Algebra of Vector Functions

Hiroshi Yamazaki Shinshu University Nagano Yasunari Shidama Shinshu University Nagano

Summary. We develop the algebra of partial vector functions, with domains being algebra of vector functions.

MML Identifier: VFUNCT_1.

The terminology and notation used in this paper have been introduced in the following papers: [10], [5], [2], [3], [1], [12], [9], [4], [6], [11], [8], and [7]. For simplicity we adopt the following rules: X, Y will denote sets, C will denote a non-empty set, c will denote an element of C, V will denote a real normed space, f, f_1, f_2, f_3 will denote partial functions from C to the carrier of V, and r, p will denote real numbers. We now define several new functors. Let us consider C, V, f_1, f_2 . The functor $f_1 + f_2$ yielding a partial function from C to the carrier of V is defined as follows:

(Def.1) $\operatorname{dom}(f_1+f_2) = \operatorname{dom} f_1 \cap \operatorname{dom} f_2$ and for every c such that $c \in \operatorname{dom}(f_1+f_2)$ holds $(f_1+f_2)(c) = f_1(c) + f_2(c)$.

The functor $f_1 - f_2$ yields a partial function from C to the carrier of V and is defined as follows:

(Def.2) $\operatorname{dom}(f_1 - f_2) = \operatorname{dom} f_1 \cap \operatorname{dom} f_2$ and for every c such that $c \in \operatorname{dom}(f_1 - f_2)$ holds $(f_1 - f_2)(c) = f_1(c) - f_2(c)$.

Let us consider C, and let us consider V, and let f_1 be a partial function from C to \mathbb{R} , and let us consider f_2 . The functor $f_1 f_2$ yielding a partial function from C to the carrier of V is defined by:

(Def.3) $\operatorname{dom}(f_1 f_2) = \operatorname{dom} f_1 \cap \operatorname{dom} f_2$ and for every c such that $c \in \operatorname{dom}(f_1 f_2)$ holds $(f_1 f_2)(c) = f_1(c) \cdot f_2(c)$.

Let us consider C, V, f, r. The functor r f yielding a partial function from C to the carrier of V is defined as follows:

(Def.4) $\operatorname{dom}(r f) = \operatorname{dom} f$ and for every c such that $c \in \operatorname{dom}(r f)$ holds $(r f)(c) = r \cdot f(c)$.

C 1992 Fondation Philippe le Hodey ISSN 0777-4028 Let us consider C, V, f. The functor ||f|| yields a partial function from C to \mathbb{R} and is defined by:

(Def.5) dom||f|| = dom f and for every c such that $c \in \text{dom} ||f||$ holds ||f||(c) = ||f(c)||.

The functor -f yielding a partial function from C to the carrier of V is defined as follows:

(Def.6) dom(-f) = dom f and for every c such that $c \in dom(-f)$ holds (-f)(c) = -f(c).

Next we state a number of propositions:

- (1) $f = f_1 + f_2$ if and only if dom $f = \text{dom } f_1 \cap \text{dom } f_2$ and for every c such that $c \in \text{dom } f$ holds $f(c) = f_1(c) + f_2(c)$.
- (2) $f = f_1 f_2$ if and only if dom $f = \text{dom } f_1 \cap \text{dom } f_2$ and for every c such that $c \in \text{dom } f$ holds $f(c) = f_1(c) f_2(c)$.
- (3) For every partial function f_1 from C to \mathbb{R} holds $f = f_1 f_2$ if and only if dom $f = \text{dom } f_1 \cap \text{dom } f_2$ and for every c such that $c \in \text{dom } f$ holds $f(c) = f_1(c) \cdot f_2(c)$.
- (4) $f = r f_1$ if and only if dom $f = \text{dom } f_1$ and for every c such that $c \in \text{dom } f$ holds $f(c) = r \cdot f_1(c)$.
- (5) For every partial function f from C to \mathbb{R} holds $f = ||f_1||$ if and only if dom $f = \text{dom } f_1$ and for every c such that $c \in \text{dom } f$ holds $f(c) = ||f_1(c)||$.
- (6) $f = -f_1$ if and only if dom $f = \text{dom } f_1$ and for every c such that $c \in \text{dom } f$ holds $f(c) = -f_1(c)$.
- (7) For every partial function f_1 from C to \mathbb{R} holds dom $(f_1 f_2) \setminus (f_1 f_2)^{-1}$ $\{0_V\} = (\text{dom } f_1 \setminus f_1^{-1} \{0\}) \cap (\text{dom } f_2 \setminus f_2^{-1} \{0_V\}).$
- (8) $||f||^{-1} \{0\} = f^{-1} \{0_V\} \text{ and } (-f)^{-1} \{0_V\} = f^{-1} \{0_V\}.$
- (9) If $r \neq 0$, then $(r f)^{-1} \{0_V\} = f^{-1} \{0_V\}$.
- $(10) \quad f_1 + f_2 = f_2 + f_1.$
- (11) $(f_1 + f_2) + f_3 = f_1 + (f_2 + f_3).$
- (12) For all partial functions f_1 , f_2 from C to \mathbb{R} and for every partial function f_3 from C to the carrier of V holds $(f_1 f_2) f_3 = f_1 (f_2 f_3)$.
- (13) For all partial functions f_1 , f_2 from C to \mathbb{R} holds $(f_1 + f_2) f_3 = f_1 f_3 + f_2 f_3$.
- (14) For every partial function f_3 from C to \mathbb{R} holds $f_3(f_1 + f_2) = f_3 f_1 + f_3 f_2$.
- (15) For every partial function f_1 from C to \mathbb{R} holds $r(f_1 f_2) = (r f_1) f_2$.
- (16) For every partial function f_1 from C to \mathbb{R} holds $r(f_1 f_2) = f_1(r f_2)$.
- (17) For all partial functions f_1 , f_2 from C to \mathbb{R} holds $(f_1 f_2) f_3 = f_1 f_3 f_2 f_3$.
- (18) For every partial function f_3 from C to \mathbb{R} holds $f_3 f_1 f_3 f_2 = f_3 (f_1 f_2)$.
- (19) $r(f_1 + f_2) = rf_1 + rf_2.$

(Def.7) there exists r such that for every c such that $c \in Y \cap \text{dom } f$ holds $\|f(c)\| \leq r$.

Next we state a number of propositions:

- (47) f is bounded on Y if and only if there exists r such that for every c such that $c \in Y \cap \text{dom } f$ holds $||f(c)|| \leq r$.
- (48) If $Y \subseteq X$ and f is bounded on X, then f is bounded on Y.
- (49) If $X \cap \text{dom } f = \emptyset$, then f is bounded on X.
- (50) If 0 = r, then r f is bounded on Y.
- (51) If f is bounded on Y, then r f is bounded on Y.
- (52) If f is bounded on Y, then ||f|| is bounded on Y and -f is bounded on Y.
- (53) If f_1 is bounded on X and f_2 is bounded on Y, then $f_1 + f_2$ is bounded on $X \cap Y$.
- (54) For every partial function f_1 from C to \mathbb{R} such that f_1 is bounded on X and f_2 is bounded on Y holds $f_1 f_2$ is bounded on $X \cap Y$.
- (55) If f_1 is bounded on X and f_2 is bounded on Y, then $f_1 f_2$ is bounded on $X \cap Y$.
- (56) If f is bounded on X and f is bounded on Y, then f is bounded on $X \cup Y$.
- (57) If f_1 is a constant on X and f_2 is a constant on Y, then $f_1 + f_2$ is a constant on $X \cap Y$ and $f_1 f_2$ is a constant on $X \cap Y$.
- (58) For every partial function f_1 from C to \mathbb{R} such that f_1 is a constant on X and f_2 is a constant on Y holds $f_1 f_2$ is a constant on $X \cap Y$.
- (59) If f is a constant on Y, then pf is a constant on Y.
- (60) If f is a constant on Y, then ||f|| is a constant on Y and -f is a constant on Y.
- (61) If f is a constant on Y, then f is bounded on Y.
- (62) If f is a constant on Y, then for every r holds r f is bounded on Y and -f is bounded on Y and ||f|| is bounded on Y.
- (63) If f_1 is bounded on X and f_2 is a constant on Y, then $f_1 + f_2$ is bounded on $X \cap Y$.
- (64) If f_1 is bounded on X and f_2 is a constant on Y, then $f_1 f_2$ is bounded on $X \cap Y$ and $f_2 - f_1$ is bounded on $X \cap Y$.

References

- Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245–254, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [6] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697–702, 1990.

- [7] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. *Formalized Mathematics*, 1(4):703–709, 1990.
- [8] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
- Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [11] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291– 296, 1990.
- [12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received October 27, 1992