Algebra of Vector Functions

Hiroshi Yamazaki
Shinshu University
Nagano

Yasunari Shidama
Shinshu University
Nagano

Abstract

Summary. We develop the algebra of partial vector functions, with domains being algebra of vector functions.

MML Identifier: VFUNCT_1.

The terminology and notation used in this paper have been introduced in the following papers: [10], [5], [2], [3], [1], [12], [9], [4], [6], [11], [8], and [7]. For simplicity we adopt the following rules: X, Y will denote sets, C will denote a non-empty set, c will denote an element of C, V will denote a real normed space, f, f_{1}, f_{2}, f_{3} will denote partial functions from C to the carrier of V, and r, p will denote real numbers. We now define several new functors. Let us consider C, V, f_{1}, f_{2}. The functor $f_{1}+f_{2}$ yielding a partial function from C to the carrier of V is defined as follows:
(Def.1) $\operatorname{dom}\left(f_{1}+f_{2}\right)=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every c such that $c \in \operatorname{dom}\left(f_{1}+\right.$ f_{2}) holds $\left(f_{1}+f_{2}\right)(c)=f_{1}(c)+f_{2}(c)$.
The functor $f_{1}-f_{2}$ yields a partial function from C to the carrier of V and is defined as follows:
(Def.2) $\operatorname{dom}\left(f_{1}-f_{2}\right)=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every c such that $c \in \operatorname{dom}\left(f_{1}-\right.$ f_{2}) holds $\left(f_{1}-f_{2}\right)(c)=f_{1}(c)-f_{2}(c)$.
Let us consider C, and let us consider V, and let f_{1} be a partial function from C to \mathbb{R}, and let us consider f_{2}. The functor $f_{1} f_{2}$ yielding a partial function from C to the carrier of V is defined by:
(Def.3) $\operatorname{dom}\left(f_{1} f_{2}\right)=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every c such that $c \in \operatorname{dom}\left(f_{1} f_{2}\right)$ holds $\left(f_{1} f_{2}\right)(c)=f_{1}(c) \cdot f_{2}(c)$.
Let us consider C, V, f, r. The functor $r f$ yielding a partial function from C to the carrier of V is defined as follows:
(Def.4) $\quad \operatorname{dom}(r f)=\operatorname{dom} f$ and for every c such that $c \in \operatorname{dom}(r f)$ holds $(r f)(c)=$ $r \cdot f(c)$.

Let us consider C, V, f. The functor $\|f\|$ yields a partial function from C to \mathbb{R} and is defined by:
(Def.5) $\quad \operatorname{dom}\|f\|=\operatorname{dom} f$ and for every c such that $c \in \operatorname{dom}\|f\|$ holds $\|f\|(c)=$ $\|f(c)\|$.
The functor $-f$ yielding a partial function from C to the carrier of V is defined as follows:
(Def.6) $\operatorname{dom}(-f)=\operatorname{dom} f$ and for every c such that $c \in \operatorname{dom}(-f)$ holds $(-f)(c)=-f(c)$.
Next we state a number of propositions:
(1) $f=f_{1}+f_{2}$ if and only if $\operatorname{dom} f=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every c such that $c \in \operatorname{dom} f$ holds $f(c)=f_{1}(c)+f_{2}(c)$.
(2) $\quad f=f_{1}-f_{2}$ if and only if $\operatorname{dom} f=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every c such that $c \in \operatorname{dom} f$ holds $f(c)=f_{1}(c)-f_{2}(c)$.
(3) For every partial function f_{1} from C to \mathbb{R} holds $f=f_{1} f_{2}$ if and only if $\operatorname{dom} f=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every c such that $c \in \operatorname{dom} f$ holds $f(c)=f_{1}(c) \cdot f_{2}(c)$.
(4) $\quad f=r f_{1}$ if and only if $\operatorname{dom} f=\operatorname{dom} f_{1}$ and for every c such that $c \in \operatorname{dom} f$ holds $f(c)=r \cdot f_{1}(c)$.
(5) For every partial function f from C to \mathbb{R} holds $f=\left\|f_{1}\right\|$ if and only if $\operatorname{dom} f=\operatorname{dom} f_{1}$ and for every c such that $c \in \operatorname{dom} f$ holds $f(c)=\left\|f_{1}(c)\right\|$.
(6) $\quad f=-f_{1}$ if and only if $\operatorname{dom} f=\operatorname{dom} f_{1}$ and for every c such that $c \in \operatorname{dom} f$ holds $f(c)=-f_{1}(c)$.
(7) For every partial function f_{1} from C to \mathbb{R} holds $\operatorname{dom}\left(f_{1} f_{2}\right) \backslash\left(f_{1} f_{2}\right)^{-1}$ $\left\{0_{V}\right\}=\left(\operatorname{dom} f_{1} \backslash f_{1}^{-1}\{0\}\right) \cap\left(\operatorname{dom} f_{2} \backslash f_{2}^{-1}\left\{0_{V}\right\}\right)$.
(8) $\|f\|^{-1}\{0\}=f^{-1}\left\{0_{V}\right\}$ and $(-f)^{-1}\left\{0_{V}\right\}=f^{-1}\left\{0_{V}\right\}$.
(9) If $r \neq 0$, then $(r f)^{-1}\left\{0_{V}\right\}=f^{-1}\left\{0_{V}\right\}$.
(10) $f_{1}+f_{2}=f_{2}+f_{1}$.
(11) $\left(f_{1}+f_{2}\right)+f_{3}=f_{1}+\left(f_{2}+f_{3}\right)$.
(12) For all partial functions f_{1}, f_{2} from C to \mathbb{R} and for every partial function f_{3} from C to the carrier of V holds $\left(f_{1} f_{2}\right) f_{3}=f_{1}\left(f_{2} f_{3}\right)$.
(13) For all partial functions f_{1}, f_{2} from C to \mathbb{R} holds $\left(f_{1}+f_{2}\right) f_{3}=f_{1} f_{3}+$ $f_{2} f_{3}$.
(14) For every partial function f_{3} from C to \mathbb{R} holds $f_{3}\left(f_{1}+f_{2}\right)=f_{3} f_{1}+$ $f_{3} f_{2}$.
(15) For every partial function f_{1} from C to \mathbb{R} holds $r\left(f_{1} f_{2}\right)=\left(r f_{1}\right) f_{2}$.
(16) For every partial function f_{1} from C to \mathbb{R} holds $r\left(f_{1} f_{2}\right)=f_{1}\left(r f_{2}\right)$.

For all partial functions f_{1}, f_{2} from C to \mathbb{R} holds $\left(f_{1}-f_{2}\right) f_{3}=f_{1} f_{3}-$ $f_{2} f_{3}$.
(18) For every partial function f_{3} from C to \mathbb{R} holds $f_{3} f_{1}-f_{3} f_{2}=f_{3}\left(f_{1}-\right.$ f_{2}).

$$
\begin{equation*}
r\left(f_{1}+f_{2}\right)=r f_{1}+r f_{2} . \tag{19}
\end{equation*}
$$

(20) $(r \cdot p) f=r(p f)$.
(21) $r\left(f_{1}-f_{2}\right)=r f_{1}-r f_{2}$.
(22) $f_{1}-f_{2}=(-1)\left(f_{2}-f_{1}\right)$.
(23) $f_{1}-\left(f_{2}+f_{3}\right)=f_{1}-f_{2}-f_{3}$.
(24) $1 f=f$.
(25) $f_{1}-\left(f_{2}-f_{3}\right)=\left(f_{1}-f_{2}\right)+f_{3}$.
(26) $f_{1}+\left(f_{2}-f_{3}\right)=\left(f_{1}+f_{2}\right)-f_{3}$.
(27) For every partial function f_{1} from C to \mathbb{R} holds $\left\|f_{1} f_{2}\right\|=\left|f_{1}\right|\left\|f_{2}\right\|$.
(28) $\|r f\|=|r|\|f\|$.
(29) $\quad-f=(-1) f$.
(30) $--f=f$.
(31) $\quad f_{1}-f_{2}=f_{1}+-f_{2}$.

We now state a number of propositions:
(32) $f_{1}--f_{2}=f_{1}+f_{2}$.
(33) $\left(f_{1}+f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X+f_{2} \upharpoonright X$ and $\left(f_{1}+f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X+f_{2}$ and $\left(f_{1}+f_{2}\right) \upharpoonright X=f_{1}+f_{2} \upharpoonright X$.
(34) For every partial function f_{1} from C to \mathbb{R} holds $\left(f_{1} f_{2}\right) \upharpoonright X=\left(f_{1} \upharpoonright\right.$ $X)\left(f_{2} \upharpoonright X\right)$ and $\left(f_{1} f_{2}\right) \upharpoonright X=\left(f_{1} \upharpoonright X\right) f_{2}$ and $\left(f_{1} f_{2}\right) \upharpoonright X=f_{1}\left(f_{2} \upharpoonright X\right)$.
(35) $\quad(-f) \upharpoonright X=-f \upharpoonright X$ and $\|f\| \upharpoonright X=\|f \upharpoonright X\|$.
(36) $\left(f_{1}-f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X-f_{2} \upharpoonright X$ and $\left(f_{1}-f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X-f_{2}$ and $\left(f_{1}-f_{2}\right) \upharpoonright X=f_{1}-f_{2} \upharpoonright X$.
(37) $\quad(r f) \upharpoonright X=r(f \upharpoonright X)$.
(38) f_{1} is total and f_{2} is total if and only if $f_{1}+f_{2}$ is total and also f_{1} is total and f_{2} is total if and only if $f_{1}-f_{2}$ is total.
(39) For every partial function f_{1} from C to \mathbb{R} holds f_{1} is total and f_{2} is total if and only if $f_{1} f_{2}$ is total.
(40) f is total if and only if $r f$ is total.
(41) f is total if and only if $-f$ is total.
(42) $\quad f$ is total if and only if $\|f\|$ is total.
(43) If f_{1} is total and f_{2} is total, then $\left(f_{1}+f_{2}\right)(c)=f_{1}(c)+f_{2}(c)$ and $\left(f_{1}-f_{2}\right)(c)=f_{1}(c)-f_{2}(c)$.
(44) For every partial function f_{1} from C to \mathbb{R} such that f_{1} is total and f_{2} is total holds $\left(f_{1} f_{2}\right)(c)=f_{1}(c) \cdot f_{2}(c)$.
(45) If f is total, then $(r f)(c)=r \cdot f(c)$.
(46) If f is total, then $(-f)(c)=-f(c)$ and $\|f\|(c)=\|f(c)\|$.

Let us consider C, V, f, Y. We say that f is bounded on Y if and only if:
(Def.7) there exists r such that for every c such that $c \in Y \cap \operatorname{dom} f$ holds $\|f(c)\| \leq r$.
Next we state a number of propositions:
(47) f is bounded on Y if and only if there exists r such that for every c such that $c \in Y \cap \operatorname{dom} f$ holds $\|f(c)\| \leq r$.
(48) If $Y \subseteq X$ and f is bounded on X, then f is bounded on Y.
(49) If $X \cap \operatorname{dom} f=\emptyset$, then f is bounded on X.
(50) If $0=r$, then $r f$ is bounded on Y.
(51) If f is bounded on Y, then $r f$ is bounded on Y.
(52) If f is bounded on Y, then $\|f\|$ is bounded on Y and $-f$ is bounded on Y.
(53) If f_{1} is bounded on X and f_{2} is bounded on Y, then $f_{1}+f_{2}$ is bounded on $X \cap Y$.
(54) For every partial function f_{1} from C to \mathbb{R} such that f_{1} is bounded on X and f_{2} is bounded on Y holds $f_{1} f_{2}$ is bounded on $X \cap Y$.
(55) If f_{1} is bounded on X and f_{2} is bounded on Y, then $f_{1}-f_{2}$ is bounded on $X \cap Y$.
(56) If f is bounded on X and f is bounded on Y, then f is bounded on $X \cup Y$.
(57) If f_{1} is a constant on X and f_{2} is a constant on Y, then $f_{1}+f_{2}$ is a constant on $X \cap Y$ and $f_{1}-f_{2}$ is a constant on $X \cap Y$.
(58) For every partial function f_{1} from C to \mathbb{R} such that f_{1} is a constant on X and f_{2} is a constant on Y holds $f_{1} f_{2}$ is a constant on $X \cap Y$.
(59) If f is a constant on Y, then $p f$ is a constant on Y.
(60) If f is a constant on Y, then $\|f\|$ is a constant on Y and $-f$ is a constant on Y.
(61) If f is a constant on Y, then f is bounded on Y.
(62) If f is a constant on Y, then for every r holds $r f$ is bounded on Y and $-f$ is bounded on Y and $\|f\|$ is bounded on Y.
(63) If f_{1} is bounded on X and f_{2} is a constant on Y, then $f_{1}+f_{2}$ is bounded on $X \cap Y$.
(64) If f_{1} is bounded on X and f_{2} is a constant on Y, then $f_{1}-f_{2}$ is bounded on $X \cap Y$ and $f_{2}-f_{1}$ is bounded on $X \cap Y$.

References

[1] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1 (1):245-254, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[6] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[7] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[8] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[9] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[11] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Received October 27, 1992

