Representation Theorem for Boolean Algebras

Jarosław Stanisław Walijewski Warsaw University Białystok

MML Identifier: LOPCLSET.

The notation and terminology used in this paper are introduced in the following articles: [9], [7], [4], [5], [3], [10], [11], [8], [12], [1], [2], and [6].

In the sequel T is a topological space, X, Y are subsets of T, and x is arbitrary.

Let T be a topological space. The functor OpenClosedSet(T) yielding a non empty family of subsets of the carrier of T is defined as follows:

(Def.1) OpenClosedSet $(T) = \{x : x \text{ ranges over subsets of } T, x \text{ is open } \land x \text{ is closed} \}.$

The following propositions are true:

- (1) If $x \in \text{OpenClosedSet}(T)$, then there exists X such that X = x.
- (2) If $X \in \text{OpenClosedSet}(T)$, then X is open.
- (3) If $X \in \text{OpenClosedSet}(T)$, then X is closed.
- (4) If X is open and closed, then $X \in \text{OpenClosedSet}(T)$.

Let X be a non empty set and let t be a non empty family of subsets of X. We see that the element of t is a subset of X.

In the sequel x, y, z will denote elements of OpenClosedSet(T).

Let us consider T and let C, D be elements of OpenClosedSet(T). Then $C \cup D$ is an element of OpenClosedSet(T).

Let us consider T and let C, D be elements of OpenClosedSet(T). Then $C \cap D$ is an element of OpenClosedSet(T).

Let us consider T. The functor join(T) yielding a binary operation on OpenClosedSet(T) is defined by:

(Def.2) For all elements A, B of OpenClosedSet(T) holds $(\text{join}(T))(A, B) = A \cup B$.

Let us consider T. The functor meet(T) yields a binary operation on OpenClosedSet(T) and is defined by:

(Def.3) For all elements A, B of OpenClosedSet(T) holds $(meet(T))(A, B) = A \cap B$.

We now state several propositions:

- (5) Let x, y be elements of the carrier of $\langle \text{OpenClosedSet}(T), \text{join}(T), \text{meet}(T) \rangle$ and let x', y' be elements of OpenClosedSet(T). If x = x' and y = y', then $x \sqcup y = x' \cup y'$.
- (6) Let x, y be elements of the carrier of $\langle \text{OpenClosedSet}(T), \text{join}(T), \text{meet}(T) \rangle$ and let x', y' be elements of OpenClosedSet(T). If x = x' and y = y', then $x \sqcap y = x' \cap y'$.
- (7) \emptyset_T is an element of OpenClosedSet(T).
- (8) Ω_T is an element of OpenClosedSet(T).
- (9) For every element x of OpenClosedSet(T) holds x^{c} is an element of OpenClosedSet(T).
- (10) $\langle \text{OpenClosedSet}(T), \text{join}(T), \text{meet}(T) \rangle$ is a lattice.

Let T be a topological space. The functor OpenClosedSetLatt(T) yields a lattice and is defined by:

(Def.4) OpenClosedSetLatt $(T) = \langle \text{OpenClosedSet}(T), \text{join}(T), \text{meet}(T) \rangle$. Next we state two propositions:

- (11) For every topological space T and for all elements x, y of the carrier of OpenClosedSetLatt(T) holds $x \sqcup y = x \cup y$.
- (12) For every topological space T and for all elements x, y of the carrier of OpenClosedSetLatt(T) holds $x \cap y = x \cap y$.

We follow a convention: a, b, c denote elements of the carrier of $\langle \operatorname{OpenClosedSet}(T), \operatorname{join}(T), \operatorname{meet}(T) \rangle$ and x, y, z denote elements of $\operatorname{OpenClosedSet}(T)$.

The following propositions are true:

- (13) The carrier of OpenClosedSetLatt(T) = OpenClosedSet(T).
- (14) OpenClosedSetLatt(T) is Boolean.
- (15) Ω_T is an element of the carrier of OpenClosedSetLatt(T).
- (16) \emptyset_T is an element of the carrier of OpenClosedSetLatt(T).

One can check that there exists a Boolean lattice which is non trivial.

For simplicity we adopt the following convention: L_1 , L_2 denote lattices, a, p, q' denote elements of the carrier of B_1 , U_1 denotes a filter of B_1 , B denotes a subset of the carrier of B_1 , and D denotes a non empty subset of the carrier of B_1 .

Let us consider B_1 . The functor ultraset (B_1) yields a non empty subset of 2the carrier of B_1 and is defined by:

(Def.5) ultraset $(B_1) = \{F : F \text{ is ultrafilter}\}.$

Next we state two propositions:

- $(18)^1$ $x \in \text{ultraset}(B_1)$ iff there exists U_1 such that $U_1 = x$ and U_1 is ultrafilter.
- (19) For every a holds $\{F: F \text{ is ultrafilter } \land a \in F\} \subseteq \text{ultraset}(B_1)$.

Let us consider B_1 . The functor UFilter(B_1) yielding a function is defined as follows:

(Def.6) dom UFilter (B_1) = the carrier of B_1 and for every element a of the carrier of B_1 holds (UFilter (B_1)) $(a) = \{U_1 : U_1 \text{ is ultrafilter } \land a \in U_1\}$.

Next we state several propositions:

- (20) $x \in (UFilter(B_1))(a)$ iff there exists F such that F = x and F is ultrafilter and $a \in F$.
- (21) $F \in (UFilter(B_1))(a)$ iff F is ultrafilter and $a \in F$.
- (22) For every F such that F is ultrafilter holds $a \sqcup b \in F$ iff $a \in F$ or $b \in F$.
- $(23) \quad (\text{UFilter}(B_1))(a \cap b) = (\text{UFilter}(B_1))(a) \cap (\text{UFilter}(B_1))(b).$
- (24) $(\text{UFilter}(B_1))(a \sqcup b) = (\text{UFilter}(B_1))(a) \cup (\text{UFilter}(B_1))(b).$

Let us consider B_1 . Then UFilter (B_1) is a function from the carrier of B_1 into $2^{\text{ultraset}(B_1)}$.

Let us consider B_1 . The functor StoneR(B_1) yielding a non empty set is defined as follows:

(Def.7) StoneR(B_1) = rng UFilter(B_1).

The following propositions are true:

- (25) StoneR(B_1) $\subset 2^{\text{ultraset}(B_1)}$.
- (26) $x \in \text{StoneR}(B_1)$ iff there exists a such that $(\text{UFilter}(B_1))(a) = x$.

Let us consider B_1 . The functor StoneSpace(B_1) yielding a strict topological space is defined by:

(Def.8) The carrier of StoneSpace(B_1) = ultraset(B_1) and the topology of StoneSpace(B_1) = { $\bigcup A : A \text{ ranges over subsets of } 2^{\text{ultraset}(B_1)}, A \subseteq \text{StoneR}(B_1)$ }.

One can prove the following two propositions:

- (27) If F is ultrafilter and $F \notin (\text{UFilter}(B_1))(a)$, then $a \notin F$.
- (28) $\operatorname{ultraset}(B_1) \setminus (\operatorname{UFilter}(B_1))(a) = (\operatorname{UFilter}(B_1))(a^c).$

Let us consider B_1 . The functor StoneBLattice (B_1) yields a lattice and is defined as follows:

(Def.9) StoneBLattice(B_1) = OpenClosedSetLatt(StoneSpace(B_1)).

One can prove the following four propositions:

- (29) UFilter(B_1) is one-to-one.
- (30) $\bigcup \text{StoneR}(B_1) = \text{ultraset}(B_1).$
- (31) For all sets A, B, X such that $X \subseteq \bigcup (A \cup B)$ and for arbitrary Y such that $Y \in B$ holds $Y \cap X = \emptyset$ holds $X \subseteq \bigcup A$.
- (32) For every non empty set X holds there exists finite subset of X which is non empty.

¹The proposition (17) has been removed.

Let D be a non empty set. Note that there exists a finite subset of D which is non empty.

The following propositions are true:

- (33) For every lattice L and for all elements a, b, c, d of the carrier of L such that $a \sqsubseteq c$ and $b \sqsubseteq d$ holds $a \sqcap b \sqsubseteq c \sqcap d$.
- (34) Let L be a non trivial Boolean lattice and let D be a non empty subset of the carrier of L. Suppose $\perp_L \in [D)$. Then there exists a non empty finite subset B of the carrier of L such that $B \subseteq D$ and $\sqcap_B^f = \perp_L$.
- (35) For every lower bound lattice L it is not true that there exists a filter F of L such that F is ultrafilter and $\bot_L \in F$.
- $(36) \quad (\mathrm{UFilter}(B_1))(\bot_{(B_1)}) = \emptyset.$
- (37) $(\mathrm{UFilter}(B_1))(\top_{(B_1)}) = \mathrm{ultraset}(B_1).$
- (38) If ultraset $(B_1) = \bigcup X$ and X is a subset of StoneR (B_1) , then there exists a finite subset Y of X such that ultraset $(B_1) = \bigcup Y$.
- (39) If $x \in 2^X$ and $y \in 2^X$, then $x \cap y \in 2^X$.
- (40) StoneR(B_1) = OpenClosedSet(StoneSpace(B_1)).

Let us consider B_1 . Then UFilter(B_1) is a homomorphism from B_1 to StoneBLattice(B_1).

Next we state four propositions:

- (41) $\operatorname{rng} \operatorname{UFilter}(B_1) = \operatorname{the carrier of StoneBLattice}(B_1).$
- (42) UFilter(B_1) is isomorphism.
- (43) B_1 and StoneBLattice(B_1) are isomorphic.
- (44) For every non trivial Boolean lattice B_1 there exists a topological space T such that B_1 and OpenClosedSetLatt(T) are isomorphic.

REFERENCES

- [1] Grzegorz Bancerek. Filters part I. Formalized Mathematics, 1(5):813-819, 1990.
- 2 Józef Bialas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [6] Jolanta Kamieńska and Jaroslaw Stanisław Walijewski. Homomorphisms of lattices, finite join and finite meet. Formalized Mathematics, 4(1):35-40, 1993.
- [7] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
- [8] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
- [10] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
- [11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [12] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–222, 1990.

Received July 14, 1993