Subspaces of Real Linear Space Generated by One, Two, or Three Vectors and Their Cosets

Wojciech A. Trybulec Warsaw University

MML Identifier: RLVECT_4.

The articles [7], [2], [1], [3], [4], [11], [10], [5], [6], [9], and [8] provide the notation and terminology for this paper. For simplicity we adopt the following rules: xis arbitrary, a, b, c denote real numbers, V denotes a real linear space, u, v, v_1 , $v_2, v_3, w, w_1, w_2, w_3$ denote vectors of V, and W, W_1, W_2 denote subspaces of V. In this article we present several logical schemes. The scheme LambdaSep3 deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , an element \mathcal{C} of \mathcal{A} , an element \mathcal{D} of \mathcal{A} , an element \mathcal{E} of \mathcal{A} , an element \mathcal{F} of \mathcal{B} , an element \mathcal{G} of \mathcal{B} , an element \mathcal{H} of \mathcal{B} , and a unary functor \mathcal{F} yielding an element of \mathcal{B} and states that:

there exists a function f from \mathcal{A} into \mathcal{B} such that $f(\mathcal{C}) = \mathcal{F}$ and $f(\mathcal{D}) = \mathcal{G}$ and $f(\mathcal{E}) = \mathcal{H}$ and for every element C of \mathcal{A} such that $C \neq \mathcal{C}$ and $C \neq \mathcal{D}$ and $C \neq \mathcal{E}$ holds $f(C) = \mathcal{F}(C)$

provided the parameters have the following properties:

- $\mathcal{C} \neq \mathcal{D}$,
- $\mathcal{C} \neq \mathcal{E}$,
- $\mathcal{D} \neq \mathcal{E}$.

The scheme LinCEx1 deals with a real linear space \mathcal{A} , a vector \mathcal{B} of \mathcal{A} , and a real number \mathcal{C} and states that:

there exists a linear combination l of $\{\mathcal{B}\}$ such that $l(\mathcal{B}) = \mathcal{C}$ for all values of the parameters.

The scheme LinCEx2 deals with a real linear space \mathcal{A} , a vector \mathcal{B} of \mathcal{A} , a vector \mathcal{C} of \mathcal{A} , a real number \mathcal{D} , and a real number \mathcal{E} and states that:

there exists a linear combination l of $\{\mathcal{B}, \mathcal{C}\}$ such that $l(\mathcal{B}) = \mathcal{D}$ and $l(\mathcal{C}) = \mathcal{E}$ provided the following condition is satisfied:

• $\mathcal{B} \neq \mathcal{C}$.

C 1992 Fondation Philippe le Hodey ISSN 0777-4028 The scheme LinCEx3 deals with a real linear space \mathcal{A} , a vector \mathcal{B} of \mathcal{A} , a vector \mathcal{C} of \mathcal{A} , a vector \mathcal{D} of \mathcal{A} , a real number \mathcal{E} , a real number \mathcal{F} , and a real number \mathcal{G} and states that:

there exists a linear combination l of $\{\mathcal{B}, \mathcal{C}, \mathcal{D}\}$ such that $l(\mathcal{B}) = \mathcal{E}$ and $l(\mathcal{C}) = \mathcal{F}$ and $l(\mathcal{D}) = \mathcal{G}$

provided the parameters meet the following conditions:

- $\mathcal{B} \neq \mathcal{C}$,
- $\mathcal{B} \neq \mathcal{D}$,
- $\mathcal{C} \neq \mathcal{D}$.

We now state a number of propositions:

- (1) (v+w) v = w and (w+v) v = w and (v-v) + w = w and (w-v)+v = w and v+(w-v) = w and w+(v-v) = w and v-(v-w) = w.
- (2) (v+u) w = (v-w) + u.
- (3) If $v_1 + w = v_2 + w$, then $v_1 = v_2$.
- (4) If $v_1 w = v_2 w$, then $v_1 = v_2$.
- (5) $v = v_1 + v_2$ if and only if $v_2 = v v_1$.
- $(6) \quad -a \cdot v = (-a) \cdot v.$
- (7) If W_1 is a subspace of W_2 , then $v + W_1 \subseteq v + W_2$.
- (8) If $u \in v + W$, then v + W = u + W.
- (9) For every linear combination l of $\{u, v, w\}$ such that $u \neq v$ and $u \neq w$ and $v \neq w$ holds $\sum l = l(u) \cdot u + l(v) \cdot v + l(w) \cdot w$.
- (10) $u \neq v$ and $u \neq w$ and $v \neq w$ and $\{u, v, w\}$ is linearly independent if and only if for all a, b, c such that $a \cdot u + b \cdot v + c \cdot w = 0_V$ holds a = 0 and b = 0 and c = 0.
- (11) $x \in \text{Lin}(\{v\})$ if and only if there exists a such that $x = a \cdot v$.
- (12) $v \in \operatorname{Lin}(\{v\}).$
- (13) $x \in v + \text{Lin}(\{w\})$ if and only if there exists a such that $x = v + a \cdot w$.
- (14) $x \in \text{Lin}(\{w_1, w_2\})$ if and only if there exist a, b such that $x = a \cdot w_1 + b \cdot w_2$.
- (15) $w_1 \in \operatorname{Lin}(\{w_1, w_2\}) \text{ and } w_2 \in \operatorname{Lin}(\{w_1, w_2\}).$
- (16) $x \in v + \text{Lin}(\{w_1, w_2\})$ if and only if there exist a, b such that $x = v + a \cdot w_1 + b \cdot w_2$.
- (17) $x \in \text{Lin}(\{v_1, v_2, v_3\})$ if and only if there exist a, b, c such that $x = a \cdot v_1 + b \cdot v_2 + c \cdot v_3$.
- (18) $w_1 \in \operatorname{Lin}(\{w_1, w_2, w_3\}) \text{ and } w_2 \in \operatorname{Lin}(\{w_1, w_2, w_3\}) \text{ and } w_3 \in \operatorname{Lin}(\{w_1, w_2, w_3\}).$
- (19) $x \in v + \text{Lin}(\{w_1, w_2, w_3\})$ if and only if there exist a, b, c such that $x = v + a \cdot w_1 + b \cdot w_2 + c \cdot w_3$.
- (20) If $\{u, v\}$ is linearly independent and $u \neq v$, then $\{u, v u\}$ is linearly independent.
- (21) If $\{u, v\}$ is linearly independent and $u \neq v$, then $\{u, v + u\}$ is linearly independent.

- (22) If $\{u, v\}$ is linearly independent and $u \neq v$ and $a \neq 0$, then $\{u, a \cdot v\}$ is linearly independent.
- (23) If $\{u, v\}$ is linearly independent and $u \neq v$, then $\{u, -v\}$ is linearly independent.
- (24) If $a \neq b$, then $\{a \cdot v, b \cdot v\}$ is linearly dependent.
- (25) If $a \neq 1$, then $\{v, a \cdot v\}$ is linearly dependent.
- (26) If $\{u, w, v\}$ is linearly independent and $u \neq v$ and $u \neq w$ and $v \neq w$, then $\{u, w, v u\}$ is linearly independent.
- (27) If $\{u, w, v\}$ is linearly independent and $u \neq v$ and $u \neq w$ and $v \neq w$, then $\{u, w u, v u\}$ is linearly independent.
- (28) If $\{u, w, v\}$ is linearly independent and $u \neq v$ and $u \neq w$ and $v \neq w$, then $\{u, w, v + u\}$ is linearly independent.
- (29) If $\{u, w, v\}$ is linearly independent and $u \neq v$ and $u \neq w$ and $v \neq w$, then $\{u, w + u, v + u\}$ is linearly independent.
- (30) If $\{u, w, v\}$ is linearly independent and $u \neq v$ and $u \neq w$ and $v \neq w$ and $a \neq 0$, then $\{u, w, a \cdot v\}$ is linearly independent.
- (31) If $\{u, w, v\}$ is linearly independent and $u \neq v$ and $u \neq w$ and $v \neq w$ and $a \neq 0$ and $b \neq 0$, then $\{u, a \cdot w, b \cdot v\}$ is linearly independent.

The following propositions are true:

- (32) If $\{u, w, v\}$ is linearly independent and $u \neq v$ and $u \neq w$ and $v \neq w$, then $\{u, w, -v\}$ is linearly independent.
- (33) If $\{u, w, v\}$ is linearly independent and $u \neq v$ and $u \neq w$ and $v \neq w$, then $\{u, -w, -v\}$ is linearly independent.
- (34) If $a \neq b$, then $\{a \cdot v, b \cdot v, w\}$ is linearly dependent.
- (35) If $a \neq 1$, then $\{v, a \cdot v, w\}$ is linearly dependent.
- (36) If $v \in \operatorname{Lin}(\{w\})$ and $v \neq 0_V$, then $\operatorname{Lin}(\{v\}) = \operatorname{Lin}(\{w\})$.
- (37) If $v_1 \neq v_2$ and $\{v_1, v_2\}$ is linearly independent and $v_1 \in \text{Lin}(\{w_1, w_2\})$ and $v_2 \in \text{Lin}(\{w_1, w_2\})$, then $\text{Lin}(\{w_1, w_2\}) = \text{Lin}(\{v_1, v_2\})$ and $\{w_1, w_2\}$ is linearly independent and $w_1 \neq w_2$.
- (38) If $w \neq 0_V$ and $\{v, w\}$ is linearly dependent, then there exists a such that $v = a \cdot w$.
- (39) If $v \neq w$ and $\{v, w\}$ is linearly independent and $\{u, v, w\}$ is linearly dependent, then there exist a, b such that $u = a \cdot v + b \cdot w$.

References

- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.

- [5] Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1(1):115–122, 1990.
- [6] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [8] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847–850, 1990.
- [9] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581–588, 1990.
- [10] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297–301, 1990.
- [11] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.

Received February 24, 1993