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Summary. Let X be a topological space and let A be a subset
of X. Recall that A is nowhere dense in X if its closure is a boundary
subset of X, i.e., if Int A = ∅ (see [2]). We introduce here the concept of
everywhere dense subsets in X, which is dual to the above one. Namely,
A is said to be everywhere dense in X if its interior is a dense subset of
X, i.e., if Int A = the carrier of X.

Our purpose is to list a number of properties of such sets (comp.
[7]). As a sample we formulate their two dual characterizations. The first
one characterizes thin sets in X : A is nowhere dense iff for every open
nonempty subset G of X there is an open nonempty subset of X contained
in G and disjoint from A. The corresponding second one characterizes
thick sets in X : A is everywhere dense iff for every closed subset F of
X distinct from the carrier of X there is a closed subset of X distinct
from the carrier of X, which contains F and together with A covers the
carrier of X. We also give some connections between both these concepts.
Of course, A is everywhere (nowhere) dense in X iff its complement is
nowhere (everywhere) dense. Moreover, A is nowhere dense iff there are
two subsets of X, C boundary closed and B everywhere dense, such that
A = C ∩ B and C ∪ B covers the carrier of X. Dually, A is everywhere
dense iff there are two disjoint subsets of X, C open dense and B nowhere
dense, such that A = C ∪ B.

Note that some relationships between everywhere (nowhere) dense
sets in X and everywhere (nowhere) dense sets in subspaces of X are also
indicated.

MML Identifier: TOPS 3.

The notation and terminology used here are introduced in the following papers:
[5], [6], [3], [7], [4], and [1].
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1. Selected Properties of Subsets of a Topological Space

In the sequel X will denote a topological space and A, B will denote subsets of
X. We now state several propositions:

(1) A = ∅X if and only if Ac = ΩX and also A = ∅ if and only if Ac = the
carrier of X.

(2) A = ΩX if and only if Ac = ∅X and also A = the carrier of X if and
only if Ac = ∅.

(3) IntA ∩ B ⊆ A ∩ B.

(4) Int(A ∪ B) ⊆ A ∪ IntB.

(5) If A is closed, then Int(A ∪ B) ⊆ A ∪ IntB.

(6) If A is closed, then Int(A ∪ B) = Int(A ∪ Int B).

(7) If A ∩ IntA = ∅, then IntA = ∅.

(8) If A ∪ IntA = the carrier of X, then Int A = the carrier of X.

2. Special Subsets of a Topological Space

Let X be a topological space. Let us observe that a subset of X is boundary if:

(Def.1) Int it = ∅.

We now state several propositions:

(9) ∅X is boundary.

(10) If A is boundary, then A 6= the carrier of X.

(11) If B is boundary and A ⊆ B, then A is boundary.

(12) A is boundary if and only if for every subset C of X such that Ac ⊆ C

and C is closed holds C = the carrier of X.

(13) A is boundary if and only if for every subset G of X such that G 6= ∅
and G is open holds Ac ∩ G 6= ∅.

(14) A is boundary if and only if for every subset F of X such that F is
closed holds IntF = Int(F ∪ A).

(15) If A is boundary or B is boundary, then A ∩ B is boundary.

Let X be a topological space. Let us observe that a subset of X is dense if:

(Def.2) it = the carrier of X.

Next we state several propositions:

(16) ΩX is dense.

(17) If A is dense, then A 6= ∅.

(18) A is dense if and only if Ac is boundary.

(19) A is dense if and only if for every subset C of X such that A ⊆ C and
C is closed holds C = the carrier of X.
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(20) A is dense if and only if for every subset G of X such that G is open
holds G = G ∩ A.

(21) If A is dense or B is dense, then A ∪ B is dense.

Let X be a topological space. Let us observe that a subset of X is nowhere
dense if:

(Def.3) Int it = ∅.

The following propositions are true:

(22) ∅X is nowhere dense.

(23) If A is nowhere dense, then A 6= the carrier of X.

(24) If A is nowhere dense, then A is nowhere dense.

(25) If A is nowhere dense, then A is not dense.

(26) If B is nowhere dense and A ⊆ B, then A is nowhere dense.

(27) A is nowhere dense if and only if there exists a subset C of X such that
A ⊆ C and C is closed and C is boundary.

(28) A is nowhere dense if and only if for every subset G of X such that
G 6= ∅ and G is open there exists a subset H of X such that H ⊆ G and
H 6= ∅ and H is open and A ∩ H = ∅.

(29) If A is nowhere dense or B is nowhere dense, then A ∩ B is nowhere
dense.

(30) If A is nowhere dense and B is boundary, then A ∪ B is boundary.

Let X be a topological space. A subset of X is everywhere dense if:

(Def.4) Int it = ΩX .

Let X be a topological space. Let us observe that a subset of X is everywhere
dense if:

(Def.5) Int it = the carrier of X.

One can prove the following propositions:

(31) ΩX is everywhere dense.

(32) If A is everywhere dense, then IntA is everywhere dense.

(33) If A is everywhere dense, then A is dense.

(34) If A is everywhere dense, then A 6= ∅.

(35) A is everywhere dense if and only if Int A is dense.

(36) If A is open and A is dense, then A is everywhere dense.

(37) If A is everywhere dense, then A is not boundary.

(38) If A is everywhere dense and A ⊆ B, then B is everywhere dense.

(39) A is everywhere dense if and only if Ac is nowhere dense.

(40) A is nowhere dense if and only if Ac is everywhere dense.

(41) A is everywhere dense if and only if there exists a subset C of X such
that C ⊆ A and C is open and C is dense.
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(42) A is everywhere dense if and only if for every subset F of X such that
F 6= the carrier of X and F is closed there exists a subset H of X such
that F ⊆ H and H 6= the carrier of X and H is closed and A ∪ H = the
carrier of X.

(43) If A is everywhere dense or B is everywhere dense, then A ∪ B is ev-
erywhere dense.

(44) If A is everywhere dense and B is everywhere dense, then A ∩ B is
everywhere dense.

(45) If A is everywhere dense and B is dense, then A ∩ B is dense.

(46) If A is dense and B is nowhere dense, then A \ B is dense.

(47) If A is everywhere dense and B is boundary, then A \ B is dense.

(48) If A is everywhere dense and B is nowhere dense, then A \ B is every-
where dense.

In the sequel D denotes a subset of X. We now state four propositions:

(49) If D is everywhere dense, then there exist subsets C, B of X such that
C is open and C is dense and B is nowhere dense and C ∪ B = D and
C ∩ B = ∅.

(50) If D is everywhere dense, then there exist subsets C, B of X such
that C is open and C is dense and B is closed and B is boundary and
C ∪ D ∩ B = D and C ∩ B = ∅ and C ∪ B = the carrier of X.

(51) If D is nowhere dense, then there exist subsets C, B of X such that C

is closed and C is boundary and B is everywhere dense and C ∩ B = D

and C ∪ B = the carrier of X.

(52) If D is nowhere dense, then there exist subsets C, B of X such that C is
closed and C is boundary and B is open and B is dense and C∩(D∪B) =
D and C ∩ B = ∅ and C ∪ B = the carrier of X.

3. Properties of Subsets in Subspaces

In the sequel Y0 will denote a subspace of X. One can prove the following
propositions:

(53) For every subset A of X and for every subset B of Y0 such that B ⊆ A

holds B ⊆ A.

(54) For all subsets C, A of X and for every subset B of Y0 such that C is
closed and C ⊆ the carrier of Y0 and A ⊆ C and A = B holds A = B.

(55) For every closed subspace Y0 of X and for every subset A of X and for
every subset B of Y0 such that A = B holds A = B.

(56) For every subset A of X and for every subset B of Y0 such that A ⊆ B

holds Int A ⊆ Int B.

(57) For all subsets C, A of X and for every subset B of Y0 such that C is
open and C ⊆ the carrier of Y0 and A ⊆ C and A = B holds Int A = Int B.
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(58) For every open subspace Y0 of X and for every subset A of X and for
every subset B of Y0 such that A = B holds IntA = Int B.

In the sequel X0 denotes a subspace of X. The following propositions are
true:

(59) For every subset A of X and for every subset B of X0 such that A ⊆ B

holds if A is dense, then B is dense.

(60) For all subsets C, A of X and for every subset B of X0 such that
C ⊆ the carrier of X0 and A ⊆ C and A = B holds C is dense and B is
dense if and only if A is dense.

(61) For every subset A of X and for every subset B of X0 such that A ⊆ B

holds if A is everywhere dense, then B is everywhere dense.

(62) For all subsets C, A of X and for every subset B of X0 such that C is
open and C ⊆ the carrier of X0 and A ⊆ C and A = B holds C is dense
and B is everywhere dense if and only if A is everywhere dense.

(63) For every open subspace X0 of X and for all subsets A, C of X and for
every subset B of X0 such that C = the carrier of X0 and A = B holds C

is dense and B is everywhere dense if and only if A is everywhere dense.

(64) For all subsets C, A of X and for every subset B of X0 such that
C ⊆ the carrier of X0 and A ⊆ C and A = B holds C is everywhere dense
and B is everywhere dense if and only if A is everywhere dense.

(65) For every subset A of X and for every subset B of X0 such that A ⊆ B

holds if B is boundary, then A is boundary.

(66) For all subsets C, A of X and for every subset B of X0 such that C

is open and C ⊆ the carrier of X0 and A ⊆ C and A = B holds if A is
boundary, then B is boundary.

(67) For every open subspace X0 of X and for every subset A of X and for
every subset B of X0 such that A = B holds A is boundary if and only if
B is boundary.

(68) For every subset A of X and for every subset B of X0 such that A ⊆ B

holds if B is nowhere dense, then A is nowhere dense.

(69) For all subsets C, A of X and for every subset B of X0 such that C

is open and C ⊆ the carrier of X0 and A ⊆ C and A = B holds if A is
nowhere dense, then B is nowhere dense.

(70) For every open subspace X0 of X and for every subset A of X and for
every subset B of X0 such that A = B holds A is nowhere dense if and
only if B is nowhere dense.

4. Subsets in Topological Spaces with the same Topological

Structures

In the sequel X1, X2 will be topological spaces. Next we state several proposi-
tions:
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(71) If the carrier of X1 = the carrier of X2, then for every subset C1 of X1

and for every subset C2 of X2 holds C1 = C2 if and only if C1
c = C2

c.

(72) If the carrier of X1 = the carrier of X2 and for every subset C1 of X1

and for every subset C2 of X2 such that C1 = C2 holds C1 is open if and
only if C2 is open, then the topological structure of X1 = the topological
structure of X2.

(73) If the carrier of X1 = the carrier of X2 and for every subset C1 of X1

and for every subset C2 of X2 such that C1 = C2 holds C1 is closed if and
only if C2 is closed, then the topological structure of X1 = the topological
structure of X2.

(74) If the carrier of X1 = the carrier of X2 and for every subset C1 of X1

and for every subset C2 of X2 such that C1 = C2 holds IntC1 = Int C2,
then the topological structure of X1 = the topological structure of X2.

(75) If the carrier of X1 = the carrier of X2 and for every subset C1 of X1

and for every subset C2 of X2 such that C1 = C2 holds C1 = C2, then the
topological structure of X1 = the topological structure of X2.

In the sequel D1 is a subset of X1 and D2 is a subset of X2. One can prove
the following propositions:

(76) If D1 = D2 and the topological structure of X1 = the topological struc-
ture of X2, then if D1 is open, then D2 is open.

(77) If D1 = D2 and the topological structure of X1 = the topological struc-
ture of X2, then IntD1 = IntD2.

(78) If D1 ⊆ D2 and the topological structure of X1 = the topological struc-
ture of X2, then IntD1 ⊆ IntD2.

(79) If D1 = D2 and the topological structure of X1 = the topological struc-
ture of X2, then if D1 is closed, then D2 is closed.

(80) If D1 = D2 and the topological structure of X1 = the topological struc-
ture of X2, then D1 = D2.

(81) If D1 ⊆ D2 and the topological structure of X1 = the topological struc-
ture of X2, then D1 ⊆ D2.

(82) If D2 ⊆ D1 and the topological structure of X1 = the topological struc-
ture of X2, then if D1 is boundary, then D2 is boundary.

(83) If D1 ⊆ D2 and the topological structure of X1 = the topological struc-
ture of X2, then if D1 is dense, then D2 is dense.

(84) If D2 ⊆ D1 and the topological structure of X1 = the topological struc-
ture of X2, then if D1 is nowhere dense, then D2 is nowhere dense.

(85) If D1 ⊆ D2 and the topological structure of X1 = the topological struc-
ture of X2, then if D1 is everywhere dense, then D2 is everywhere dense.
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