Many-sorted Sets

Andrzej Trybulec Warsaw University Białystok

Summary. The article deals with parameterized families of sets. When treated in a similar way as sets (due to systematic overloading notation used for sets) they are called many sorted sets. For instance, if x and X are two many-sorted sets (with the same set of indices I) then relation $x \in X$ is defined as $\forall_{i \in I} x_i \in X_i$.

I was prompted by a remark in a paper by Tarlecki and Wirsing: "Throughout the paper we deal with many-sorted sets, functions, relations etc. ... We feel free to use any standard set-theoretic notation without explicit use of indices" [3, p.97]. The aim of this work was to check the feasibility of such approach in Mizar. It works.

Let us observe some peculiarities:

- empty set (i.e. the many sorted set with empty set of indices) belongs to itself (theorem 133),
- we get two different inclusions $X \subseteq Y$ iff $\forall_{i \in I} X_i \subseteq Y_i$ and $X \sqsubseteq Y$ iff $\forall_x x \in X \Rightarrow x \in Y$ equivalent only for sets that yield non empty values.

Therefore the care is advised.

MML Identifier: PBOOLE.

The articles [5], [1], [4], and [2] provide the terminology and notation for this paper.

1. Preliminaries

In the sequel i, e will be arbitrary.

A function is empty yielding if:

(Def.1) For every i such that $i \in \text{dom it holds it}(i)$ is empty.

A function is non empty set yielding if:

(Def.2) For every i such that $i \in \text{dom it holds it}(i)$ is non empty.

Next we state two propositions:

- (1) For every function f such that f is non empty yielding holds rng f has non empty elements.
- (2) For every function f holds f is empty yielding iff $f = \emptyset$ or rng $f = \{\emptyset\}$. In the sequel I denotes a set.

Let us consider I. A function is said to be a many sorted set of I if:

(Def.3) dom it = I.

In the sequel x, y, z, X, Y, Z, V are many sorted sets of I.

The scheme Kuratowski Function deals with a set A and a unary functor F yielding arbitrary, and states that:

There exists a many sorted set f of \mathcal{A} such that for every e such that $e \in \mathcal{A}$ holds $f(e) \in \mathcal{F}(e)$

provided the following requirement is met:

• For every e such that $e \in \mathcal{A}$ holds $\mathcal{F}(e) \neq \emptyset$.

Let us consider I, X, Y. The predicate $X \in Y$ is defined by:

(Def.4) For every i such that $i \in I$ holds $X(i) \in Y(i)$.

The predicate $X \subseteq Y$ is defined by:

(Def.5) For every i such that $i \in I$ holds $X(i) \subseteq Y(i)$.

The scheme PSeparation deals with a set A, a many sorted set B of A, and a binary predicate P, and states that:

There exists a many sorted set X of \mathcal{A} such that for every set i holds if $i \in \mathcal{A}$, then for every e holds $e \in X(i)$ iff $e \in \mathcal{B}(i)$ and $\mathcal{P}[i,e]$

for all values of the parameters.

One can prove the following proposition

(3) If for every i such that $i \in I$ holds X(i) = Y(i), then X = Y.

Let us consider I. The functor \emptyset_I yields a many sorted set of I and is defined by:

(Def.6) $\emptyset_I = I \longmapsto \emptyset$.

Let us consider X, Y. The functor $X \cup Y$ yielding a many sorted set of I is defined by:

(Def.7) For every i such that $i \in I$ holds $(X \cup Y)(i) = X(i) \cup Y(i)$.

The functor $X \cap Y$ yielding a many sorted set of I is defined by: (Def.8) For every i such that $i \in I$ holds $(X \cap Y)(i) = X(i) \cap Y(i)$.

The functor $X \setminus Y$ yields a many sorted set of I and is defined as follows:

(Def.9) For every i such that $i \in I$ holds $(X \setminus Y)(i) = X(i) \setminus Y(i)$. We say that X overlaps Y if and only if:

(Def.10) For every i such that $i \in I$ holds X(i) meets Y(i).

We say that X misses Y if and only if:

(Def.11) For every i such that $i \in I$ holds X(i) misses Y(i).

Let us consider I, X, Y. The functor X - Y yielding a many sorted set of I is defined as follows:

(Def.12)
$$X \dot{-} Y = (X \setminus Y) \cup (Y \setminus X)$$
.

Next we state several propositions:

- (4) For every i such that $i \in I$ holds (X Y)(i) = X(i) Y(i).
- (5) For every i such that $i \in I$ holds $\emptyset_I(i) = \emptyset$.
- (6) If for every i such that $i \in I$ holds $X(i) = \emptyset$, then $X = \emptyset_I$.
- (7) If $x \in X$ or $x \in Y$, then $x \in X \cup Y$.
- (8) $x \in X \cap Y \text{ iff } x \in X \text{ and } x \in Y.$
- (9) If $x \in X$ and $X \subseteq Y$, then $x \in Y$.
- (10) If $x \in X$ and $x \in Y$, then X overlaps Y.
- (11) If X overlaps Y, then there exists x such that $x \in X$ and $x \in Y$.
- (12) If $x \in X \setminus Y$, then $x \in X$.

2. LATTICE PROPERTIES OF MANY SORTED SETS

One can prove the following proposition

(13) $X \subseteq X$.

Let us consider I, X, Y. Let us observe that X = Y if and only if:

(Def.13) $X \subseteq Y$ and $Y \subseteq X$.

Next we state a number of propositions:

- (14) If $X \subseteq Y$ and $Y \subseteq X$, then X = Y.
- (15) If $X \subseteq Y$ and $Y \subseteq Z$, then $X \subseteq Z$.
- (16) $X \subseteq X \cup Y \text{ and } Y \subseteq X \cup Y.$
- (17) $X \cap Y \subseteq X$ and $X \cap Y \subseteq Y$.
- (18) If $X \subseteq Z$ and $Y \subseteq Z$, then $X \cup Y \subseteq Z$.
- (19) If $Z \subseteq X$ and $Z \subseteq Y$, then $Z \subseteq X \cap Y$.
- (20) If $X \subseteq Y$, then $X \cup Z \subseteq Y \cup Z$ and $Z \cup X \subseteq Z \cup Y$.
- (21) If $X \subseteq Y$, then $X \cap Z \subseteq Y \cap Z$ and $Z \cap X \subset Z \cap Y$.
- (22) If $X \subseteq Y$ and $Z \subseteq V$, then $X \cup Z \subseteq Y \cup V$.
- (23) If $X \subseteq Y$ and $Z \subseteq V$, then $X \cap Z \subseteq Y \cap V$.
- (24) If $X \subseteq Y$, then $X \cup Y = Y$ and $Y \cup X = Y$.
- (25) If $X \subseteq Y$, then $X \cap Y = X$ and $Y \cap X = X$.
- (26) $X \cap Y \subseteq X \cup Z$.
- (27) If $X \subseteq Z$, then $X \cup Y \cap Z = (X \cup Y) \cap Z$.
- (28) $X = Y \cup Z$ iff $Y \subseteq X$ and $Z \subseteq X$ and for every V such that $Y \subseteq V$ and $Z \subseteq V$ holds $X \subseteq V$.
- (29) $X = Y \cap Z$ iff $X \subseteq Y$ and $X \subseteq Z$ and for every V such that $V \subseteq Y$ and $V \subseteq Z$ holds $V \subseteq X$.

- $(30) X \cup X = X.$
- $(31) \quad X \cap X = X.$
- $(32) X \cup Y = Y \cup X.$
- $(33) X \cap Y = Y \cap X.$
- $(34) \quad (X \cup Y) \cup Z = X \cup (Y \cup Z).$
- $(35) \quad (X \cap Y) \cap Z = X \cap (Y \cap Z).$
- (36) $X \cap (X \cup Y) = X$ and $(X \cup Y) \cap X = X$ and $X \cap (Y \cup X) = X$ and $(Y \cup X) \cap X = X$.
- (37) $X \cup X \cap Y = X$ and $X \cap Y \cup X = X$ and $X \cup Y \cap X = X$ and $Y \cap X \cup X = X$.
- (38) $X \cap (Y \cup Z) = X \cap Y \cup X \cap Z \text{ and } (Y \cup Z) \cap X = Y \cap X \cup Z \cap X.$
- $(39) \quad X \cup Y \cap Z = (X \cup Y) \cap (X \cup Z) \text{ and } Y \cap Z \cup X = (Y \cup X) \cap (Z \cup X).$
- (40) If $X \cap Y \cup X \cap Z = X$, then $X \subseteq Y \cup Z$.
- (41) If $(X \cup Y) \cap (X \cup Z) = X$, then $Y \cap Z \subseteq X$.
- $(42) \quad X \cap Y \cup Y \cap Z \cup Z \cap X = (X \cup Y) \cap (Y \cup Z) \cap (Z \cup X).$
 - (43) If $X \cup Y \subseteq Z$, then $X \subseteq Z$ and $Y \subseteq Z$.
 - (44) If $X \subseteq Y \cap Z$, then $X \subseteq Y$ and $X \subseteq Z$.
 - $(45) \quad (X \cup Y) \cup Z = X \cup Z \cup (Y \cup Z) \text{ and } X \cup (Y \cup Z) = (X \cup Y) \cup (X \cup Z).$
 - $(46) \quad (X \cap Y) \cap Z = X \cap Z \cap (Y \cap Z) \text{ and } X \cap (Y \cap Z) = (X \cap Y) \cap (X \cap Z).$
 - $(47) \quad X \cup (X \cup Y) = X \cup Y \text{ and } X \cup Y \cup Y = X \cup Y.$
 - (48) $X \cap (X \cap Y) = X \cap Y \text{ and } X \cap Y \cap Y = X \cap Y.$

3. THE EMPTY MANY SORTED SET

Next we state several propositions:

- $(49) \quad \emptyset_I \subseteq X.$
- (50) If $X \subseteq \emptyset_I$, then $X = \emptyset_I$.
- (51) If $X \subseteq Y$ and $X \subseteq Z$ and $Y \cap Z = \emptyset_I$, then $X = \emptyset_I$.
- (52) If $X \subseteq Y$ and $Y \cap Z = \emptyset_I$, then $X \cap Z = \emptyset_I$.
- (53) $X \cup \emptyset_I = X$ and $\emptyset_I \cup X = X$.
- (54) If $X \cup Y = \emptyset_I$, then $X = \emptyset_I$ and $Y = \emptyset_I$.
- (55) $X \cap \emptyset_I = \emptyset_I \text{ and } \emptyset_I \cap X = \emptyset_I.$
- (56) If $X \subseteq Y \cup Z$ and $X \cap Z = \emptyset_I$, then $X \subseteq Y$.
- (57) If $Y \subseteq X$ and $X \cap Y = \emptyset_I$, then $Y = \emptyset_I$.

4. THE DIFFERENCE AND THE SYMMETRIC DIFFERENCE

We now state a number of propositions:

- (58) $X \setminus Y = \emptyset_I \text{ iff } X \subseteq Y.$
- (59) If $X \subseteq Y$, then $X \setminus Z \subseteq Y \setminus Z$.
- (60) If $X \subseteq Y$, then $Z \setminus Y \subseteq Z \setminus X$.
- (61) If $X \subseteq Y$ and $Z \subseteq V$, then $X \setminus V \subseteq Y \setminus Z$.
- (62) $X \setminus Y \subseteq X$.
- (63) If $X \subseteq Y \setminus X$, then $X = \emptyset_I$.
- (64) $X \setminus X = \emptyset_I$.
- (65) $X \setminus \emptyset_I = X$.
- $(66) \quad \emptyset_I \setminus X = \emptyset_I.$
- (67) $X \setminus (X \cup Y) = \emptyset_I \text{ and } X \setminus (Y \cup X) = \emptyset_I.$
- (68) $X \cap (Y \setminus Z) = X \cap Y \setminus Z$.
- (69) $(X \setminus Y) \cap Y = \emptyset_I \text{ and } Y \cap (X \setminus Y) = \emptyset_I.$
- $(70) X \setminus (Y \setminus Z) = (X \setminus Y) \cup X \cap Z.$
- (71) $(X \setminus Y) \cup X \cap Y = X$ and $X \cap Y \cup (X \setminus Y) = X$.
- (72) If $X \subseteq Y$, then $Y = X \cup (Y \setminus X)$ and $Y = (Y \setminus X) \cup X$.
- (73) $X \cup (Y \setminus X) = X \cup Y \text{ and } (Y \setminus X) \cup X = Y \cup X.$
- $(74) \quad X \setminus (X \setminus Y) = X \cap Y.$
- $(75) \quad X \setminus Y \cap Z = (X \setminus Y) \cup (X \setminus Z).$
- (76) $X \setminus X \cap Y = X \setminus Y \text{ and } X \setminus Y \cap X = X \setminus Y.$
- (77) $X \cap Y = \emptyset_I \text{ iff } X \setminus Y = X.$
- $(78) \quad (X \cup Y) \setminus Z = (X \setminus Z) \cup (Y \setminus Z).$
- $(79) \quad X \setminus Y \setminus Z = X \setminus (Y \cup Z).$
- (80) $X \cap Y \setminus Z = (X \setminus Z) \cap (Y \setminus Z).$
- (81) $(X \cup Y) \setminus Y = X \setminus Y$.
- (82) If $X \subseteq Y \cup Z$, then $X \setminus Y \subseteq Z$ and $X \setminus Z \subseteq Y$.
- $(83) \quad (X \cup Y) \setminus X \cap Y = (X \setminus Y) \cup (Y \setminus X).$
- (84) $X \setminus Y \setminus Y = X \setminus Y$.
- (85) $X \setminus (Y \cup Z) = (X \setminus Y) \cap (X \setminus Z).$
- (86) If $X \setminus Y = Y \setminus X$, then X = Y.
- (87) $X \cap (Y \setminus Z) = X \cap Y \setminus X \cap Z \text{ and } (Y \setminus Z) \cap X = Y \cap X \setminus Z \cap X.$
- (88) If $X \setminus Y \subseteq Z$, then $X \subseteq Y \cup Z$.
- (89) $X \setminus Y \subseteq X \dot{-} Y$.
- $(90) \quad X \dot{-} Y = (X \setminus Y) \cup (Y \setminus X).$
- (91) $X \div \emptyset_I = X \text{ and } \emptyset_I \div X = X.$
- $(92) \quad X \dot{-} X = \emptyset_I.$

- $(93) \quad X \dot{-} Y = Y \dot{-} X.$
- (94) $X \cup Y = (X Y) \cup X \cap Y$.
- $(95) \quad X \dot{-} Y = (X \cup Y) \setminus X \cap Y.$
- $(96) \quad (X \dot{-} Y) \setminus Z = (X \setminus (Y \cup Z)) \cup (Y \setminus (X \cup Z)).$
- $(97) X \setminus (Y Z) = (X \setminus (Y \cup Z)) \cup X \cap Y \cap Z.$
- $(98) \quad (X \dot{-} Y) \dot{-} Z = X \dot{-} (Y \dot{-} Z).$
- (99) If $X \setminus Y \subseteq Z$ and $Y \setminus X \subseteq Z$, then $X = Y \subseteq Z$.
- $(100) \quad X \cup Y = X \dot{-} (Y \setminus X).$
- $(101) \quad X \cap Y = X \dot{-} (X \setminus Y).$
- $(102) X \setminus Y = X \dot{-} X \cap Y.$
- $(103) Y \setminus X = X \dot{-} (X \cup Y).$
- $(104) X \cup Y = X \dot{-} Y \dot{-} X \cap Y.$
- $(105) \quad X \cap Y = X \dot{-} Y \dot{-} (X \cup Y).$

5. MEETING AND OVERLAPPING

The following propositions are true:

- (106) If X overlaps Y or X overlaps Z, then X overlaps $Y \cup Z$.
- (107) If X overlaps Y, then Y overlaps X.
- (108) If X overlaps Y and $Y \subseteq Z$, then X overlaps Z.
- (109) If X overlaps Y and $X \subseteq Z$, then Z overlaps Y.
- (110) If $X \subseteq Y$ and $Z \subseteq V$ and X overlaps Z, then Y overlaps V.
- (111) If X overlaps $Y \cap Z$, then X overlaps Y and X overlaps Z.
- (112) If X overlaps Z and $X \subseteq V$, then X overlaps $Z \cap V$.
- (113) If X overlaps $Y \setminus Z$, then X overlaps Y.
- (114) If Y does not overlap Z, then $X \cap Y$ does not overlap $X \cap Z$ and $Y \cap X$ does not overlap $Z \cap X$.
- (115) If X overlaps $Y \setminus Z$, then Y overlaps $X \setminus Z$.
- (116) If X meets Y and $Y \subseteq Z$, then X meets Z.
- (117) If X meets Y, then Y meets X.
 - (118) Y misses $X \setminus Y$.
 - (119) $X \cap Y$ misses $X \setminus Y$.
 - (120) $X \cap Y$ misses X Y.
 - (121) If X misses Y, then $X \cap Y = \emptyset_I$.
 - (122) If $X \neq \emptyset_I$, then X meets X.
 - (123) If $X \subseteq Y$ and $X \subseteq Z$ and Y misses Z, then $X = \emptyset_I$.
 - (124) If $Z \cup V = X \cup Y$ and X misses Z and Y misses V, then X = V and Y = Z.

- (125) If $Z \cup V = X \cup Y$ and Y misses Z and X misses V, then X = Z and Y = V.
- (126) If X misses Y, then $X \setminus Y = X$ and $Y \setminus X = Y$.
- (127) If X misses Y, then $(X \cup Y) \setminus Y = X$ and $(X \cup Y) \setminus X = Y$.
- (128) If $X \setminus Y = X$, then X misses Y and Y misses X.
- (129) $X \setminus Y$ misses $Y \setminus X$.

6. THE SECOND INCLUSION

Let us consider I, X, Y. The predicate $X \subseteq Y$ is defined as follows:

(Def.14) For every x such that $x \in X$ holds $x \in Y$.

The following three propositions are true:

- (130) If $X \subseteq Y$, then $X \sqsubseteq Y$.
- (131) $X \sqsubseteq X$.
- (132) If $X \sqsubseteq Y$ and $Y \sqsubseteq Z$, then $X \sqsubseteq Z$.

7. NON EMPTY AND NON-EMPTY MANY SORTED SETS

The following propositions are true:

- $(133) \quad \emptyset_{\emptyset} \in \emptyset_{\emptyset}.$
- (134) For every many sorted set X of \emptyset holds $X = \emptyset$.

We follow a convention: I will be a non empty set and x, X, Y, Z will be many sorted sets of I.

The following propositions are true:

- (135) If X overlaps Y, then X meets Y.
- (136) It is not true that there exists x such that $x \in \emptyset_I$.
- (137) If $x \in X$ and $x \in Y$, then $X \cap Y \neq \emptyset_I$.
- (138) X does not overlap \emptyset_I and \emptyset_I does not overlap X.
- (139) If $X \cap Y = \emptyset_I$, then X does not overlap Y.
- (140) If X overlaps X, then $X \neq \emptyset_I$.

Let I be a set. A many sorted set of I is empty yielding if:

(Def.15) For every i such that $i \in I$ holds it(i) is empty.

A many sorted set of I is non empty set yielding if:

(Def.16) For every i such that $i \in I$ holds it(i) is non empty.

Let I be a non empty set. Observe that every many sorted set of I which is non-empty is also non empty and every many sorted set of I which is empty is also non non-empty.

One can prove the following propositions:

- (141) X is empty iff $X = \emptyset_I$.
- (142) If Y is empty and $X \subseteq Y$, then X is empty.
- (143) If X is non-empty and $X \subseteq Y$, then Y is non-empty.
- (144) If X is non-empty and $X \sqsubseteq Y$, then $X \subseteq Y$.
- (145) If X is non-empty and $X \sqsubseteq Y$, then Y is non-empty.

In the sequel X denotes a non-empty many sorted set of I.

The following propositions are true:

- (146) There exists x such that $x \in X$.
 - (147) If for every x holds $x \in X$ iff $x \in Y$, then X = Y.
- (148) If for every x holds $x \in X$ iff $x \in Y$ and $x \in Z$, then $X = Y \cap Z$.

REFERENCES

- [1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [2] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151-160, 1992.
- [3] Andrzej Tarlecki and Martin Wirsing. Continuous abstract data types. Fundamenta Informaticae, 9(1):95-125, 1986.
- [4] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
- [5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received July 7, 1993