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Université Catholique de Louvain

Subspaces of Real Linear Space Generated

by One, Two, or Three Vectors

and Their Cosets

Wojciech A. Trybulec

Warsaw University

MML Identifier: RLVECT 4.

The articles [7], [2], [1], [3], [4], [11], [10], [5], [6], [9], and [8] provide the notation
and terminology for this paper. For simplicity we adopt the following rules: x

is arbitrary, a, b, c denote real numbers, V denotes a real linear space, u, v, v1,
v2, v3, w, w1, w2, w3 denote vectors of V , and W , W1, W2 denote subspaces of
V . In this article we present several logical schemes. The scheme LambdaSep3

deals with a non-empty set A, a non-empty set B, an element C of A, an element
D of A, an element E of A, an element F of B, an element G of B, an element
H of B, and a unary functor F yielding an element of B and states that:

there exists a function f from A into B such that f(C) = F and f(D) = G
and f(E) = H and for every element C of A such that C 6= C and C 6= D and
C 6= E holds f(C) = F(C)

provided the parameters have the following properties:

• C 6= D,
• C 6= E ,

• D 6= E .

The scheme LinCEx1 deals with a real linear space A, a vector B of A, and
a real number C and states that:

there exists a linear combination l of {B} such that l(B) = C

for all values of the parameters.

The scheme LinCEx2 deals with a real linear space A, a vector B of A, a
vector C of A, a real number D, and a real number E and states that:

there exists a linear combination l of {B, C} such that l(B) = D and l(C) = E

provided the following condition is satisfied:

• B 6= C.
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The scheme LinCEx3 deals with a real linear space A, a vector B of A, a
vector C of A, a vector D of A, a real number E , a real number F , and a real
number G and states that:

there exists a linear combination l of {B, C,D} such that l(B) = E and
l(C) = F and l(D) = G
provided the parameters meet the following conditions:

• B 6= C,
• B 6= D,
• C 6= D.
We now state a number of propositions:

(1) (v + w) − v = w and (w + v) − v = w and (v − v) + w = w and
(w−v)+v = w and v+(w−v) = w and w+(v−v) = w and v−(v−w) = w.

(2) (v + u) − w = (v − w) + u.

(3) If v1 + w = v2 + w, then v1 = v2.

(4) If v1 − w = v2 − w, then v1 = v2.

(5) v = v1 + v2 if and only if v2 = v − v1.

(6) −a · v = (−a) · v.

(7) If W1 is a subspace of W2, then v + W1 ⊆ v + W2.

(8) If u ∈ v + W , then v + W = u + W .

(9) For every linear combination l of {u, v,w} such that u 6= v and u 6= w

and v 6= w holds
∑

l = l(u) · u + l(v) · v + l(w) · w.

(10) u 6= v and u 6= w and v 6= w and {u, v,w} is linearly independent if and
only if for all a, b, c such that a · u + b · v + c · w = 0V holds a = 0 and
b = 0 and c = 0.

(11) x ∈ Lin({v}) if and only if there exists a such that x = a · v.

(12) v ∈ Lin({v}).

(13) x ∈ v + Lin({w}) if and only if there exists a such that x = v + a · w.

(14) x ∈ Lin({w1, w2}) if and only if there exist a, b such that x = a·w1+b·w2.

(15) w1 ∈ Lin({w1, w2}) and w2 ∈ Lin({w1, w2}).

(16) x ∈ v + Lin({w1, w2}) if and only if there exist a, b such that x =
v + a · w1 + b · w2.

(17) x ∈ Lin({v1, v2, v3}) if and only if there exist a, b, c such that x =
a · v1 + b · v2 + c · v3.

(18) w1 ∈ Lin({w1, w2, w3}) and w2 ∈ Lin({w1, w2, w3}) and
w3 ∈ Lin({w1, w2, w3}).

(19) x ∈ v + Lin({w1, w2, w3}) if and only if there exist a, b, c such that
x = v + a · w1 + b · w2 + c · w3.

(20) If {u, v} is linearly independent and u 6= v, then {u, v − u} is linearly
independent.

(21) If {u, v} is linearly independent and u 6= v, then {u, v + u} is linearly
independent.
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(22) If {u, v} is linearly independent and u 6= v and a 6= 0, then {u, a · v} is
linearly independent.

(23) If {u, v} is linearly independent and u 6= v, then {u,−v} is linearly
independent.

(24) If a 6= b, then {a · v, b · v} is linearly dependent.

(25) If a 6= 1, then {v, a · v} is linearly dependent.

(26) If {u,w, v} is linearly independent and u 6= v and u 6= w and v 6= w,
then {u,w, v − u} is linearly independent.

(27) If {u,w, v} is linearly independent and u 6= v and u 6= w and v 6= w,
then {u,w − u, v − u} is linearly independent.

(28) If {u,w, v} is linearly independent and u 6= v and u 6= w and v 6= w,
then {u,w, v + u} is linearly independent.

(29) If {u,w, v} is linearly independent and u 6= v and u 6= w and v 6= w,
then {u,w + u, v + u} is linearly independent.

(30) If {u,w, v} is linearly independent and u 6= v and u 6= w and v 6= w and
a 6= 0, then {u,w, a · v} is linearly independent.

(31) If {u,w, v} is linearly independent and u 6= v and u 6= w and v 6= w and
a 6= 0 and b 6= 0, then {u, a · w, b · v} is linearly independent.

The following propositions are true:

(32) If {u,w, v} is linearly independent and u 6= v and u 6= w and v 6= w,
then {u,w,−v} is linearly independent.

(33) If {u,w, v} is linearly independent and u 6= v and u 6= w and v 6= w,
then {u,−w,−v} is linearly independent.

(34) If a 6= b, then {a · v, b · v,w} is linearly dependent.

(35) If a 6= 1, then {v, a · v,w} is linearly dependent.

(36) If v ∈ Lin({w}) and v 6= 0V , then Lin({v}) = Lin({w}).

(37) If v1 6= v2 and {v1, v2} is linearly independent and v1 ∈ Lin({w1, w2})
and v2 ∈ Lin({w1, w2}), then Lin({w1, w2}) = Lin({v1, v2}) and {w1, w2}
is linearly independent and w1 6= w2.

(38) If w 6= 0V and {v,w} is linearly dependent, then there exists a such
that v = a · w.

(39) If v 6= w and {v,w} is linearly independent and {u, v,w} is linearly
dependent, then there exist a, b such that u = a · v + b · w.
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