Subspaces of Real Linear Space Generated by One, Two, or Three Vectors and Their Cosets

Wojciech A. Trybulec
Warsaw University

MML Identifier: RLVECT_4.

The articles [7], [2], [1], [3], [4], [11], [10], [5], [6], [9], and [8] provide the notation and terminology for this paper. For simplicity we adopt the following rules: x is arbitrary, a, b, c denote real numbers, V denotes a real linear space, u, v, v_{1}, $v_{2}, v_{3}, w, w_{1}, w_{2}, w_{3}$ denote vectors of V, and W, W_{1}, W_{2} denote subspaces of V. In this article we present several logical schemes. The scheme LambdaSep3 deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, an element \mathcal{C} of \mathcal{A}, an element \mathcal{D} of \mathcal{A}, an element \mathcal{E} of \mathcal{A}, an element \mathcal{F} of \mathcal{B}, an element \mathcal{G} of \mathcal{B}, an element \mathcal{H} of \mathcal{B}, and a unary functor \mathcal{F} yielding an element of \mathcal{B} and states that:
there exists a function f from \mathcal{A} into \mathcal{B} such that $f(\mathcal{C})=\mathcal{F}$ and $f(\mathcal{D})=\mathcal{G}$ and $f(\mathcal{E})=\mathcal{H}$ and for every element C of \mathcal{A} such that $C \neq \mathcal{C}$ and $C \neq \mathcal{D}$ and $C \neq \mathcal{E}$ holds $f(C)=\mathcal{F}(C)$
provided the parameters have the following properties:

- $\mathcal{C} \neq \mathcal{D}$,
- $\mathcal{C} \neq \mathcal{E}$,
- $\mathcal{D} \neq \mathcal{E}$.

The scheme LinCEx1 deals with a real linear space \mathcal{A}, a vector \mathcal{B} of \mathcal{A}, and a real number \mathcal{C} and states that:
there exists a linear combination l of $\{\mathcal{B}\}$ such that $l(\mathcal{B})=\mathcal{C}$
for all values of the parameters.
The scheme LinCEx2 deals with a real linear space \mathcal{A}, a vector \mathcal{B} of \mathcal{A}, a vector \mathcal{C} of \mathcal{A}, a real number \mathcal{D}, and a real number \mathcal{E} and states that:
there exists a linear combination l of $\{\mathcal{B}, \mathcal{C}\}$ such that $l(\mathcal{B})=\mathcal{D}$ and $l(\mathcal{C})=\mathcal{E}$ provided the following condition is satisfied:

- $\mathcal{B} \neq \mathcal{C}$.

The scheme LinCEx3 deals with a real linear space \mathcal{A}, a vector \mathcal{B} of \mathcal{A}, a vector \mathcal{C} of \mathcal{A}, a vector \mathcal{D} of \mathcal{A}, a real number \mathcal{E}, a real number \mathcal{F}, and a real number \mathcal{G} and states that:
there exists a linear combination l of $\{\mathcal{B}, \mathcal{C}, \mathcal{D}\}$ such that $l(\mathcal{B})=\mathcal{E}$ and $l(\mathcal{C})=\mathcal{F}$ and $l(\mathcal{D})=\mathcal{G}$
provided the parameters meet the following conditions:

- $\mathcal{B} \neq \mathcal{C}$,
- $\mathcal{B} \neq \mathcal{D}$,
- $\mathcal{C} \neq \mathcal{D}$.

We now state a number of propositions:
(1) $(v+w)-v=w$ and $(w+v)-v=w$ and $(v-v)+w=w$ and $(w-v)+v=w$ and $v+(w-v)=w$ and $w+(v-v)=w$ and $v-(v-w)=w$.
(2) $(v+u)-w=(v-w)+u$.
(3) If $v_{1}+w=v_{2}+w$, then $v_{1}=v_{2}$.
(4) If $v_{1}-w=v_{2}-w$, then $v_{1}=v_{2}$.
(5) $v=v_{1}+v_{2}$ if and only if $v_{2}=v-v_{1}$.
(6) $-a \cdot v=(-a) \cdot v$.
(7) If W_{1} is a subspace of W_{2}, then $v+W_{1} \subseteq v+W_{2}$.
(8) If $u \in v+W$, then $v+W=u+W$.
(9) For every linear combination l of $\{u, v, w\}$ such that $u \neq v$ and $u \neq w$ and $v \neq w$ holds $\sum l=l(u) \cdot u+l(v) \cdot v+l(w) \cdot w$. $u \neq v$ and $u \neq w$ and $v \neq w$ and $\{u, v, w\}$ is linearly independent if and only if for all a, b, c such that $a \cdot u+b \cdot v+c \cdot w=0_{V}$ holds $a=0$ and $b=0$ and $c=0$.
(13) $x \in v+\operatorname{Lin}(\{w\})$ if and only if there exists a such that $x=v+a \cdot w$.
(14) $x \in \operatorname{Lin}\left(\left\{w_{1}, w_{2}\right\}\right)$ if and only if there exist a, b such that $x=a \cdot w_{1}+b \cdot w_{2}$.
(15) $w_{1} \in \operatorname{Lin}\left(\left\{w_{1}, w_{2}\right\}\right)$ and $w_{2} \in \operatorname{Lin}\left(\left\{w_{1}, w_{2}\right\}\right)$.
(16) $x \in v+\operatorname{Lin}\left(\left\{w_{1}, w_{2}\right\}\right)$ if and only if there exist a, b such that $x=$ $v+a \cdot w_{1}+b \cdot w_{2}$.
(17) $\quad x \in \operatorname{Lin}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)$ if and only if there exist a, b, c such that $x=$ $a \cdot v_{1}+b \cdot v_{2}+c \cdot v_{3}$.
(18) $\quad w_{1} \in \operatorname{Lin}\left(\left\{w_{1}, w_{2}, w_{3}\right\}\right)$ and $w_{2} \in \operatorname{Lin}\left(\left\{w_{1}, w_{2}, w_{3}\right\}\right)$ and $w_{3} \in \operatorname{Lin}\left(\left\{w_{1}, w_{2}, w_{3}\right\}\right)$.
$x \in v+\operatorname{Lin}\left(\left\{w_{1}, w_{2}, w_{3}\right\}\right)$ if and only if there exist a, b, c such that $x=v+a \cdot w_{1}+b \cdot w_{2}+c \cdot w_{3}$.
(20) If $\{u, v\}$ is linearly independent and $u \neq v$, then $\{u, v-u\}$ is linearly independent.
(21) If $\{u, v\}$ is linearly independent and $u \neq v$, then $\{u, v+u\}$ is linearly independent.
(22) If $\{u, v\}$ is linearly independent and $u \neq v$ and $a \neq 0$, then $\{u, a \cdot v\}$ is linearly independent.
(23) If $\{u, v\}$ is linearly independent and $u \neq v$, then $\{u,-v\}$ is linearly independent.
(24) If $a \neq b$, then $\{a \cdot v, b \cdot v\}$ is linearly dependent.
(25) If $a \neq 1$, then $\{v, a \cdot v\}$ is linearly dependent.
(26) If $\{u, w, v\}$ is linearly independent and $u \neq v$ and $u \neq w$ and $v \neq w$, then $\{u, w, v-u\}$ is linearly independent.
(27) If $\{u, w, v\}$ is linearly independent and $u \neq v$ and $u \neq w$ and $v \neq w$, then $\{u, w-u, v-u\}$ is linearly independent.
(28) If $\{u, w, v\}$ is linearly independent and $u \neq v$ and $u \neq w$ and $v \neq w$, then $\{u, w, v+u\}$ is linearly independent.
(29) If $\{u, w, v\}$ is linearly independent and $u \neq v$ and $u \neq w$ and $v \neq w$, then $\{u, w+u, v+u\}$ is linearly independent.
(30) If $\{u, w, v\}$ is linearly independent and $u \neq v$ and $u \neq w$ and $v \neq w$ and $a \neq 0$, then $\{u, w, a \cdot v\}$ is linearly independent.
(31) If $\{u, w, v\}$ is linearly independent and $u \neq v$ and $u \neq w$ and $v \neq w$ and $a \neq 0$ and $b \neq 0$, then $\{u, a \cdot w, b \cdot v\}$ is linearly independent.
The following propositions are true:
(32) If $\{u, w, v\}$ is linearly independent and $u \neq v$ and $u \neq w$ and $v \neq w$, then $\{u, w,-v\}$ is linearly independent.
(33) If $\{u, w, v\}$ is linearly independent and $u \neq v$ and $u \neq w$ and $v \neq w$, then $\{u,-w,-v\}$ is linearly independent.
(34) If $a \neq b$, then $\{a \cdot v, b \cdot v, w\}$ is linearly dependent.
(35) If $a \neq 1$, then $\{v, a \cdot v, w\}$ is linearly dependent.
(36) If $v \in \operatorname{Lin}(\{w\})$ and $v \neq 0_{V}$, then $\operatorname{Lin}(\{v\})=\operatorname{Lin}(\{w\})$.
(37) If $v_{1} \neq v_{2}$ and $\left\{v_{1}, v_{2}\right\}$ is linearly independent and $v_{1} \in \operatorname{Lin}\left(\left\{w_{1}, w_{2}\right\}\right)$ and $v_{2} \in \operatorname{Lin}\left(\left\{w_{1}, w_{2}\right\}\right)$, then $\operatorname{Lin}\left(\left\{w_{1}, w_{2}\right\}\right)=\operatorname{Lin}\left(\left\{v_{1}, v_{2}\right\}\right)$ and $\left\{w_{1}, w_{2}\right\}$ is linearly independent and $w_{1} \neq w_{2}$.
(38) If $w \neq 0_{V}$ and $\{v, w\}$ is linearly dependent, then there exists a such that $v=a \cdot w$.
(39) If $v \neq w$ and $\{v, w\}$ is linearly independent and $\{u, v, w\}$ is linearly dependent, then there exist a, b such that $u=a \cdot v+b \cdot w$.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[6] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[8] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.
[9] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.
[10] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.
[11] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.

Received February 24, 1993

