. T0-Subsets

Let Y be a topological structure. A subset of Y is T0 if it satisfies the
condition (Def.8).

(Def.8) Let x, y be points of Y . Suppose x ∈ it and y ∈ it and x 6= y. Then
there exists a subset V of Y such that V is open and x ∈ V and y /∈ V or
there exists a subset W of Y such that W is open and x /∈W and y ∈W.

Let Y be a non empty topological structure. Let us observe that a subset of
Y is T0 if it satisfies the condition (Def.9).

(Def.9) Let x, y be points of Y . Suppose x ∈ it and y ∈ it and x 6= y. Then
(i) there exists a subset E of Y such that E is closed and x ∈ E and
y /∈ E, or

(ii) there exists a subset F of Y such that F is closed and x /∈ F and y ∈ F.
Next we state two propositions:
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(5) Let Y0, Y1 be topological structures, and let D0 be a subset of Y0, and
let D1 be a subset of Y1. Suppose the topological structure of Y0 = the
topological structure of Y1 and D0 = D1. If D0 is T0, then D1 is T0.

(6) Let Y be a non empty topological structure and let A be a subset of Y .
Suppose A = the carrier of Y . Then A is T0 if and only if Y is T0.

In the sequel Y will denote a non empty topological structure.
The following propositions are true:

(7) For all subsets A, B of Y such that B ⊆ A holds if A is T0, then B is
T0.

(8) For all subsets A, B of Y such that A is T0 or B is T0 holds A ∩ B is
T0.

(9) Let A, B be subsets of Y . Suppose A is open or B is open. If A is T0

and B is T0, then A ∪B is T0.

(10) Let A, B be subsets of Y . Suppose A is closed or B is closed. If A is
T0 and B is T0, then A ∪B is T0.

(11) For every subset A of Y such that A is discrete holds A is T0.

(12) For every non empty subset A of Y such that A is anti-discrete and A
is not trivial holds A is not T0.

Let X be a topological space. Let us observe that a subset of X is T0 if:

(Def.10) For all points x, y of X such that x ∈ it and y ∈ it and x 6= y holds
{x} 6= {y}.

Let X be a topological space. Let us observe that a subset of X is T0 if:

(Def.11) For all points x, y of X such that x ∈ it and y ∈ it and x 6= y holds
x /∈ {y} or y /∈ {x}.

Let X be a topological space. Let us observe that a subset of X is T0 if:

(Def.12) For all points x, y of X such that x ∈ it and y ∈ it and x 6= y holds if
x ∈ {y}, then {y} 6⊆ {x}.

In the sequel X will denote a topological space.
The following two propositions are true:

(13) Every empty subset of X is T0.

(14) For every point x of X holds {x} is T0.

4. Kolmogorov Subspaces

Let Y be a non empty topological structure. Observe that there exists a
subspace of Y which is strict and T0.

Let Y be a non empty topological structure. Let us observe that a subspace
of Y is T0 if it satisfies the condition (Def.13).

(Def.13) Let x, y be points of Y . Suppose x is a point of it and y is a point of
it and x 6= y. Then there exists a subset V of Y such that V is open and
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x ∈ V and y /∈ V or there exists a subset W of Y such that W is open
and x /∈W and y ∈W.

Let Y be a non empty topological structure. Let us observe that a subspace
of Y is T0 if it satisfies the condition (Def.14).

(Def.14) Let x, y be points of Y . Suppose x is a point of it and y is a point of
it and x 6= y. Then

(i) there exists a subset E of Y such that E is closed and x ∈ E and
y /∈ E, or

(ii) there exists a subset F of Y such that F is closed and x /∈ F and y ∈ F.
In the sequel Y denotes a non empty topological structure.
The following propositions are true:

(15) Let Y0 be a subspace of Y and let A be a subset of Y . Suppose A = the
carrier of Y0. Then A is T0 if and only if Y0 is T0.

(16) Let Y0 be a subspace of Y and let Y1 be a T0 subspace of Y . If Y0 is a
subspace of Y1, then Y0 is T0.

Let X be a topological space. One can check that there exists a subspace of
X which is strict and T0.

In the sequel X is a topological space.
The following propositions are true:

(17) For every T0 subspace X1 of X and for every subspace X2 of X such
that X1 meets X2 holds X1 ∩X2 is T0.

(18) For all T0 subspaces X1, X2 of X such that X1 is open or X2 is open
holds X1 ∪X2 is T0.

(19) For all T0 subspaces X1, X2 of X such that X1 is closed or X2 is closed
holds X1 ∪X2 is T0.

Let X be a topological space. A Kolmogorov subspace of X is a T0 subspace
of X.

Next we state the proposition

(20) Let X be a topological space and let A0 be a non empty subset of X.
Suppose A0 is T0. Then there exists a strict Kolmogorov subspace X0 of
X such that A0 = the carrier of X0.

Let X be a non trivial topological space. One can verify that there exists a
Kolmogorov subspace of X which is proper and strict.

Let X be a Kolmogorov space. Observe that every subspace of X is T0.
Let X be a non-Kolmogorov space. One can check that every subspace of X

which is non proper is also non T0 and every subspace of X which is T0 is also
proper.

Let X be a non-Kolmogorov space. Note that there exists a subspace of X
which is strict and non T0.

Let X be a non-Kolmogorov space. A non-Kolmogorov subspace of X is a
non T0 subspace of X.

We now state the proposition
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(21) Let X be a non-Kolmogorov space and let A0 be a subset of X. Suppose
A0 is not T0. Then there exists a strict non-Kolmogorov subspace X0 of
X such that A0 = the carrier of X0.
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Summary. Let X be a topological space. X is said to be T0-space
(or Kolmogorov space) provided for every pair of distinct points x, y ∈ X
there exists an open subset of X containing exactly one of these points
(see [1], [8], [4]). Such spaces and subspaces were investigated in Mizar
formalism in [7]. A Kolmogorov subspace X0 of a topological space X is
said to be maximal provided for every Kolmogorov subspace Y of X if
X0 is subspace of Y then the topological structures of Y and X0 are the
same.

M.H. Stone proved in [10] that every topological space can be made
into a Kolmogorov space by identifying points with the same closure (see
also [11]). The purpose is to generalize the Stone result, using Mizar
System. It is shown here that: (1) in every topological space X there
exists a maximal Kolmogorov subspace X0 of X, and (2) every maximal
Kolmogorov subspace X0 of X is a continuous retract of X. Moreover,
if r : X → X0 is a continuous retraction of X onto a maximal Kol-
mogorov subspace X0 of X, then r−1(x) = MaxADSet(x) for any point
x of X belonging to X0, where MaxADSet(x) is a unique maximal anti-
discrete subset of X containing x (see [5] for the precise definition of the
set MaxADSet(x)). The retraction r from the last theorem is defined
uniquely, and it is denoted in the text by ,,Stone-retraction”. It has the
following two remarkable properties: r is open, i.e., sends open sets in X
to open sets in X0, and r is closed, i.e., sends closed sets in X to closed
sets in X0.

These results may be obtained by the methods described by R.H.
Warren in [17].

MML Identifier: TSP 2.

The terminology and notation used here are introduced in the following articles:
[15], [16], [12], [18], [2], [3], [14], [9], [19], [13], [6], [5], and [7].

1Presented at Mizar Conference: Mathematics in Mizar (Bia lystok, September 12–14, 1994).

125
c© 1996 Warsaw University - Bia lystok

ISSN 0777–4028



126 zbigniew karno

1. Maximal T0-Subsets

Let X be a topological space. Let us observe that a subset of X is T0 if:

(Def.1) For all points a, b of X such that a ∈ it and b ∈ it holds if a 6= b, then
MaxADSet(a) ∩MaxADSet(b) = ∅.

Let X be a topological space. Let us observe that a subset of X is T0 if:

(Def.2) For every point a of X such that a ∈ it holds it ∩MaxADSet(a) = {a}.
Let X be a topological space. Let us observe that a subset of X is T0 if:

(Def.3) For every point a of X such that a ∈ it there exists a subset D of X
such that D is maximal anti-discrete and it ∩D = {a}.

Let Y be a topological structure. A subset of Y is maximal T0 if:

(Def.4) It is T0 and for every subset D of Y such that D is T0 and it ⊆ D holds
it = D.

Next we state the proposition

(1) Let Y0, Y1 be topological structures, and let D0 be a subset of Y0, and
let D1 be a subset of Y1. Suppose the topological structure of Y0 = the
topological structure of Y1 and D0 = D1. If D0 is maximal T0, then D1 is
maximal T0.

Let X be a topological space. Let us observe that a subset of X is maximal
T0 if:

(Def.5) It is T0 and MaxADSet(it) = the carrier of X.

In the sequel X denotes a topological space.
We now state several propositions:

(2) For every subset M of X such that M is maximal T0 holds M is dense.

(3) For every subset A of X such that A is open or closed holds if A is
maximal T0, then A is not proper.

(4) Every empty subset of X is not maximal T0.

(5) Let M be a subset of X. Suppose M is maximal T0. Let A be a subset
of X. If A is closed, then A = MaxADSet(M ∩A).

(6) Let M be a subset of X. Suppose M is maximal T0. Let A be a subset
of X. If A is open, then A = MaxADSet(M ∩A).

(7) For every subset M of X such that M is maximal T0 and for every
subset A of X holds A = MaxADSet(M ∩A).

(8) For every subset M of X such that M is maximal T0 and for every
subset A of X holds IntA = MaxADSet(M ∩ IntA).

Let X be a topological space. Let us observe that a subset of X is maximal
T0 if:

(Def.6) For every point x of X there exists a point a of X such that a ∈ it and
it ∩MaxADSet(x) = {a}.

The following two propositions are true:
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(9) For every subset A of X such that A is T0 there exists a subset M of
X such that A ⊆M and M is maximal T0.

(10) There exists subset of X which is maximal T0.

2. Maximal Kolmogorov Subspaces

Let Y be a non empty topological structure. A subspace of Y is maximal T0

if:

(Def.7) For every subset A of Y such that A = the carrier of it holds A is
maximal T0.

One can prove the following proposition

(11) Let Y be a non empty topological structure, and let Y0 be a subspace
of Y , and let A be a subset of Y . Suppose A = the carrier of Y0. Then A
is maximal T0 if and only if Y0 is maximal T0.

Let Y be a non empty topological structure. Note that every subspace of Y
which is maximal T0 is also T0 and every subspace of Y which is non T0 is also
non maximal T0.

Let X be a topological space. Let us observe that a subspace of X is maximal
T0 if it satisfies the conditions (Def.8).

(Def.8) (i) It is T0, and
(ii) for every T0 subspace Y0 of X such that it is a subspace of Y0 holds

the topological structure of it = the topological structure of Y0.

In the sequel X will be a topological space.
One can prove the following proposition

(12) Let A0 be a non empty subset of X. Suppose A0 is maximal T0. Then
there exists a strict subspace X0 of X such that X0 is maximal T0 and
A0 = the carrier of X0.

Let X be a topological space. One can verify the following observations:

∗ every subspace of X which is maximal T0 is also dense,

∗ every subspace of X which is non dense is also non maximal T0,

∗ every subspace of X which is open and maximal T0 is also non proper,

∗ every subspace of X which is open and proper is also non maximal T0,

∗ every subspace of X which is proper and maximal T0 is also non open,

∗ every subspace of X which is closed and maximal T0 is also non proper,

∗ every subspace of X which is closed and proper is also non maximal T0,
and

∗ every subspace of X which is proper and maximal T0 is also non closed.

Next we state the proposition

(13) Let Y0 be a T0 subspace of X. Then there exists a strict subspace X0

of X such that Y0 is a subspace of X0 and X0 is maximal T0.
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Let X be a topological space. Note that there exists a subspace of X which
is maximal T0 and strict.

Let X be a topological space. A maximal Kolmogorov subspace of X is a
maximal T0 subspace of X.

The following four propositions are true:

(14) Let X0 be a maximal Kolmogorov subspace of X, and let G be a subset
of X, and let G0 be a subset of X0. Suppose G0 = G. Then G0 is open if
and only if the following conditions are satisfied:

(i) MaxADSet(G) is open, and
(ii) G0 = MaxADSet(G) ∩ (the carrier of X0).

(15) Let X0 be a maximal Kolmogorov subspace of X and let G be a subset
of X. Then G is open if and only if the following conditions are satisfied:

(i) G = MaxADSet(G), and
(ii) there exists a subset G0 of X0 such that G0 is open and G0 = G∩ (the

carrier of X0).

(16) Let X0 be a maximal Kolmogorov subspace of X, and let F be a subset
of X, and let F0 be a subset of X0. Suppose F0 = F. Then F0 is closed if
and only if the following conditions are satisfied:

(i) MaxADSet(F ) is closed, and
(ii) F0 = MaxADSet(F ) ∩ (the carrier of X0).

(17) Let X0 be a maximal Kolmogorov subspace of X and let F be a subset
of X. Then F is closed if and only if the following conditions are satisfied:

(i) F = MaxADSet(F ), and
(ii) there exists a subset F0 of X0 such that F0 is closed and F0 = F ∩ (the

carrier of X0).

3. Stone Retraction Mapping Theorems

In the sequel X is a topological space and X0 is a maximal Kolmogorov
subspace of X.

One can prove the following propositions:

(18) Let r be a mapping from X into X0 and let M be a subset of X.
Suppose M = the carrier of X0. Suppose that for every point a of X
holds M ∩MaxADSet(a) = {r(a)}. Then r is a continuous mapping from
X into X0.

(19) Let r be a mapping from X into X0. Suppose that for every point a of
X holds r(a) ∈ MaxADSet(a). Then r is a continuous mapping from X
into X0.

(20) Let r be a continuous mapping from X into X0 and let M be a subset
of X. Suppose M = the carrier of X0. If for every point a of X holds
M ∩MaxADSet(a) = {r(a)}, then r is a retraction.
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(21) For every continuous mapping r from X into X0 such that for every
point a of X holds r(a) ∈ MaxADSet(a) holds r is a retraction.

(22) There exists continuous mapping from X into X0 which is a retraction.

(23) X0 is a retract of X.

Let X be a topological space and let X0 be a maximal Kolmogorov subspace
of X. Stone-retraction of X onto X0 is a continuous mapping from X into X0

and is defined as follows:

(Def.9) Stone-retraction of X onto X0 is a retraction.

Next we state three propositions:

(24) Let a be a point of X and let b be a point of X0. If a = b, then
(Stone-retraction of X onto X0) −1 {b} = {a}.

(25) For every point a of X and for every point b of X0 such that a = b holds
(Stone-retraction of X onto X0) −1 {b} = MaxADSet(a).

(26) For every subset E of X and for every subset F of X0 such that F = E
holds (Stone-retraction of X onto X0) −1 F = MaxADSet(E).

Let X be a topological space and let X0 be a maximal Kolmogorov subspace
of X. Then Stone-retraction of X onto X0 is a continuous mapping from X into
X0 and it can be characterized by the condition:

(Def.10) Let M be a subset of X. Suppose M = the carrier of X0. Let a be
a point of X. Then M ∩MaxADSet(a) = {(Stone-retraction of X onto
X0)(a)}.

Let X be a topological space and let X0 be a maximal Kolmogorov subspace
of X. Then Stone-retraction of X onto X0 is a continuous mapping from X into
X0 and it can be characterized by the condition:

(Def.11) For every point a of X holds (Stone-retraction of X onto X0)(a) ∈
MaxADSet(a).

Next we state two propositions:

(27) For every point a of X holds (Stone-retraction of X onto X0) −1

{(Stone-retraction of X onto X0)(a)} = MaxADSet(a).

(28) For every point a of X holds (Stone-retraction of X onto X0)◦{a} =
(Stone-retraction of X onto X0)◦MaxADSet(a).

Let X be a topological space and let X0 be a maximal Kolmogorov subspace
of X. Then Stone-retraction of X onto X0 is a continuous mapping from X into
X0 and it can be characterized by the condition:

(Def.12) Let M be a subset of X. Suppose M = the carrier of X0. Let A be
a subset of X. Then M ∩MaxADSet(A) = (Stone-retraction of X onto
X0)◦A.

The following propositions are true:

(29) For every subset A of X holds (Stone-retraction of X onto X0) −1

(Stone-retraction of X onto X0)◦A = MaxADSet(A).

(30) For every subset A of X holds (Stone-retraction of X onto X0)◦A =
(Stone-retraction of X onto X0)◦MaxADSet(A).
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(31) Let A, B be subsets of X. Then (Stone-retraction of X onto X0)◦(A ∪
B) = (Stone-retraction of X onto X0)◦A ∪ (Stone-retraction of X onto
X0)◦B.

(32) Let A, B be subsets of X. Suppose A is open or B is open. Then
(Stone-retraction of X onto X0)◦(A ∩ B) = (Stone-retraction of X onto
X0)◦A ∩ (Stone-retraction of X onto X0)◦B.

(33) Let A, B be subsets of X. Suppose A is closed or B is closed. Then
(Stone-retraction of X onto X0)◦(A ∩ B) = (Stone-retraction of X onto
X0)◦A ∩ (Stone-retraction of X onto X0)◦B.

(34) For every subset A of X such that A is open holds (Stone-retraction of
X onto X0)◦A is open.

(35) For every subset A of X such that A is closed holds (Stone-retraction
of X onto X0)◦A is closed.
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[2] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
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Summary. The line of points a, b, denoted by a · b and the point
of lines A, B denoted by A ·B are defined. A few basic theorems related
to these notions are proved. An inspiration for such approach comes from
so called Leibniz program. Let us recall that the Leibniz program is a
program of algebraization of geometry using purely geometric notions.
Leibniz formulated his program in opposition to algebraization method
developed by Descartes.

MML Identifier: PROJPL 1.

The terminology and notation used in this paper are introduced in the papers
[2] and [1].

1. Projective Spaces

In this paper G will denote a projective incidence structure.
Let us consider G. A point of G is an element of the points of G. A line of

G is an element of the lines of G.
We adopt the following rules: a, a1, a2, b, b1, b2, c, d, p, q, r will be points

of G and A, B, M , N , P , Q, R will be lines of G.
Let us consider G, a, P . We introduce a � P as an antonym of a | P.
Let us consider G, a, b, P . The predicate a, b � P is defined as follows:

(Def.1) a � P and b � P.
Let us consider G, a, P , Q. The predicate a | P,Q is defined as follows:

(Def.2) a | P and a | Q.
Let us consider G, a, P , Q, R. The predicate a | P,Q,R is defined as follows:

(Def.3) a | P and a | Q and a | R.
We now state the proposition
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(1) (i) If a, b | P, then b, a | P,
(ii) if a, b, c | P, then a, c, b | P and b, a, c | P and b, c, a | P and c, a, b | P

and c, b, a | P,
(iii) if a | P,Q, then a | Q,P, and

(iv) if a | P,Q,R, then a | P,R,Q and a | Q,P,R and a | Q,R, P and
a | R,P,Q and a | R,Q,P.

A projective incidence structure is configuration if:

(Def.4) For all points p, q of it and for all lines P , Q of it such that p | P and
q | P and p | Q and q | Q holds p = q or P = Q.

We now state three propositions:

(2) G is configuration iff for all p, q, P , Q such that p, q | P and p, q | Q
holds p = q or P = Q.

(3) G is configuration iff for all p, q, P , Q such that p | P,Q and q | P,Q
holds p = q or P = Q.

(4) The following statements are equivalent

(i) G is a projective space defined in terms of incidence,

(ii) G is configuration and for all p, q there exists P such that p, q | P and
there exist p, P such that p � P and for every P there exist a, b, c such
that a, b, c are mutually different and a, b, c | P and for all a, b, c, d, p,
M , N , P , Q such that a, b, p | M and c, d, p | N and a, c | P and b, d | Q
and p � P and p � Q and M 6= N there exists q such that q | P,Q.

An incidence projective plane is a 2-dimensional projective space defined in
terms of incidence.

Let us consider G, a, b, c. We say that a, b and c are collinear if and only if:

(Def.5) There exists P such that a, b, c | P.
We introduce a, b, c form a triangle as an antonym of a, b and c are collinear.

Next we state two propositions:

(5) a, b and c are collinear iff there exists P such that a | P and b | P and
c | P.

(6) a, b, c form a triangle iff for every P holds a � P or b � P or c � P.
Let us consider G, a, b, c, d. We say that a, b, c, d form a quadrangle if and

only if the conditions (Def.6) are satisfied.

(Def.6) (i) a, b, c form a triangle,

(ii) b, c, d form a triangle,

(iii) c, d, a form a triangle, and

(iv) d, a, b form a triangle.

One can prove the following propositions:

(7) If G is a projective space defined in terms of incidence, then there exist
A, B such that A 6= B.

(8) Suppose G is a projective space defined in terms of incidence and a | A.
Then there exist b, c such that b, c | A and a, b, c are mutually different.
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(9) Suppose G is a projective space defined in terms of incidence and a | A
and A 6= B. Then there exists b such that b | A and b � B and a 6= b.

(10) If G is configuration and a1, a2 | A and a1 6= a2 and b � A, then a1, a2,
b form a triangle.

(11) Suppose a, b and c are collinear. Then
(i) a, c and b are collinear,

(ii) b, a and c are collinear,
(iii) b, c and a are collinear,
(iv) c, a and b are collinear, and
(v) c, b and a are collinear.

(12) Suppose a, b, c form a triangle. Then
(i) a, c, b form a triangle,

(ii) b, a, c form a triangle,
(iii) b, c, a form a triangle,
(iv) c, a, b form a triangle, and
(v) c, b, a form a triangle.

(13) Suppose a, b, c, d form a quadrangle. Then
(i) a, c, b, d form a quadrangle,

(ii) b, a, c, d form a quadrangle,
(iii) b, c, a, d form a quadrangle,
(iv) c, a, b, d form a quadrangle,
(v) c, b, a, d form a quadrangle,

(vi) a, b, d, c form a quadrangle,
(vii) a, c, d, b form a quadrangle,

(viii) b, a, d, c form a quadrangle,
(ix) b, c, d, a form a quadrangle,
(x) c, a, d, b form a quadrangle,

(xi) c, b, d, a form a quadrangle,
(xii) a, d, b, c form a quadrangle,

(xiii) a, d, c, b form a quadrangle,
(xiv) b, d, a, c form a quadrangle,
(xv) b, d, c, a form a quadrangle,

(xvi) c, d, a, b form a quadrangle,
(xvii) c, d, b, a form a quadrangle,

(xviii) d, a, b, c form a quadrangle,
(xix) d, a, c, b form a quadrangle,
(xx) d, b, a, c form a quadrangle,

(xxi) d, b, c, a form a quadrangle,
(xxii) d, c, a, b form a quadrangle, and

(xxiii) d, c, b, a form a quadrangle.

(14) If G is configuration and a1, a2 | A and b1, b2 | B and a1, a2 � B and
b1, b2 � A and a1 6= a2 and b1 6= b2, then a1, a2, b1, b2 form a quadrangle.

(15) Suppose G is a projective space defined in terms of incidence. Then
there exist a, b, c, d such that a, b, c, d form a quadrangle.
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Let G be a projective space defined in terms of incidence. An element of
[: the points of G, the points of G, the points of G, the points of G :] is called a
quadrangle of G if:

(Def.7) it1, it2, it3, it4 form a quadrangle.

Let G be a projective space defined in terms of incidence and let a, b be
points of G. Let us assume that a 6= b. The functor a · b yields a line of G and
is defined as follows:

(Def.8) a, b | a · b.
Next we state the proposition

(16) Let G be a projective space defined in terms of incidence, and let a, b
be points of G, and let L be a line of G. Suppose a 6= b. Then a | a · b and
b | a · b and a · b = b · a and if a | L and b | L, then L = a · b.

2. Projective Planes

The following propositions are true:

(17) If there exist a, b, c such that a, b, c form a triangle and for all p, q
there exists M such that p, q |M, then there exist p, P such that p � P.

(18) If there exist a, b, c, d such that a, b, c, d form a quadrangle, then there
exist a, b, c such that a, b, c form a triangle.

(19) If a, b, c form a triangle and a, b | P and a, c | Q, then P 6= Q.

(20) If a, b, c, d form a quadrangle and a, b | P and a, c | Q and a, d | R,
then P , Q, R are mutually different.

(21) Suppose G is configuration and a | P,Q,R and P , Q, R are mutually
different and a � A and p | A,P and q | A,Q and r | A,R. Then p, q, r
are mutually different.

(22) Suppose that
(i) G is configuration,

(ii) for all p, q there exists M such that p, q |M,
(iii) for all P , Q there exists a such that a | P,Q, and
(iv) there exist a, b, c, d such that a, b, c, d form a quadrangle.

Given P . Then there exist a, b, c such that a, b, c are mutually different
and a, b, c | P.

(23) G is an incidence projective plane if and only if the following conditions
are satisfied:

(i) G is configuration,
(ii) for all p, q there exists M such that p, q |M,

(iii) for all P , Q there exists a such that a | P,Q, and
(iv) there exist a, b, c, d such that a, b, c, d form a quadrangle.

We adopt the following convention: G will denote an incidence projective
plane, a, q will denote points of G, and A, B will denote lines of G.
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Let us consider G, A, B. Let us assume that A 6= B. The functor A ·B yields
a point of G and is defined by:

(Def.9) A · B | A,B.
Next we state two propositions:

(24) If A 6= B, then A · B | A and A · B | B and A · B = B · A and if a | A
and a | B, then a = A · B.

(25) If A 6= B and a | A and q � A and a 6= A · B, then q · a · B | B and
q · a ·B � A.

3. Some Useful Propositions

We adopt the following convention: G denotes a projective space defined in
terms of incidence and a, b, c, d denote points of G.

We now state two propositions:

(26) If a, b, c form a triangle, then a, b, c are mutually different.

(27) If a, b, c, d form a quadrangle, then a, b, c, d are mutually different.

In the sequel G will be an incidence projective plane.
One can prove the following propositions:

(28) For all points a, b, c, d of G such that a · c = b · d holds a = c or b = d
or c = d or a · c = c · d.

(29) For all points a, b, c, d of G such that a · c = b · d holds a = c or b = d
or c = d or a | c · d.

(30) Let G be an incidence projective plane, and let e, m, m′ be points of
G, and let I be a line of G. If m | I and m′ | I and m 6= m′ and e � I,
then m · e 6= m′ · e and e ·m 6= e ·m′.

(31) Let G be an incidence projective plane, and let e be a point of G, and
let I, L1, L2 be lines of G. If e | L1 and e | L2 and L1 6= L2 and e � I,
then I · L1 6= I · L2 and L1 · I 6= L2 · I.

(32) Let G be a projective space defined in terms of incidence and let a, b,
q, q1 be points of G. If q | a · b and q | a · q1 and q 6= a and q1 6= a and
a 6= b, then q1 | a · b.

(33) Let G be a projective space defined in terms of incidence and let a, b,
c be points of G. If c | a · b and a 6= c, then b | a · c.

(34) Let G be an incidence projective plane, and let q1, q2, r1, r2 be points
of G, and let H be a line of G. If r1 6= r2 and r1 | H and r2 | H and
q1 � H and q2 � H, then q1 · r1 6= q2 · r2.

(35) For all points a, b, c of G such that a | b · c holds a = c or b = c or
b | c · a.

(36) For all points a, b, c of G such that a | b · c holds b = a or b = c or
c | b · a.



136 micha l muzalewski

(37) Let e, x1, x2, p1, p2 be points of G and let H, I be lines of G. Suppose
x1 | I and x2 | I and e | H and e � I and x1 6= x2 and p1 6= e and p2 6= e
and p1 | e · x1 and p2 | e · x2. Then there exists a point r of G such that
r | p1 · p2 and r | H and r 6= e.
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Summary. A graph is simple when

• it is non-directed,
• there is at most one edge between two vertices,
• there is no loop of length one.

A formalization of simple graphs is given from scratch. There is already
an article [9], dealing with the similar subject. It is not used as a starting-
point, because [9] formalizes directed non-empty graphs. Given a set of
vertices, edge is defined as an (unordered) pair of different two vertices
and graph as a pair of a set of vertices and a set of edges.

The following concepts are introduced:

• simple graph structure,
• the set of all simple graphs,
• equality relation on graphs.
• the notion of degrees of vertices; the number of edges connected to,

or the number of adjacent vertices,
• the notion of subgraphs,
• path, cycle,
• complete and bipartite complete graphs,

Theorems proved in this articles include:

• the set of simple graphs satisfies a certain minimality condition,
• equivalence between two notions of degrees.

MML Identifier: SGRAPH1.

The terminology and notation used in this paper have been introduced in the
following articles: [13], [1], [4], [6], [7], [2], [3], [8], [5], [11], [10], and [12].
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1. Preliminaries

Let m, n be natural numbers. The functor [m,n] � yields a finite subset of �
and is defined by:

(Def.1) [m,n] � = {i : i ranges over natural numbers, m ≤ i ∧ i ≤ n}.
The following propositions are true:

(1) For all natural numbers m, n holds [m,n] � = {i : i ranges over natural
numbers, m ≤ i ∧ i ≤ n}.

(2) Let m, n be natural numbers and let e be arbitrary. Then e ∈ [m,n] �
if and only if there exists a natural number i such that e = i and m ≤ i
and i ≤ n.

(3) For all natural numbers m, n, k holds k ∈ [m,n] � iff m ≤ k and k ≤ n.
(4) For every natural number n holds [1, n] � = Seg n.

(5) For all natural numbers m, n such that 1 ≤ m holds [m,n] � ⊆ Seg n.

(6) For all natural numbers k, m, n such that k < m holds Seg k∩[m,n] � =
∅.

(7) For all natural numbers m, n such that n < m holds [m,n] � = ∅.
Let A, B be sets and let f be a function from A into B. We say that f is

onto if and only if:

(Def.2) rng f = B.

Let A, B be sets and let f be a function from A into B. We say that f is
bijective if and only if:

(Def.3) f is one-to-one and onto.

One can prove the following proposition

(8) For every finite set z holds card z = 2 iff there exist arbitrary x, y such
that x ∈ z and y ∈ z and x 6= y and z = {x, y}.

Let A be a set. The functor TwoElementSets(A) yields a set and is defined
by:

(Def.4) TwoElementSets(A) = {z : z ranges over finite elements of 2A, card z =
2}.

The following propositions are true:

(9) For every set A and for arbitrary e holds e ∈ TwoElementSets(A) iff
there exists a finite subset z of A such that e = z and card z = 2.

(10) Let A be a set and let e be arbitrary. Then e ∈ TwoElementSets(A) if
and only if the following conditions are satisfied:

(i) e is a finite subset of A, and

(ii) there exist arbitrary x, y such that x ∈ A and y ∈ A and x 6= y and
e = {x, y}.

(11) For every set A holds TwoElementSets(A) ⊆ 2A.
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(12) For every set A and for arbitrary e1, e2 such that {e1, e2} ∈
TwoElementSets(A) holds e1 ∈ A and e2 ∈ A and e1 6= e2.

(13) TwoElementSets(∅) = ∅.
(14) For all sets t, u such that t ⊆ u holds TwoElementSets(t) ⊆

TwoElementSets(u).

(15) For every finite set A holds TwoElementSets(A) is finite.

(16) For every non trivial set A holds TwoElementSets(A) is non empty.

(17) For arbitrary a holds TwoElementSets({a}) = ∅.
Let a be a set.

(Def.5) φ(a) is an empty subset of TwoElementSets(a).

Let X be an empty set. Observe that every subset of X is empty.

In the sequel X will be a set.

2. Simple Graphs

We introduce simple graph structures which are systems

〈 SVertices, SEdges 〉,
where the SVertices constitute a set and the SEdges constitute a subset of
TwoElementSets(the SVertices).

Let X be a set. The functor SimpleGraphs(X) yields a non empty set and
is defined as follows:

(Def.6) SimpleGraphs(X) = {〈v, e〉 : v ranges over finite subsets of X, e ranges
over finite subsets of TwoElementSets(v)}.

Next we state the proposition

(19)1 〈∅, φ(∅)〉 ∈ SimpleGraphs(X).

Let X be a set. A strict simple graph structure is said to be a simple graph
of X if:

(Def.7) It is an element of SimpleGraphs(X).

Next we state two propositions:

(20) SimpleGraphs(X) = {〈v, e〉 : v ranges over finite subsets of X, e ranges
over finite subsets of TwoElementSets(v)}.

(21) Let g be arbitrary. Then g ∈ SimpleGraphs(X) if and only if there
exists a finite subset v of X and there exists a finite subset e of
TwoElementSets(v) such that g = 〈v, e〉.

1The proposition (18) has been removed.
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3. Equality Relation on Simple Graphs

One can prove the following propositions:

(23)2 For every simple graph g of X holds the SVertices of g ⊆ X and the
SEdges of g ⊆ TwoElementSets(the SVertices of g).

(24) For every simple graph g of X holds g = 〈the SVertices of g, the SEdges
of g〉.

(25) Let g be a simple graph of X and let e be arbitrary. Suppose e ∈ the
SEdges of g. Then there exist arbitrary v1, v2 such that v1 ∈ the SVertices
of g and v2 ∈ the SVertices of g and v1 6= v2 and e = {v1, v2}.

(26) Let g be a simple graph of X and let v1, v2 be arbitrary. Suppose
{v1, v2} ∈ the SEdges of g. Then v1 ∈ the SVertices of g and v2 ∈ the
SVertices of g and v1 6= v2.

(27) Let g be a simple graph of X. Then
(i) the SVertices of g is a finite subset of X, and

(ii) the SEdges of g is a finite subset of TwoElementSets(the SVertices of
g).

Let us consider X and let G, G′ be simple graphs of X. We say that G is
isomorphic to G′ if and only if the condition (Def.8) is satisfied.

(Def.8) There exists a function F1 from the SVertices of G into the SVertices
of G′ such that

(i) F1 is bijective, and
(ii) for all elements v1, v2 of the SVertices of G holds {v1, v2} ∈ the SEdges

of G iff {F1(v1), F1(v2)} ∈ the SEdges of G.

4. Properties of Simple Graphs

The scheme IndSimpleGraphs0 concerns a set A and a unary predicate P,
and states that:

For arbitrary G such that G ∈ SimpleGraphs(A) holds P[G]
provided the parameters satisfy the following conditions:
• P[〈∅, φ(∅)〉],
• Let g be a simple graph of A and let v be arbitrary. Suppose
g ∈ SimpleGraphs(A) and P[g] and v ∈ A and v /∈ the SVertices of
g. Then P[〈(the SVertices of g)∪{v}, φ((the SVertices of g)∪{v})〉],

• Let g be a simple graph of A and let e be arbitrary. Suppose P[g]
and e ∈ TwoElementSets(the SVertices of g) and e /∈ the SEdges of
g. Then there exists a subset s1 of TwoElementSets(the SVertices
of g) such that s1 = (the SEdges of g) ∪ {e} and P[〈the SVertices
of g, s1〉].

2The proposition (22) has been removed.
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We now state three propositions:

(28) Let g be a simple graph of X. Then g = 〈∅, φ(∅)〉 or there exists a set
v and there exists a subset e of TwoElementSets(v) such that v is non
empty and g = 〈v, e〉.

(30)3 Let V be a subset of X, and let E be a subset of TwoElementSets(V ),
and let n be arbitrary, and let E1 be a finite subset of TwoElementSets(V ∪
{n}). If 〈V,E〉 ∈ SimpleGraphs(X) and n ∈ X and n /∈ V, then 〈V ∪
{n}, E1〉 ∈ SimpleGraphs(X).

(31) Let V be a subset of X, and let E be a subset of TwoElementSets(V ),
and let v1, v2 be arbitrary. Suppose v1 ∈ V and v2 ∈ V and v1 6= v2

and 〈V,E〉 ∈ SimpleGraphs(X). Then there exists a finite subset v3

of TwoElementSets(V ) such that v3 = E ∪ {{v1, v2}} and 〈V, v3〉 ∈
SimpleGraphs(X).

Let X be a set and let G1 be a set. We say that G1 is a set of simple graphs
of X if and only if the conditions (Def.9) are satisfied.

(Def.9) (i) 〈∅, φ(∅)〉 ∈ G1,
(ii) for every subset V of X and for every subset E of TwoElementSets(V )

and for arbitrary n and for every finite subset E1 of TwoElementSets(V ∪
{n}) such that 〈V,E〉 ∈ G1 and n ∈ X and n /∈ V holds 〈V ∪ {n}, E1〉 ∈
G1, and

(iii) for every subset V of X and for every subset E of TwoElementSets(V )
and for arbitrary v1, v2 such that 〈V,E〉 ∈ G1 and v1 ∈ V and
v2 ∈ V and v1 6= v2 and {v1, v2} /∈ E there exists a finite subset v3

of TwoElementSets(V ) such that v3 = E ∪ {{v1, v2}} and 〈V, v3〉 ∈ G1.

One can prove the following propositions:

(32) For arbitrary g1 such that g1 is a set of simple graphs of X holds
〈∅, φ(∅)〉 ∈ g1.

(33) Let G1 be arbitrary. Suppose G1 is a set of simple graphs of X. Let V
be a subset of X, and let E be a subset of TwoElementSets(V ), and let n
be arbitrary, and let E1 be a finite subset of TwoElementSets(V ∪ {n}).
If 〈V,E〉 ∈ G1 and n ∈ X and n /∈ V, then 〈V ∪ {n}, E1〉 ∈ G1.

(34) Let G1 be arbitrary. Suppose G1 is a set of simple graphs of X. Let
V be a subset of X, and let E be a subset of TwoElementSets(V ), and
let v1, v2 be arbitrary. Suppose 〈V,E〉 ∈ G1 and v1 ∈ V and v2 ∈ V
and v1 6= v2 and {v1, v2} /∈ E. Then there exists a finite subset v3 of
TwoElementSets(V ) such that v3 = E ∪ {{v1, v2}} and 〈V, v3〉 ∈ G1.

(35) SimpleGraphs(X) is a set of simple graphs of X.

(36) For arbitrary O1 such that O1 is a set of simple graphs of X holds
SimpleGraphs(X) ⊆ O1.

(37) SimpleGraphs(X) is a set of simple graphs of X and for arbitrary O1

such that O1 is a set of simple graphs of X holds SimpleGraphs(X) ⊆ O1.

3The proposition (29) has been removed.
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5. Subgraphs

Let X be a set and let G be a simple graph of X. A simple graph of X is
called a subgraph of G if:

(Def.10) The SVertices of it ⊆ the SVertices of G and the SEdges of it ⊆ the
SEdges of G.

6. Degree of Vertices

Let X be a set, let G be a simple graph of X, and let v be arbitrary. Let us
assume that v ∈ the SVertices of G. The functor degree(G, v) yielding a natural
number is defined by:

(Def.11) There exists a finite set X such that for arbitrary z holds z ∈ X iff
z ∈ the SEdges of G and v ∈ z and degree(G, v) = cardX.

One can prove the following propositions:

(38) Let G be a simple graph of X and let v be arbitrary. Suppose v ∈ the
SVertices of G. Then there exists a finite set Y such that for arbitrary z
holds z ∈ Y iff z ∈ the SEdges of G and v ∈ z and degree(G, v) = cardY.

(39) Let X be a non empty set, and let G be a simple graph of X, and
let v be arbitrary. Suppose v ∈ the SVertices of G. Then there exists a
finite set w1 such that w1 = {w : w ranges over elements of X, w ∈ the
SVertices of G ∧ {v, w} ∈ the SEdges of G} and degree(G, v) = cardw1.

(40) Let X be a non empty set, and let g be a simple graph of X, and let v
be arbitrary. Suppose v ∈ the SVertices of g. Then there exists a finite
set V1 such that V1 = the SVertices of g and degree(g, v) < cardV1.

(41) Let g be a simple graph of X and let v, e be arbitrary. Suppose v ∈ the
SVertices of g and e ∈ the SEdges of g and degree(g, v) = 0. Then v /∈ e.

(42) Let g be a simple graph of X, and let v be arbitrary, and let v4 be a finite
set. Suppose v4 = the SVertices of g and v ∈ v4 and 1 + degree(g, v) =
card v4. Let w be an element of v4. If v 6= w, then there exists arbitrary
e such that e ∈ the SEdges of g and e = {v, w}.

7. Path and Cycle

Let X be a set, let g be a simple graph of X, let v1, v2 be elements of the
SVertices of g, and let p be a finite sequence of elements of the SVertices of g.
We say that p is a path of v1 and v2 if and only if the conditions (Def.12) are
satisfied.
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(Def.12) (i) p(1) = v1,
(ii) p(len p) = v2,

(iii) for every natural number i such that 1 ≤ i and i < len p holds
{p(i), p(i + 1)} ∈ the SEdges of g, and

(iv) for all natural numbers i, j such that 1 ≤ i and i < len p and i < j
and j < len p holds p(i) 6= p(j) and {p(i), p(i + 1)} 6= {p(j), p(j + 1)}.

Let X be a set, let g be a simple graph of X, and let v1, v2 be elements of the
SVertices of g. The functor Paths(v1, v2) yields a subset of (the SVertices of g)∗

and is defined by:

(Def.13) Paths(v1, v2) = {s2 : s2 ranges over elements of (the SVertices of g)∗,
s2 is a path of v1 and v2}.

One can prove the following three propositions:

(43) Let g be a simple graph of X and let v1, v2 be elements of the
SVertices of g. Then Paths(v1, v2) = {s2 : s2 ranges over elements of
(the SVertices of g)∗, s2 is a path of v1 and v2}.

(44) Let g be a simple graph of X, and let v1, v2 be elements of the SVertices
of g, and let e be arbitrary. Then e ∈ Paths(v1, v2) if and only if there
exists an element s2 of (the SVertices of g)∗ such that e = s2 and s2 is a
path of v1 and v2.

(45) Let g be a simple graph of X, and let v1, v2 be elements of the SVertices
of g, and let e be an element of (the SVertices of g)∗. If e is a path of v1

and v2, then e ∈ Paths(v1, v2).

Let X be a set, let g be a simple graph of X, and let p be arbitrary. We say
that p is a cycle of g if and only if:

(Def.14) There exists an element v of the SVertices of g such that p ∈ Paths(v, v).

8. Some Famous Graphs

Let n, m be natural numbers. The functor Km,n yielding a simple graph of
� is defined by the condition (Def.16).

(Def.16) 4 There exists a subset e3 of TwoElementSets(Seg(m + n)) such that
e3 = {{i, j} : i ranges over elements of � , j ranges over elements of � ,
i ∈ Segm ∧ j ∈ [m+ 1,m+ n] � } and Km,n = 〈Seg(m+ n), e3〉.

Let n be a natural number. The functor Kn yields a simple graph of � and
is defined by the condition (Def.17).

(Def.17) There exists a finite subset e3 of TwoElementSets(Seg n) such that e3 =
{{i, j} : i ranges over elements of � , j ranges over elements of � , i ∈
Seg n ∧ j ∈ Segn ∧ i 6= j} and Kn = 〈Seg n, e3〉.

The simple graph TriangleGraph of � is defined by:

(Def.18) TriangleGraph = K3 .

4The definition (Def.15) has been removed.
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One can prove the following propositions:

(46) There exists a subset e3 of TwoElementSets(Seg 3) such that e3 =
{{1, 2}, {2, 3}, {3, 1}} and TriangleGraph = 〈Seg 3, e3〉.

(47) The SVertices of TriangleGraph = Seg 3 and the SEdges of
TriangleGraph = {{1, 2}, {2, 3}, {3, 1}}.

(48) {1, 2} ∈ the SEdges of TriangleGraph and {2, 3} ∈ the SEdges of
TriangleGraph and {3, 1} ∈ the SEdges of TriangleGraph.

(49) 〈1〉 � 〈2〉 � 〈3〉 � 〈1〉 is a cycle of TriangleGraph.
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Summary. The concept of solvable group is introduced. Some
theorems concerning heirdom of solvability are proved.
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The articles [7], [13], [3], [4], [11], [6], [5], [2], [1], [9], [10], [8], and [12] provide
the terminology and notation for this paper.

In this paper G denotes a group and i denotes a natural number.
A group is solvable if it satisfies the condition (Def.1).

(Def.1) There exists a finite sequence F of elements of SubGr it such that
(i) lenF > 0,

(ii) F (1) = Ωit,
(iii) F (lenF ) = {1}it, and
(iv) for every i such that i ∈ domF and i + 1 ∈ domF and for all strict

subgroups G1, G2 of it such that G1 = F (i) and G2 = F (i+ 1) holds G2

is a strict normal subgroup of G1 and for every normal subgroup N of G1

such that N = G2 holds G1/N is commutative.

One can check that there exists a group which is solvable and strict.
One can prove the following propositions:

(1) Let G be a strict group and let H, F1, F2 be strict subgroups of G.
Suppose F1 is a normal subgroup of F2. Then F1∩H is a normal subgroup
of F2 ∩H.

(2) Let G be a strict group, and let F2 be a strict subgroup of G, and let F1

be a strict normal subgroup of F2, and let a, b be elements of F2. Then
a · F1 · (b · F1) = (a · b) · F1.

(3) Let G be a strict group, and let H, F2 be strict subgroups of G, and let
F1 be a strict normal subgroup of F2, and let G2 be a strict subgroup of
G. Suppose G2 = H ∩ F2. Let G1 be a normal subgroup of G2. Suppose
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G1 = H ∩ F1. Then there exists a subgroup G3 of F2/F1 such that G2/G1

and G3 are isomorphic.

(4) Let G be a strict group, and let H, F2 be strict subgroups of G, and let
F1 be a strict normal subgroup of F2, and let G2 be a strict subgroup of
G. Suppose G2 = F2 ∩H. Let G1 be a normal subgroup of G2. Suppose
G1 = F1 ∩H. Then there exists a subgroup G3 of F2/F1 such that G2/G1

and G3 are isomorphic.

(5) For every solvable strict group G holds every strict subgroup of G is
solvable.

(6) Let G be a strict group. Given a finite sequence F of elements of
SubGrG such that

(i) lenF > 0,
(ii) F (1) = ΩG,

(iii) F (lenF ) = {1}G, and

(iv) for every i such that i ∈ domF and i + 1 ∈ domF and for all strict
subgroups G1, G2 of G such that G1 = F (i) and G2 = F (i+ 1) holds G2

is a strict normal subgroup of G1 and for every normal subgroup N of G1

such that N = G2 holds G1/N is a cyclic group.
Then G is solvable.

(7) Every strict commutative group is strict and solvable.

Let G, H be strict groups, let g be a homomorphism from G to H, and let
A be a subgroup of G. The functor g

�
A yielding a homomorphism from A to

H is defined as follows:

(Def.2) g
�
A = g

�
(the carrier of A).

Let G, H be strict groups, let g be a homomorphism from G to H, and let
A be a subgroup of G. The functor g◦A yields a strict subgroup of H and is
defined as follows:

(Def.3) g◦A = Im(g
�
A).

Next we state a number of propositions:

(8) Let G, H be strict groups, and let g be a homomorphism from G to H,
and let A be a subgroup of G. Then rng(g

�
A) = g◦(the carrier of A).

(9) Let G, H be strict groups, and let g be a homomorphism from G to H,
and let A be a strict subgroup of G. Then the carrier of g◦A = g◦(the
carrier of A).

(10) Let G, H be strict groups, and let h be a homomorphism from G to H,
and let A be a strict subgroup of G. Then Im(h

�
A) is a strict subgroup

of Imh.

(11) Let G, H be strict groups, and let h be a homomorphism from G to
H, and let A be a strict subgroup of G. Then h◦A is a strict subgroup of
Imh.

(12) For all strict groups G, H and for every homomorphism h from G to H
holds h◦({1}G) = {1}H and h◦(ΩG) = ΩImh.
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(13) Let G, H be strict groups, and let h be a homomorphism from G to H,
and let A, B be strict subgroups of G. If A is a subgroup of B, then h◦A
is a subgroup of h◦B.

(14) Let G, H be strict groups, and let h be a homomorphism from G to H,
and let A be a strict subgroup of G, and let a be an element of G. Then
h(a) · h◦A = h◦(a · A) and h◦A · h(a) = h◦(A · a).

(15) Let G, H be strict groups, and let h be a homomorphism from G to H,
and let A, B be subsets of G. Then h◦A · h◦B = h◦(A ·B).

(16) Let G, H be strict groups, and let h be a homomorphism from G to
H, and let A, B be strict subgroups of G. Suppose A is a strict normal
subgroup of B. Then h◦A is a strict normal subgroup of h◦B.

(17) Let G, H be strict groups and let h be a homomorphism from G to H.
If G is a solvable group, then Imh is solvable.
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