On a Duality Between Weakly Separated Subspaces of Topological Spaces

Zbigniew Karno Warsaw University Białystok

Summary. Let X be a topological space and let X_1 and X_2 be subspaces of X with the carriers A_1 and A_2 , respectively. Recall that X_1 and X_2 are weakly separated if $A_1 \setminus A_2$ and $A_2 \setminus A_1$ are separated (see [2] and also [1] for applications). Our purpose is to list a number of properties of such subspaces, supplementary to those given in [2]. Note that in the Mizar formalism the carrier of any topological space (hence the carrier of any its subspace) is always non-empty, therefore for convenience we list beforehand analogous properties of weakly separated subsets without any additional conditions.

To present the main results we first formulate a useful definition. We say that X_1 and X_2 constitute a decomposition of X if A_1 and A_2 are disjoint and the union of A_1 and A_2 covers the carrier of X (comp. [3]). We are ready now to present the following duality property between pairs of weakly separated subspaces : If each pair of subspaces X_1 , Y_1 and X_2 , Y_2 of X constitutes a decomposition of X, then X_1 and X_2 are weakly separated iff Y_1 and Y_2 are weakly separated. From this theorem we get immediately that under the same hypothesis, X_1 and X_2 are separated iff X_1 misses X_2 and Y_1 and Y_2 are weakly separated. Moreover, we show the following enlargement theorem : If X_i and Y_i are subspaces of X such that Y_i is a subspace of X_i and $Y_1 \cup Y_2 = X_1 \cup X_2$ and if Y_1 and Y_2 are weakly separated, then X_1 and X_2 are weakly separated. We show also the following dual extenuation theorem : If X_i and Y_i are subspaces of X such that Y_i is a subspace of X_i and $Y_1 \cap Y_2 = X_1 \cap X_2$ and if X_1 and X_2 are weakly separated, then Y_1 and Y_2 are weakly separated. At the end we give a few properties of weakly separated subspaces in subspaces.

MML Identifier: TSEP_2.

The papers [6], [7], [4], [8], [5], and [2] provide the notation and terminology for this paper.

177

C 1992 Fondation Philippe le Hodey ISSN 0777-4028

1. CERTAIN SET–DECOMPOSITIONS OF A TOPOLOGICAL SPACE

In the sequel X denotes a topological space. Next we state the proposition

(1) For all subsets A, B of X holds $A^{c} \setminus B^{c} = B \setminus A$.

Let X be a topological space, and let A_1 , A_2 be subsets of X. We say that A_1 and A_2 constitute a decomposition if and only if:

(Def.1) $A_1 \cap A_2 = \emptyset$ and $A_1 \cup A_2 =$ the carrier of X.

In the sequel A, A_1 , A_2 , B_1 , B_2 are subsets of X. We now state a number of propositions:

- (2) A_1 and A_2 constitute a decomposition if and only if $A_1 \cap A_2 = \emptyset_X$ and $A_1 \cup A_2 = \Omega_X$.
- (3) If A_1 and A_2 constitute a decomposition, then A_2 and A_1 constitute a decomposition.
- (4) If A_1 and A_2 constitute a decomposition, then $A_1 = A_2^c$ and $A_2 = A_1^c$.
- (5) If $A_1 = A_2^c$ or $A_2 = A_1^c$, then A_1 and A_2 constitute a decomposition.
- (6) A and A^{c} constitute a decomposition and A^{c} and A constitute a decomposition.
- (7) \emptyset_X and Ω_X constitute a decomposition and Ω_X and \emptyset_X constitute a decomposition.
- (8) If A is non-empty, then A and A do not constitute a decomposition.
- (9) If A_1 and A constitute a decomposition and A and A_2 constitute a decomposition, then $A_1 = A_2$.
- (10) If A_1 and A_2 constitute a decomposition, then $\overline{A_1}$ and Int A_2 constitute a decomposition and Int A_1 and $\overline{A_2}$ constitute a decomposition.
- (11) \overline{A} and $\operatorname{Int}(A^{c})$ constitute a decomposition and $\overline{A^{c}}$ and $\operatorname{Int} A$ constitute a decomposition and $\operatorname{Int} A$ and $\overline{A^{c}}$ constitute a decomposition and $\operatorname{Int}(A^{c})$ and \overline{A} constitute a decomposition.
- (12) If A_1 and A_2 constitute a decomposition, then A_1 is open if and only if A_2 is closed.
- (13) If A_1 and A_2 constitute a decomposition, then A_1 is closed if and only if A_2 is open.
- (14) If A_1 and A_2 constitute a decomposition and B_1 and B_2 constitute a decomposition, then $A_1 \cap B_1$ and $A_2 \cup B_2$ constitute a decomposition.
- (15) If A_1 and A_2 constitute a decomposition and B_1 and B_2 constitute a decomposition, then $A_1 \cup B_1$ and $A_2 \cap B_2$ constitute a decomposition.

2. DUALITY BETWEEN PAIRS OF WEAKLY SEPARATED SUBSETS

In the sequel X will denote a topological space and A_1 , A_2 will denote subsets of X. Next we state a number of propositions:

- (16) For all subsets A_1 , A_2 , C_1 , C_2 of X such that A_1 and C_1 constitute a decomposition and A_2 and C_2 constitute a decomposition holds A_1 and A_2 are weakly separated if and only if C_1 and C_2 are weakly separated.
- (17) A_1 and A_2 are weakly separated if and only if A_1^{c} and A_2^{c} are weakly separated.
- (18) For all subsets A_1 , A_2 , C_1 , C_2 of X such that A_1 and C_1 constitute a decomposition and A_2 and C_2 constitute a decomposition holds if A_1 and A_2 are separated, then C_1 and C_2 are weakly separated.
- (19) For all subsets A_1 , A_2 , C_1 , C_2 of X such that A_1 and C_1 constitute a decomposition and A_2 and C_2 constitute a decomposition holds if $A_1 \cap A_2 = \emptyset$ and C_1 and C_2 are weakly separated, then A_1 and A_2 are separated.
- (20) For all subsets A_1 , A_2 , C_1 , C_2 of X such that A_1 and C_1 constitute a decomposition and A_2 and C_2 constitute a decomposition holds if $C_1 \cup C_2$ = the carrier of X and C_1 and C_2 are weakly separated, then A_1 and A_2 are separated.
- (21) If A_1 and A_2 constitute a decomposition, then A_1 and A_2 are weakly separated if and only if A_1 and A_2 are separated.
- (22) A_1 and A_2 are weakly separated if and only if $(A_1 \cup A_2) \setminus A_1$ and $(A_1 \cup A_2) \setminus A_2$ are separated.
- (23) For all subsets A_1 , A_2 , C_1 , C_2 of X such that $C_1 \subseteq A_1$ and $C_2 \subseteq A_2$ and $C_1 \cup C_2 = A_1 \cup A_2$ holds if C_1 and C_2 are weakly separated, then A_1 and A_2 are weakly separated.
- (24) A_1 and A_2 are weakly separated if and only if $A_1 \setminus A_1 \cap A_2$ and $A_2 \setminus A_1 \cap A_2$ are separated.
- (25) For all subsets A_1 , A_2 , C_1 , C_2 of X such that $C_1 \subseteq A_1$ and $C_2 \subseteq A_2$ and $C_1 \cap C_2 = A_1 \cap A_2$ holds if A_1 and A_2 are weakly separated, then C_1 and C_2 are weakly separated.

In the sequel X_0 will denote a subspace of X and B_1 , B_2 will denote subsets of X_0 . One can prove the following propositions:

- (26) If $B_1 = A_1$ and $B_2 = A_2$, then A_1 and A_2 are separated if and only if B_1 and B_2 are separated.
- (27) If $B_1 = (\text{the carrier of } X_0) \cap A_1 \text{ and } B_2 = (\text{the carrier of } X_0) \cap A_2, \text{ then}$ if A_1 and A_2 are separated, then B_1 and B_2 are separated.
- (28) If $B_1 = A_1$ and $B_2 = A_2$, then A_1 and A_2 are weakly separated if and only if B_1 and B_2 are weakly separated.
- (29) If $B_1 = (\text{the carrier of } X_0) \cap A_1 \text{ and } B_2 = (\text{the carrier of } X_0) \cap A_2, \text{ then}$ if A_1 and A_2 are weakly separated, then B_1 and B_2 are weakly separated.

3. CERTAIN SUBSPACE–DECOMPOSITIONS OF A TOPOLOGICAL SPACE

Let X be a topological space, and let X_1 , X_2 be subspaces of X. We say that X_1 and X_2 constitute a decomposition if and only if:

(Def.2) for all subsets A_1 , A_2 of X such that A_1 = the carrier of X_1 and A_2 = the carrier of X_2 holds A_1 and A_2 constitute a decomposition.

In the sequel X_0 , X_1 , X_2 , Y_1 , Y_2 denote subspaces of X. The following propositions are true:

- (30) X_1 and X_2 constitute a decomposition if and only if X_1 misses X_2 and the topological structure of $X = X_1 \cup X_2$.
- (31) If X_1 and X_2 constitute a decomposition, then X_2 and X_1 constitute a decomposition.
- (32) X_0 and X_0 do not constitute a decomposition.
- (33) If X_1 and X_0 constitute a decomposition and X_0 and X_2 constitute a decomposition, then the topological structure of X_1 = the topological structure of X_2 .
- (34) For all subspaces X_1 , X_2 , Y_1 , Y_2 of X such that X_1 and Y_1 constitute a decomposition and X_2 and Y_2 constitute a decomposition holds $Y_1 \cup Y_2 =$ the topological structure of X if and only if X_1 misses X_2 .
- (35) If X_1 and X_2 constitute a decomposition, then X_1 is open if and only if X_2 is closed.
- (36) If X_1 and X_2 constitute a decomposition, then X_1 is closed if and only if X_2 is open.
- (37) If X_1 meets Y_1 and X_1 and X_2 constitute a decomposition and Y_1 and Y_2 constitute a decomposition, then $X_1 \cap Y_1$ and $X_2 \cup Y_2$ constitute a decomposition.
- (38) If X_2 meets Y_2 and X_1 and X_2 constitute a decomposition and Y_1 and Y_2 constitute a decomposition, then $X_1 \cup Y_1$ and $X_2 \cap Y_2$ constitute a decomposition.

4. DUALITY BETWEEN PAIRS OF WEAKLY SEPARATED SUBSPACES

In the sequel X is a topological space. We now state several propositions:

- (39) For all subspaces X_1 , X_2 , Y_1 , Y_2 of X such that X_1 and Y_1 constitute a decomposition and X_2 and Y_2 constitute a decomposition holds X_1 and X_2 are weakly separated if and only if Y_1 and Y_2 are weakly separated.
- (40) For all subspaces X_1 , X_2 , Y_1 , Y_2 of X such that X_1 and Y_1 constitute a decomposition and X_2 and Y_2 constitute a decomposition holds if X_1 and X_2 are separated, then Y_1 and Y_2 are weakly separated.
- (41) For all subspaces X_1 , X_2 , Y_1 , Y_2 of X such that X_1 and Y_1 constitute a decomposition and X_2 and Y_2 constitute a decomposition holds if X_1

misses X_2 and Y_1 and Y_2 are weakly separated, then X_1 and X_2 are separated.

- (42) For all subspaces X_1 , X_2 , Y_1 , Y_2 of X such that X_1 and Y_1 constitute a decomposition and X_2 and Y_2 constitute a decomposition holds if $Y_1 \cup Y_2 =$ the topological structure of X and Y_1 and Y_2 are weakly separated, then X_1 and X_2 are separated.
- (43) For all subspaces X_1 , X_2 of X such that X_1 and X_2 constitute a decomposition holds X_1 and X_2 are weakly separated if and only if X_1 and X_2 are separated.
- (44) For all subspaces X_1 , X_2 , Y_1 , Y_2 of X such that Y_1 is a subspace of X_1 and Y_2 is a subspace of X_2 and $Y_1 \cup Y_2 = X_1 \cup X_2$ holds if Y_1 and Y_2 are weakly separated, then X_1 and X_2 are weakly separated.
- (45) For all subspaces X_1 , X_2 , Y_1 , Y_2 of X such that Y_1 is a subspace of X_1 and Y_2 is a subspace of X_2 and Y_1 meets Y_2 and $Y_1 \cap Y_2 = X_1 \cap X_2$ holds if X_1 and X_2 are weakly separated, then Y_1 and Y_2 are weakly separated.

In the sequel X_0 will denote a subspace of X. Next we state four propositions:

- (46) For all subspaces X_1 , X_2 of X and for all subspaces Y_1 , Y_2 of X_0 such that the carrier of X_1 = the carrier of Y_1 and the carrier of X_2 = the carrier of Y_2 holds X_1 and X_2 are separated if and only if Y_1 and Y_2 are separated.
- (47) For all subspaces X_1 , X_2 of X such that X_1 meets X_0 and X_2 meets X_0 and for all subspaces Y_1 , Y_2 of X_0 such that $Y_1 = X_1 \cap X_0$ and $Y_2 = X_2 \cap X_0$ holds if X_1 and X_2 are separated, then Y_1 and Y_2 are separated.
- (48) For all subspaces X_1 , X_2 of X and for all subspaces Y_1 , Y_2 of X_0 such that the carrier of X_1 = the carrier of Y_1 and the carrier of X_2 = the carrier of Y_2 holds X_1 and X_2 are weakly separated if and only if Y_1 and Y_2 are weakly separated.
- (49) For all subspaces X_1 , X_2 of X such that X_1 meets X_0 and X_2 meets X_0 and for all subspaces Y_1 , Y_2 of X_0 such that $Y_1 = X_1 \cap X_0$ and $Y_2 = X_2 \cap X_0$ holds if X_1 and X_2 are weakly separated, then Y_1 and Y_2 are weakly separated.

References

- Zbigniew Karno. Continuity of mappings over the union of subspaces. Formalized Mathematics, 3(1):1–16, 1992.
- Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665–674, 1991.
- [3] Kazimierz Kuratowski. *Topology*. Volume I, PWN Polish Scientific Publishers, Academic Press, Warsaw, New York and London, 1966.
- Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
- [5] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535–545, 1991.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

- Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(1):67–71, 1990. Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. *Formalized Mathematics*, 1(1):231–237, 1990. $\begin{bmatrix} 7 \\ [8] \end{bmatrix}$

Received November 9, 1992