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Summary. We develop the algebra of partial vector functions,
with domains being algebra of vector functions.
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The terminology and notation used in this paper have been introduced in the
following papers: [10], [5], [2], [3], [1], [12], [9], [4], [6], [11], [8], and [7]. For
simplicity we adopt the following rules: X, Y will denote sets, C will denote
a non-empty set, c will denote an element of C, V will denote a real normed
space, f , f1, f2, f3 will denote partial functions from C to the carrier of V ,
and r, p will denote real numbers. We now define several new functors. Let us
consider C, V , f1, f2. The functor f1 + f2 yielding a partial function from C to
the carrier of V is defined as follows:

(Def.1) dom(f1 +f2) = dom f1∩dom f2 and for every c such that c ∈ dom(f1 +
f2) holds (f1 + f2)(c) = f1(c) + f2(c).

The functor f1 − f2 yields a partial function from C to the carrier of V and is
defined as follows:

(Def.2) dom(f1−f2) = dom f1∩dom f2 and for every c such that c ∈ dom(f1−
f2) holds (f1 − f2)(c) = f1(c) − f2(c).

Let us consider C, and let us consider V , and let f1 be a partial function from C

to � , and let us consider f2. The functor f1 f2 yielding a partial function from
C to the carrier of V is defined by:

(Def.3) dom(f1 f2) = dom f1 ∩ dom f2 and for every c such that c ∈ dom(f1 f2)
holds (f1 f2)(c) = f1(c) · f2(c).

Let us consider C, V , f , r. The functor r f yielding a partial function from C

to the carrier of V is defined as follows:

(Def.4) dom(r f) = dom f and for every c such that c ∈ dom(r f) holds (r f)(c) =
r · f(c).
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Let us consider C, V , f . The functor ‖f‖ yields a partial function from C to �
and is defined by:

(Def.5) dom‖f‖ = dom f and for every c such that c ∈ dom‖f‖ holds ‖f‖(c) =
‖f(c)‖.

The functor −f yielding a partial function from C to the carrier of V is defined
as follows:

(Def.6) dom(−f) = dom f and for every c such that c ∈ dom(−f) holds
(−f)(c) = −f(c).

Next we state a number of propositions:

(1) f = f1 + f2 if and only if dom f = dom f1 ∩dom f2 and for every c such
that c ∈ dom f holds f(c) = f1(c) + f2(c).

(2) f = f1 − f2 if and only if dom f = dom f1 ∩dom f2 and for every c such
that c ∈ dom f holds f(c) = f1(c) − f2(c).

(3) For every partial function f1 from C to � holds f = f1 f2 if and only
if dom f = dom f1 ∩ dom f2 and for every c such that c ∈ dom f holds
f(c) = f1(c) · f2(c).

(4) f = r f1 if and only if dom f = dom f1 and for every c such that
c ∈ dom f holds f(c) = r · f1(c).

(5) For every partial function f from C to � holds f = ‖f1‖ if and only if
dom f = dom f1 and for every c such that c ∈ dom f holds f(c) = ‖f1(c)‖.

(6) f = −f1 if and only if dom f = dom f1 and for every c such that
c ∈ dom f holds f(c) = −f1(c).

(7) For every partial function f1 from C to � holds dom(f1 f2) \ (f1 f2)
−1

{0V } = (dom f1 \ f1
−1 {0}) ∩ (dom f2 \ f2

−1 {0V }).

(8) ‖f‖ −1 {0} = f −1 {0V } and (−f) −1 {0V } = f −1 {0V }.

(9) If r 6= 0, then (r f) −1 {0V } = f −1 {0V }.

(10) f1 + f2 = f2 + f1.

(11) (f1 + f2) + f3 = f1 + (f2 + f3).

(12) For all partial functions f1, f2 from C to � and for every partial function
f3 from C to the carrier of V holds (f1 f2) f3 = f1 (f2 f3).

(13) For all partial functions f1, f2 from C to � holds (f1 + f2) f3 = f1 f3 +
f2 f3.

(14) For every partial function f3 from C to � holds f3 (f1 + f2) = f3 f1 +
f3 f2.

(15) For every partial function f1 from C to � holds r (f1 f2) = (r f1) f2.

(16) For every partial function f1 from C to � holds r (f1 f2) = f1 (r f2).

(17) For all partial functions f1, f2 from C to � holds (f1 − f2) f3 = f1 f3 −
f2 f3.

(18) For every partial function f3 from C to � holds f3 f1 − f3 f2 = f3 (f1 −
f2).

(19) r (f1 + f2) = r f1 + r f2.
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(20) (r · p) f = r (p f).

(21) r (f1 − f2) = r f1 − r f2.

(22) f1 − f2 = (−1) (f2 − f1).

(23) f1 − (f2 + f3) = f1 − f2 − f3.

(24) 1 f = f .

(25) f1 − (f2 − f3) = (f1 − f2) + f3.

(26) f1 + (f2 − f3) = (f1 + f2) − f3.

(27) For every partial function f1 from C to � holds ‖f1 f2‖ = |f1| ‖f2‖.

(28) ‖r f‖ = |r| ‖f‖.

(29) −f = (−1) f .

(30) −−f = f .

(31) f1 − f2 = f1 + −f2.

We now state a number of propositions:

(32) f1 −−f2 = f1 + f2.

(33) (f1 + f2)
�
X = f1

�
X + f2

�
X and (f1 + f2)

�
X = f1

�
X + f2 and

(f1 + f2)
�
X = f1 + f2

�
X.

(34) For every partial function f1 from C to � holds (f1 f2)
�
X = (f1

�
X) (f2

�
X) and (f1 f2)

�
X = (f1

�
X) f2 and (f1 f2)

�
X = f1 (f2

�
X).

(35) (−f)
�
X = −f

�
X and ‖f‖

�
X = ‖f

�
X‖.

(36) (f1 − f2)
�
X = f1

�
X − f2

�
X and (f1 − f2)

�
X = f1

�
X − f2 and

(f1 − f2)
�
X = f1 − f2

�
X.

(37) (r f)
�
X = r (f

�
X).

(38) f1 is total and f2 is total if and only if f1 + f2 is total and also f1 is
total and f2 is total if and only if f1 − f2 is total.

(39) For every partial function f1 from C to � holds f1 is total and f2 is
total if and only if f1 f2 is total.

(40) f is total if and only if r f is total.

(41) f is total if and only if −f is total.

(42) f is total if and only if ‖f‖ is total.

(43) If f1 is total and f2 is total, then (f1 + f2)(c) = f1(c) + f2(c) and
(f1 − f2)(c) = f1(c) − f2(c).

(44) For every partial function f1 from C to � such that f1 is total and f2

is total holds (f1 f2)(c) = f1(c) · f2(c).

(45) If f is total, then (r f)(c) = r · f(c).

(46) If f is total, then (−f)(c) = −f(c) and ‖f‖(c) = ‖f(c)‖.

Let us consider C, V , f , Y . We say that f is bounded on Y if and only if:

(Def.7) there exists r such that for every c such that c ∈ Y ∩ dom f holds
‖f(c)‖ ≤ r.

Next we state a number of propositions:
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(47) f is bounded on Y if and only if there exists r such that for every c

such that c ∈ Y ∩ dom f holds ‖f(c)‖ ≤ r.

(48) If Y ⊆ X and f is bounded on X, then f is bounded on Y .

(49) If X ∩ dom f = ∅, then f is bounded on X.

(50) If 0 = r, then r f is bounded on Y .

(51) If f is bounded on Y , then r f is bounded on Y .

(52) If f is bounded on Y , then ‖f‖ is bounded on Y and −f is bounded on
Y .

(53) If f1 is bounded on X and f2 is bounded on Y , then f1 + f2 is bounded
on X ∩ Y .

(54) For every partial function f1 from C to � such that f1 is bounded on
X and f2 is bounded on Y holds f1 f2 is bounded on X ∩ Y .

(55) If f1 is bounded on X and f2 is bounded on Y , then f1 − f2 is bounded
on X ∩ Y .

(56) If f is bounded on X and f is bounded on Y , then f is bounded on
X ∪ Y .

(57) If f1 is a constant on X and f2 is a constant on Y , then f1 + f2 is a
constant on X ∩ Y and f1 − f2 is a constant on X ∩ Y .

(58) For every partial function f1 from C to � such that f1 is a constant on
X and f2 is a constant on Y holds f1 f2 is a constant on X ∩ Y .

(59) If f is a constant on Y , then p f is a constant on Y .

(60) If f is a constant on Y , then ‖f‖ is a constant on Y and −f is a constant
on Y .

(61) If f is a constant on Y , then f is bounded on Y .

(62) If f is a constant on Y , then for every r holds r f is bounded on Y and
−f is bounded on Y and ‖f‖ is bounded on Y .

(63) If f1 is bounded on X and f2 is a constant on Y , then f1+f2 is bounded
on X ∩ Y .

(64) If f1 is bounded on X and f2 is a constant on Y , then f1−f2 is bounded
on X ∩ Y and f2 − f1 is bounded on X ∩ Y .
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