FORMALIZED MATHEMATICS
Volume 4, Number 1, 1993
Université Catholique de Louvain

Some Remarks on the Simple Concrete
Model of Computer

Andrzej Trybulec Yatsuka Nakamura
Warsaw University Shinshu University
Bialystok Nagano

Summary. We prove some results on SCM needed for the proof
of the correctness of Euclid’s algorithm. We introduce the following con-
cepts:

- starting finite partial state (Start-At(l)), then assigns to the in-
struction counter an instruction location (and consists only of this
assignment),

- programmed finite partial state, that consists of the instructions (to
be more precise, a finite partial state with the domain consisting of
instruction locations).

We define for a total state s what it means that s starts at [(the value
of the instruction counter in the state s is I) and s halts at I (the halt
instruction is assigned to ! in the state s). Similar notions are defined for
finite partial states.

MML Identifier: AMI_3.

The articles [22], [20], [5], [6], [21], [12], [1], [17], [23], [4], [18], [2], [18], [24],
(7, (291, [8], (9], [11], [3], [10], [14], [15], and [16] provide the notation and
terminology for this paper.

1. PRELIMINARIES

SRR
g

One can prove the following proposition . [

(1) For all integers m, j holds m j= +0(mod m).: - : o

In the sequel ¢, 7, k£ will denote natural numbers.: :

The scheme INDI concerns natural numbers A, B and a unary predicate P,
and states that:

© 1993 Fondation Philippe le Hodey
5]. ISSN 0777-4028

52 ANDRZEJ TRYBULEC AND YATSUKA NAKAMURA

P[B]
provided the following requirements are met:
. Plo,
e A>0, ' .
e Forall 4, j such that P[A-i] and j # 0 and j < Aholds P[A-1+].
In the sequel z will be arbitrary.
Next we state a number of propositions:
4 (2) Let X,Y benon empty set and let f, g be partial functions from X to
Y. Suppose that for every element z of X and for every element y of ¥
holds (z, y) € f iff (z, y) € g. Then f =g.
(3) For all functions f, g and for all sets A, B such that f| A=g1 A and
f1B=glBholds f1(AUB)=g P (AU B).
(4) For every set X and for all functions f, ¢ such that domg C X and
gC fholdsg C fIX.
(5) For every function f and for arbitrary z such that ¢ € dom f holds
fi{e} = {{z, f(2))}-
(6) For every function f and for every set X such that X Ndom f = § holds -
frx==9.
(7) For all functions f, g and for arbitrary ¢ such that dom f = dom g and
f(z) = g(z) holds f t{z} =gt {z}.
(8) For all functions f, g and for arbitrary @, y such that dom f = dom g
and f(z) = g(z) and f(y) = g(y) holds f | {z,y} = g [{z,9}.
(9) Let f, g be functions and let @, y, 2 be arbitrary. If dom f = domg
and f(z) = g(z) and f(y) = g(y) and f(z) = g(2), then f I {z,y,2} =
g1 {z,y,2}.
(10) For arbitrary a, b and for every function f such that a € dom f and
f(a) = b holds a+——b C f.
(11) For arbitrary e, b, ¢, d such that a £ ¢ holds [a —> b,c — d} = {{a,
b, (c, d)}.
(12) For arbitrary a, b, c, d and for every function f such that a € dom f
and ¢ € dom f and f(a) = b and f(c) = d holds [a — b,c+— d C f.
(13) For all functions f, g, h holds (f4+-9)+h=f+(g+ h).

2. COMPUTATIONS

In the sequel N denotes a non empty set with non empty elements.
Next we state the proposition
(14) For every AMI S over N and for every finite partial state p of § holds
p € FinPartSt(5).
Let us consider N and let S be an AMI over N. Then FinPartSt(5) is a non
empty subset of [T (the object kind of S).

SOME REMARKS ON THE SIMPLE CONCRETE MODEL OF ...

Next we state two propositions:

(15) For every AMI § over N holds every element of FinPartSt(5) is a finite
partial state-of 5.

(16) Let S be an AMI over N and let Fy, F> be partial functions from
FinPartSt(5) to FinPartSt(5). Suppose that for all finite partial states
P, q of 5 holds (p, q) € F1 iff (p,) € F. Then F; = F.

The scheme FgqFPSFunc concerns a non empty set 4 with non empty
elements, an AMI B over A, partial functions C, D from FinPartSt(B) to
FinPartSt(B), and a binary predicate P, and states that:

C=7DD
provided the parameters meet the following conditions:

o For all finite partial states p, ¢ of B holds {p, ¢) € C iff P[p, q],

e For all finite partial states p, ¢ of B holds (p, ¢} € D iff P|p, q|.

Let us consider N, let S5 be a von Neumann definite AMI over N, -and let [
be an instruction-location of 5. The functor Start-At(/) yielding a finite partial
state of S is defined by:

(Def.1) Start-At(l) = ICs——1.
One can prove the following proposition

(17) For every von Neumann definite AMI S over N and for every
instruction-location ! of S holds dom Start-At({) = {ICg}.

Let us consider N and let .5 be an AMI over . A finite partial state of S is
programmed if:
(Def.2) domit C the instruction locations of S.
We now state four propositions:

(18) Let S be a steady-programmed von Neumann definite AMI over N
and let py, po be programmed finite partial state of S. Then p; +- pg is
programmed.

(19) For every AMI S over N and for every state s of § holds dom s = the
objects of 5.

(20) For every AMI S over N and for every finite partial state p of S holds
dom p C the objects of .S.

(21) Let S be a steady-programmed von Neumann definite AMI over N, and
let p be a programmed finite partial state of S, and let s be a state of S.
If p C s, then for every & holds p C (Computation(s))(k). ‘

Let us consider N, let .S be a von Neumann AMI over V', let s be a state of
S, and let [be an instruction-location of 5. We say that's’starts at [if and only
if:
(Def.3) IC; =1.
‘We say that s halts at 77f and only if:
(Def.4) s(I) = haltg.
The following proposition is true

53

54 ANDRZEJ TRYBULEC AND YATSUKA NAKAMURA

(22) For every AMI § over N-and for every finite partial state p of § there
exists a state s of S such that p C s. ‘

Let us consider N, let § be a definite von Neumann AMI over N, and let p
be a finite partial state of S. Let us assume that ICs € dom p. The functor IC,
yielding an instruction-location of § is defined by:

% (Def.5) IC, = p(ICs).
_, Let us consider N, let S be a definite von Neumann AMI over N, let p be a
!« finite partial state of 5, and let / be an instruction-location of S. We say that
o+ pstarts at [if and only if:
' (Def.6) ICs € domp and IC, =1.
- We say that p halts at [if and only if:
& (Def.7) [€ domp and p(l) = haltg.
i One can prove the following propositions:

(23) Let S be a von Neumann definite steady-programmed AMI over N and
let s be a state of §. Then s is halting if and only if there exists k such
that s halts at TIC(Computation(s))(k)- -

(24) Let S be a von Neumann definite steady-programmed AMI over NV, and
let s be a state of S, and let p be a finite partial state of 5, and let [be
an instruction-location of S. If p C s and p halts at [, then s halts at .

(25) Let S be a halting steady-programmed von Neumann definite AMI over
N, and let s be a state of S, and given k. If s is halting, then Result(s) =
(Computation(s))(k) iff s halts at IC(computation(s))(k)-

(26) Let S be a steady-programmed von Neumann definite AMI over NV, and
let s be a state of S, and let p be a programmed finite partial state of §,
and given k. Then p C s if and only if p C (Computation(s))(k).

(27) Let S be a halting steady-programmed von Neumann definite AMI over
N, and let s be a state of S, and given k. If s halts at IC(computation(s)) (k)
then Result(s) = (Computation(s))(k).

(28) Suppose ¢ < j. Let S be a halting steady-programmed von Neu-
mann definite AMI over N and let s be a state of S. If s halts at
IC(Computation(s))(i)7 then s halts at IC(Computation(s))(j)'

(29) Suppose i < j. Let S be a halting steady-programmed von Neu-

mann definite AMI over N and let s be a state of S. If s halts at

% IC(Qomputation(s))(i), then (Compqt@ti‘pn(s))(Jj)= (Computation(s))().

1 (30) Let S be a steady-programmed von Neumann halting definite AMI

‘ over N and let s be a state of §. If there exists k such that
s halts at IC(Computation(s))(k): then for every i holds Result(s) =
Result((Computation(s))(z))-

(31) Let Sbea steady-programmed von Neumann definite AMI over N, and

let s be a state of S, and let I be an instruction-location of .5, and given
k. Then s halts at [if and only if (Computation(s))(k) halts at [.

SOME REMARKS ON THE SIMPLE CONCRETE MODEL OF ... 55

(32) -Let S be a definite von Neumann AMI over N, and let p be a finite
partial state of .S, and let [be an instruction-location of §. Suppose p
starts at . Let s be a state of S. If p C s, then s starts at /.

(33) For every von Neumann definite AMI S over N and for every
instruction-location / of .5 holds Start-At(/)(ICs) = .

Let us consider N, let S be a definite von Neumann AMI over N, let [be
an instruction-location of S, and let I be an instruction of §. Then I——1 is a
programmed finite partial state of 5.

3. INsTRUCTION LOCATIONS AND DATA LOCATIONS

We now state the proposition
(34) SCM is realistic. A
SCM is a steady-programmed halting realistic von Neumann data-oriented
definite strict AMI over {Z}.
Let us consider k. The functor d; yields a data-location and is defined by:
(Def.8) dp=2-k+1.
The functor iy yielding an instruction-location of SCM is defined by:
(Def9) i, =2-k+2.
Next we state three propositions:
(35) For all 4, j such that 7 # j holds d; # d;.
(36) For all 4, j such that < # j holds i; # i;.
(37) Next(ix) = igt1-
Let s be a state of SCM and let a be a data-location. Then s(a) is an
integer.
Let us consider a, b. Then a:=b is an instruction of SCM. Then AddTo(a,b)
is an instruction of SCM. Then SubFrom(a,d) is an instruction of SCM. Then

MultBy(a, b) is an instruction of SCM. Then Divide(a,b) is an instruction of
SCM.

Let us consider /;. Then goto l; is an instruction of SCM. Let us consider
a. Then if a = 0 goto [; is an instruction of SCM. Then if a > 0 goto [; is
an instruction of SCM.

Next we state the proposition

(38) For every data-location ! holds ObjectKind(l) = Z.

Let I; be a data-location and let @ be an integer. Then ly——a is a finite
partial state of SCM.
Let I3, I3 be data-locations and let a, b be integers. Then [l3 — a,l3 — b]
is a finite partial state of SCM.
Next we state two propositions:
(39) For all 4, j holds d; # i;.
(40) For every i holds ICgem # di and ICseM # Li-

56

[11

['13]
[14]
[15]

[16]
[17]
[18]
[19]
[20]
[21]
(22

(23]
[24]

ANDRZEJ TRYBULEC AND YATSUKA NAKAMURA

REFERENCES

Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-
ematics, 1(1):41-46, 1990.

Grzegorz Bancerek. Konig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.
Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1{1):107-114, 1990.

Czeslaw Bylifiski. A classical first order language. Formalized Mathematics, 1(4):669-
676, 1990,

Czeslaw Bylifiski. Functions and their basic properties. Formalized Mathematics,
1(1):55-65, 1990.

Czestaw Bylifiski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.

Czestaw Bylifiski. Graphs of functions. Formalized Mathematics, 1(1):169-173, 1990.
Czeslaw Bylifiski. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521-527, 1990.

Czeslaw Bylifiski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
Czeslaw Bylifiski. Products and coproducts in categories. Formalized Mathematics,
2(5):701-709, 1991. -
Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

Rafal Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative
primes. Formalized Mathematics, 1(5):829-832, 1990.

Michal Muzalewski. Rings and modules - part II. Formalized Mathematics, 2(4):579—
585, 1991.

Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151-160, 1992.

Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241-250, 1992. ,

Jan Popiolek. Some properties of functions modul and signum. Formalized Mathematics,
1(2):263-264, 1990.

Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Math-
ematics, 2(5):623-627, 1991.

Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329-334, 1990

Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
Andrzej Trybulec. Function domains and Fraenkel operator. Formalized Mathematics,
1(3):495-500, 1990

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.

Michal J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

'1(1):73-83, 1990.

Received October 8, 1993

