Properties of Partial Functions from a Domain to the Set of Real Numbers

Jarosław Kotowicz Warsaw University Białystok Yuji Sakai Shinshu University Nagano

Summary. The article consists of two parties. In the first one we consider notion of nonnegative and nonpositive part of a real numbers. In the second we consider partial function from a domain to the set of real numbers (or more general to a domain). We define a few new operations for these functions and show connections between finite sequences of real numbers and functions which domain is finite. We introduce *integrations* for finite domain real valued functions.

MML Identifier: RFUNCT_3.

The articles [23], [25], [7], [21], [3], [4], [1], [11], [13], [2], [18], [20], [22], [6], [24], [8], [5], [9], [10], [19], [16], [17], [15], [12], and [14] provide the notation and terminology for this paper.

1. Nonnegative and Nonpositive Part of a Real Number

In the sequel n is a natural number and r is a real number. We now define two new functors. Let n, m be natural numbers. Then $\min(n, m)$ is a natural number. Let r be a real number. The functor $\max_+(r)$ yielding a real number is defined as follows:

(Def.1) $\max_{+}(r) = \max(r, 0).$

The functor $\max_{-}(r)$ yielding a real number is defined as follows:

(Def.2) $\max_{-}(r) = \max(-r, 0).$

We now state several propositions:

- (1) For every real number r holds $r = \max_{+}(r) \max_{-}(r)$.
- (2) For every real number r holds $|r| = \max_{+}(r) + \max_{-}(r)$.

279

C 1992 Fondation Philippe le Hodey ISSN 0777-4028

- (3) For every real number r holds $2 \cdot \max_{+}(r) = r + |r|$.
- (4) For all real numbers r, s such that $0 \le r$ holds $\max_+(r \cdot s) = r \cdot \max_+(s)$.
- (5) For all real numbers r, s holds $\max_{+}(r+s) \le \max_{+}(r) + \max_{+}(s)$.
- (6) For every real number r holds $0 \le \max_{+}(r)$ and $0 \le \max_{-}(r)$.
- (7) For all real numbers r_1 , r_2 , s_1 , s_2 such that $r_1 \le s_1$ and $r_2 \le s_2$ holds $\max(r_1, r_2) \le \max(s_1, s_2)$.

2. PROPERTIES OF REAL FUNCTION

One can prove the following propositions:

- (8) For every non-empty set D and for every partial function F from D to \mathbb{R} and for all real numbers r, s such that $r \neq 0$ holds $F^{-1}\left\{\frac{s}{r}\right\} = (r F)^{-1}\left\{s\right\}$.
- (9) For every non-empty set D and for every partial function F from D to \mathbb{R} holds $(0 F)^{-1} \{0\} = \text{dom } F$.
- (10) For every non-empty set D and for every partial function F from D to \mathbb{R} and for every real number r such that 0 < r holds $|F|^{-1}\{r\} = F^{-1}\{-r, r\}$.
- (11) For every non-empty set D and for every partial function F from D to \mathbb{R} holds $|F|^{-1} \{0\} = F^{-1} \{0\}$.
- (12) For every non-empty set D and for every partial function F from D to \mathbb{R} and for every real number r such that r < 0 holds $|F|^{-1} \{r\} = \emptyset$.
- (13) For all non-empty sets D, C and for every partial function F from D to \mathbb{R} and for every partial function G from C to \mathbb{R} and for every real number r such that $r \neq 0$ holds F and G are fiverwise equipotent if and only if rF and rG are fiverwise equipotent.
- (14) For all non-empty sets D, C and for every partial function F from D to \mathbb{R} and for every partial function G from C to \mathbb{R} holds F and G are fiverwise equipotent if and only if -F and -G are fiverwise equipotent.
- (15) For all non-empty sets D, C and for every partial function F from D to \mathbb{R} and for every partial function G from C to \mathbb{R} such that F and G are fiverwise equipotent holds |F| and |G| are fiverwise equipotent.

We now define two new constructions. Let X, Y be sets. A non-empty set of functions is said to be a non empty set of partial functions from X to Y if:

(Def.3) every element of it is a partial function from X to Y.

Let X, Y be sets. Then $X \to Y$ is a non empty set of partial functions from X to Y. Let P be a non empty set of partial functions from X to Y. We see that the element of P is a partial function from X to Y. Let D, C be non-empty sets, and let X be a subset of D, and let c be an element of C. Then $X \to c$ is an element of $D \to C$. Let D be a non-empty set, and let F_1 , F_2 be elements of $D \to \mathbb{R}$. Then $F_1 + F_2$ is an element of $D \to \mathbb{R}$. Then $F_1 - F_2$ is an element of $D \to \mathbb{R}$. Then $F_1 F_2$ is an element of $D \to \mathbb{R}$. Then $F_1 - F_2$ is an element of $D \to \mathbb{R}$. Then $F_1 F_2$ is an element of $D \to \mathbb{R}$. Then $F_1 = F_2$ is an element of $D \to \mathbb{R}$. Then $F_1 = F_2$ is an element of $D \to \mathbb{R}$. Then $F_1 = F_2$ is an element of $D \to \mathbb{R}$. Then $F_1 = F_2$ is an element of $D \to \mathbb{R}$. Then $F_1 = F_2$ is an element of $D \to \mathbb{R}$. element of $D \to \mathbb{R}$. Then -F is an element of $D \to \mathbb{R}$. Then $\frac{1}{F}$ is an element of $D \to \mathbb{R}$. Let D be a non-empty set, and let F be an element of $D \to \mathbb{R}$, and let r be a real number. Then r F is an element of $D \to \mathbb{R}$. Let D be a non-empty set. The functor $+_{D \to \mathbb{R}}$ yielding a binary operation on $D \to \mathbb{R}$ is defined as follows:

(Def.4) for all elements F_1 , F_2 of $D \rightarrow \mathbb{R}$ holds $+_{D \rightarrow \mathbb{R}} (F_1, F_2) = F_1 + F_2$.

The following propositions are true:

- (16) For every non-empty set D holds $+_{D \to \mathbb{R}}$ is commutative.
- (17) For every non-empty set D holds $+_{D\to\mathbb{R}}$ is associative.
- (18) For every non-empty set D holds $\Omega_D \longmapsto 0$ qua a real number is a unity w.r.t. $+_{D \to \mathbb{R}}$.
- (19) For every non-empty set D holds $\mathbf{1}_{+_{D\to\mathbb{R}}} = \Omega_D \longmapsto 0$ qua a real number.
- (20) For every non-empty set D holds $+_{D \to \mathbb{R}}$ has a unity.

Let D be a non-empty set, and let f be a finite sequence of elements of $D \rightarrow \mathbb{R}$. The functor $\sum f$ yielding an element of $D \rightarrow \mathbb{R}$ is defined as follows:

(Def.5)
$$\sum f = +_{D \to \mathbb{R}} \circledast f.$$

Next we state several propositions:

- (21) For every non-empty set D holds $\sum (\varepsilon_{(D \to \mathbb{R})}) = \Omega_D \longmapsto 0$ qua a real number.
- (22) For every non-empty set D and for every element G of $D \rightarrow \mathbb{R}$ holds $\sum \langle G \rangle = G$.
- (23) For every non-empty set D and for every finite sequence f of elements of $D \rightarrow \mathbb{R}$ and for every element G of $D \rightarrow \mathbb{R}$ holds $\sum (f \cap \langle G \rangle) = \sum f + G$.
- (24) For every non-empty set D and for all finite sequences f_1 , f_2 of elements of $D \rightarrow \mathbb{R}$ holds $\sum (f_1 \cap f_2) = \sum f_1 + \sum f_2$.
- (25) For every non-empty set D and for every finite sequence f of elements of $D \rightarrow \mathbb{R}$ and for every element G of $D \rightarrow \mathbb{R}$ holds $\sum (\langle G \rangle \cap f) = G + \sum f$.
- (26) For every non-empty set D and for all elements G_1 , G_2 of $D \rightarrow \mathbb{R}$ holds $\sum \langle G_1, G_2 \rangle = G_1 + G_2$.
- (27) For every non-empty set D and for all elements G_1, G_2, G_3 of $D \rightarrow \mathbb{R}$ holds $\sum \langle G_1, G_2, G_3 \rangle = G_1 + G_2 + G_3$.
- (28) For every non-empty set D and for all finite sequences f, g of elements of $D \rightarrow \mathbb{R}$ such that f and g are fiverwise equipotent holds $\sum f = \sum g$.

We now define four new constructions. Let D be a non-empty set, and let f be a finite sequence. The functor CHI(f, D) yielding a finite sequence of elements of $D \rightarrow \mathbb{R}$ is defined by:

(Def.6) len $\operatorname{CHI}(f, D) = \operatorname{len} f$ and for every n such that $n \in \operatorname{dom} \operatorname{CHI}(f, D)$ holds $(\operatorname{CHI}(f, D))(n) = \chi_{f(n), D}$.

Let D be a non-empty set, and let f be a finite sequence of elements of $D \rightarrow \mathbb{R}$, and let R be a finite sequence of elements of \mathbb{R} . The functor R f yields a finite sequence of elements of $D \rightarrow \mathbb{R}$ and is defined as follows:

(Def.7) $\operatorname{len}(R f) = \min(\operatorname{len} R, \operatorname{len} f)$ and for every n such that $n \in \operatorname{dom}(R f)$ and for every partial function F from D to \mathbb{R} and for every r such that r = R(n) and F = f(n) holds (R f)(n) = r F.

Let D, C be non-empty sets, and let f be a finite sequence of elements of $D \rightarrow C$, and let d be an element of D. The functor f # d yields a finite sequence of elements of C and is defined as follows:

(Def.8) $\operatorname{len}(f \# d) = \operatorname{len} f$ and for every natural number n and for every element G of $D \to C$ such that $n \in \operatorname{dom}(f \# d)$ and f(n) = G holds (f # d)(n) = G(d).

Let D, C be non-empty sets, and let f be a finite sequence of elements of $D \rightarrow C$, and let d be an element of D. We say that d is common for dom f if and only if:

(Def.9) for every element G of $D \rightarrow C$ and for every natural number n such that $n \in \text{dom } f$ and f(n) = G holds $d \in \text{dom } G$.

One can prove the following propositions:

- (29) For all non-empty sets D, C and for every finite sequence f of elements of $D \rightarrow C$ and for every element d of D and for every natural number n such that d is common for dom f and $n \neq 0$ holds d is common for dom $f \uparrow n$.
- (30) For all non-empty sets D, C and for every finite sequence f of elements of $D \rightarrow C$ and for every element d of D and for every natural number n such that d is common for dom f holds d is common for dom $f_{\lfloor n}$.
- (31) For every non-empty set D and for every element d of D and for every finite sequence f of elements of $D \rightarrow \mathbb{R}$ such that len $f \neq 0$ holds d is common for dom f if and only if $d \in \text{dom } \sum f$.
- (32) For all non-empty sets D, C and for every finite sequence f of elements of $D \rightarrow C$ and for every element d of D and for every natural number n holds $(f \upharpoonright n) \# d = (f \# d) \upharpoonright n$.
- (33) For every non-empty set D and for every finite sequence f and for every element d of D holds d is common for dom CHI(f, D).
- (34) For every non-empty set D and for every element d of D and for every finite sequence f of elements of $D \rightarrow \mathbb{R}$ and for every finite sequence R of elements of \mathbb{R} such that d is common for dom f holds d is common for dom R f.
- (35) For every non-empty set D and for every finite sequence f and for every finite sequence R of elements of \mathbb{R} and for every element d of D holds d is common for dom $R \operatorname{CHI}(f, D)$.
- (36) For every non-empty set D and for every element d of D and for every finite sequence f of elements of $D \rightarrow \mathbb{R}$ such that d is common for dom f holds $(\sum f)(d) = \sum (f \# d)$.

We now define two new functors. Let D be a non-empty set, and let F be a partial function from D to \mathbb{R} . The functor $\max_+(F)$ yielding a partial function

from D to \mathbb{R} is defined as follows:

(Def.10) dom $\max_+(F) = \operatorname{dom} F$ and for every element d of D such that $d \in \operatorname{dom} \max_+(F)$ holds $(\max_+(F))(d) = \max_+(F(d))$.

The functor $\max_{-}(F)$ yielding a partial function from D to \mathbb{R} is defined as follows:

(Def.11) dom max_(F) = dom F and for every element d of D such that $d \in$ dom max_(F) holds $(\max_{-}(F))(d) = \max_{-}(F(d))$.

The following propositions are true:

- (37) For every non-empty set D and for every partial function F from D to \mathbb{R} holds $F = \max_+(F) \max_-(F)$ and $|F| = \max_+(F) + \max_-(F)$ and $2 \max_+(F) = F + |F|$.
- (38) For every non-empty set D and for every partial function F from D to \mathbb{R} and for every real number r such that 0 < r holds $F^{-1}\{r\} = (\max_+(F))^{-1}\{r\}.$
- (39) For every non-empty set D and for every partial function F from D to \mathbb{R} holds $F^{-1} [-\infty, 0] = (\max_+(F))^{-1} \{0\}.$
- (40) For every non-empty set D and for every partial function F from D to \mathbb{R} and for every element d of D such that $d \in \text{dom } F$ holds $0 \leq (\max_+(F))(d)$.
- (41) For every non-empty set D and for every partial function F from D to \mathbb{R} and for every real number r such that 0 < r holds $F^{-1} \{-r\} = (\max_{-}(F))^{-1} \{r\}.$
- (42) For every non-empty set D and for every partial function F from D to \mathbb{R} holds $F^{-1}[0, +\infty[=(\max_{-}(F))^{-1}\{0\}.$
- (43) For every non-empty set D and for every partial function F from D to \mathbb{R} and for every element d of D such that $d \in \text{dom } F$ holds $0 \leq (\max_{-}(F))(d)$.
- (44) For all non-empty sets D, C and for every partial function F from D to \mathbb{R} and for every partial function G from C to \mathbb{R} such that F and G are fiverwise equipotent holds $\max_+(F)$ and $\max_+(G)$ are fiverwise equipotent.
- (45) For all non-empty sets D, C and for every partial function F from D to \mathbb{R} and for every partial function G from C to \mathbb{R} such that F and G are fiverwise equipotent holds $\max_{-}(F)$ and $\max_{-}(G)$ are fiverwise equipotent.
- (46) For all non-empty sets D, C and for every partial function F from D to \mathbb{R} and for every partial function G from C to \mathbb{R} such that dom F is finite and dom G is finite and $\max_{+}(F)$ and $\max_{+}(G)$ are fiverwise equipotent and $\max_{-}(F)$ and $\max_{-}(G)$ are fiverwise equipotent holds F and G are fiverwise equipotent.
- (47) For every non-empty set D and for every partial function F from D to \mathbb{R} and for every set X holds $\max_+(F) \upharpoonright X = \max_+(F \upharpoonright X)$.

- (48) For every non-empty set D and for every partial function F from D to \mathbb{R} and for every set X holds $\max_{-}(F) \upharpoonright X = \max_{-}(F \upharpoonright X)$.
- (49) For every non-empty set D and for every partial function F from D to \mathbb{R} if for every element d of D such that $d \in \text{dom } F$ holds $F(d) \ge 0$, then $\max_+(F) = F$.
- (50) For every non-empty set D and for every partial function F from D to \mathbb{R} if for every element d of D such that $d \in \text{dom } F$ holds $F(d) \leq 0$, then $\max_{-}(F) = -F$.

Let D be a non-empty set, and let F be a partial function from D to \mathbb{R} , and let r be a real number. The functor F - r yields a partial function from D to \mathbb{R} and is defined as follows:

(Def.12) $\operatorname{dom}(F - r) = \operatorname{dom} F$ and for every element d of D such that $d \in \operatorname{dom}(F - r)$ holds (F - r)(d) = F(d) - r.

We now state four propositions:

- (51) For every non-empty set D and for every partial function F from D to \mathbb{R} holds F 0 = F.
- (52) For every non-empty set D and for every partial function F from D to \mathbb{R} and for every real number r and for every set X holds $F \upharpoonright X r = (F r) \upharpoonright X$.
- (53) For every non-empty set D and for every partial function F from D to \mathbb{R} and for all real numbers r, s holds $F^{-1}\{s+r\} = (F-r)^{-1}\{s\}$.
- (54) For all non-empty sets D, C and for every partial function F from D to \mathbb{R} and for every partial function G from C to \mathbb{R} and for every real number r holds F and G are fiverwise equipotent if and only if F r and G r are fiverwise equipotent.

Let F be a partial function from \mathbb{R} to \mathbb{R} , and let X be a set. We say that F is convex on X if and only if the conditions (Def.13) is satisfied.

(Def.13) (i) $X \subseteq \operatorname{dom} F$,

(ii) for every real number p such that $0 \le p$ and $p \le 1$ and for all real numbers r, s such that $r \in X$ and $s \in X$ and $p \cdot r + (1-p) \cdot s \in X$ holds $F(p \cdot r + (1-p) \cdot s) \le p \cdot F(r) + (1-p) \cdot F(s)$.

The following propositions are true:

- (55) Let a, b be real numbers. Let F be a partial function from \mathbb{R} to \mathbb{R} . Then F is convex on [a, b] if and only if the following conditions are satisfied:
 - (i) $[a,b] \subseteq \operatorname{dom} F$,
 - (ii) for every real number p such that $0 \le p$ and $p \le 1$ and for all real numbers r, s such that $r \in [a, b]$ and $s \in [a, b]$ holds $F(p \cdot r + (1-p) \cdot s) \le p \cdot F(r) + (1-p) \cdot F(s)$.
- (56) Let a, b be real numbers. Let F be a partial function from \mathbb{R} to \mathbb{R} . Then F is convex on [a, b] if and only if the following conditions are satisfied:
 - (i) $[a,b] \subseteq \operatorname{dom} F$,

- (ii) for all real numbers x_1, x_2, x_3 such that $x_1 \in [a, b]$ and $x_2 \in [a, b]$ and $x_3 \in [a, b]$ and $x_1 < x_2$ and $x_2 < x_3$ holds $\frac{F(x_1) F(x_2)}{x_1 x_2} \le \frac{F(x_2) F(x_3)}{x_2 x_3}$.
- (57) For every partial function F from \mathbb{R} to \mathbb{R} and for all sets X, Y such that F is convex on X and $Y \subseteq X$ holds F is convex on Y.
- (58) For every partial function F from \mathbb{R} to \mathbb{R} and for every set X and for every real number r holds F is convex on X if and only if F r is convex on X.
- (59) For every partial function F from \mathbb{R} to \mathbb{R} and for every set X and for every real number r such that 0 < r holds F is convex on X if and only if rF is convex on X.
- (60) For every partial function F from \mathbb{R} to \mathbb{R} and for every set X such that $X \subseteq \operatorname{dom} F$ holds 0 F is convex on X.
- (61) For all partial functions F, G from \mathbb{R} to \mathbb{R} and for every set X such that F is convex on X and G is convex on X holds F + G is convex on X.
- (62) For every partial function F from \mathbb{R} to \mathbb{R} and for every set X and for every real number r such that F is convex on X holds $\max_{+}(F r)$ is convex on X.
- (63) For every partial function F from \mathbb{R} to \mathbb{R} and for every set X such that F is convex on X holds $\max_+(F)$ is convex on X.
- (64) $\operatorname{id}_{(\Omega_{\mathbb{R}})}$ is convex on \mathbb{R} .
- (65) For every real number r holds $\max_{+}(\mathrm{id}_{(\Omega_{\mathbb{R}})} r)$ is convex on \mathbb{R} .

Let D be a non-empty set, and let F be a partial function from D to \mathbb{R} , and let X be a set. Let us assume that dom $(F \upharpoonright X)$ is finite. The functor FinS(F, X) yields a non-increasing finite sequence of elements of \mathbb{R} and is defined by:

(Def.14) $F \upharpoonright X$ and FinS(F, X) are fiverwise equipotent.

Next we state a number of propositions:

- (66) For every non-empty set D and for every partial function F from D to \mathbb{R} and for every set X such that dom $(F \upharpoonright X)$ is finite holds FinS $(F, \text{dom}(F \upharpoonright X)) = \text{FinS}(F, X)$.
- (67) For every non-empty set D and for every partial function F from D to \mathbb{R} and for every set X such that dom $(F \upharpoonright X)$ is finite holds $\operatorname{FinS}(F \upharpoonright X, X) = \operatorname{FinS}(F, X)$.
- (68) For every non-empty set D and for every element d of D and for every set X and for every partial function F from D to \mathbb{R} such that X is finite and $d \in \text{dom}(F \upharpoonright X)$ holds $(\text{FinS}(F, X \setminus \{d\})) \cap \langle F(d) \rangle$ and $F \upharpoonright X$ are fiverwise equipotent.
- (69) For every non-empty set D and for every element d of D and for every set X and for every partial function F from D to \mathbb{R} such that dom $(F \upharpoonright X)$ is finite and $d \in \text{dom}(F \upharpoonright X)$ holds $(\text{FinS}(F, X \setminus \{d\})) \cap \langle F(d) \rangle$ and $F \upharpoonright X$ are fiverwise equipotent.
- (70) For every non-empty set D and for every partial function F from D to \mathbb{R} and for every set X such that dom $(F \upharpoonright X)$ is finite holds len FinS(F, X) =

 $\operatorname{card} \operatorname{dom}(F \upharpoonright X).$

- (71) For every non-empty set D and for every partial function F from D to \mathbb{R} holds $\operatorname{FinS}(F, \emptyset) = \varepsilon_{\mathbb{R}}$.
- (72) For every non-empty set D and for every partial function F from D to \mathbb{R} and for every element d of D such that $d \in \text{dom } F$ holds $\text{FinS}(F, \{d\}) = \langle F(d) \rangle$.
- (73) Let D be a non-empty set. Let F be a partial function from D to \mathbb{R} . Then for every set X and for every element d of D such that dom $(F \upharpoonright X)$ is finite and $d \in \text{dom}(F \upharpoonright X)$ and (FinS(F, X))(len FinS(F, X)) = F(d) holds $\text{FinS}(F, X) = (\text{FinS}(F, X \setminus \{d\})) \cap \langle F(d) \rangle$.
- (74) Let D be a non-empty set. Let F be a partial function from D to \mathbb{R} . Let X, Y be sets. Suppose dom $(F \upharpoonright X)$ is finite and $Y \subseteq X$ and for all elements d_1, d_2 of D such that $d_1 \in \text{dom}(F \upharpoonright Y)$ and $d_2 \in \text{dom}(F \upharpoonright (X \setminus Y))$ holds $F(d_1) \ge F(d_2)$. Then $\text{FinS}(F, X) = (\text{FinS}(F, Y)) \cap \text{FinS}(F, X \setminus Y)$.
- (75) Let D be a non-empty set. Let F be a partial function from D to \mathbb{R} . Let r be a real number. Let X be a set. Then for every element d of D such that dom $(F \upharpoonright X)$ is finite and $d \in \text{dom}(F \upharpoonright X)$ holds (FinS(F - r, X))(len FinS(F - r, X)) = (F - r)(d)if and only if (FinS(F, X))(len FinS(F, X)) = F(d).
- (76) For every non-empty set D and for every partial function F from D to \mathbb{R} and for every real number r and for every set X such that $\operatorname{dom}(F \upharpoonright X)$ is finite holds $\operatorname{FinS}(F r, X) = \operatorname{FinS}(F, X) (\operatorname{card} \operatorname{dom}(F \upharpoonright X) \longmapsto r).$
- (77) For every non-empty set D and for every partial function F from D to \mathbb{R} and for every set X such that dom $(F \upharpoonright X)$ is finite and for every element d of D such that $d \in \text{dom}(F \upharpoonright X)$ holds $F(d) \ge 0$ holds $\text{FinS}(\max_+(F), X) = \text{FinS}(F, X)$.
- (78) For every non-empty set D and for every partial function F from D to \mathbb{R} and for every set X and for every real number r such that dom $(F \upharpoonright X)$ is finite and rng $(F \upharpoonright X) = \{r\}$ holds FinS $(F, X) = \text{card dom}(F \upharpoonright X) \mapsto r$.
- (79) For every non-empty set D and for every partial function F from D to \mathbb{R} and for all sets X, Y such that $\operatorname{dom}(F \upharpoonright (X \cup Y))$ is finite and $X \cap Y = \emptyset$ holds $\operatorname{FinS}(F, X \cup Y)$ and $(\operatorname{FinS}(F, X)) \cap \operatorname{FinS}(F, Y)$ are fiverwise equipotent.

Let *D* be a non-empty set, and let *F* be a partial function from *D* to \mathbb{R} , and let *X* be a set. The functor $\sum_{\kappa=0}^{X} F(\kappa)$ yields a real number and is defined as follows:

(Def.15) $\sum_{\kappa=0}^{X} F(\kappa) = \sum \operatorname{FinS}(F, X).$

One can prove the following propositions:

- (80) For every non-empty set D and for every partial function F from D to \mathbb{R} and for every set X and for every real number r such that dom $(F \upharpoonright X)$ is finite holds $\sum_{\kappa=0}^{X} (r F)(\kappa) = r \cdot \sum_{\kappa=0}^{X} F(\kappa)$.
- (81) For every non-empty set D and for all partial functions F, G from D to

 \mathbb{R} and for every set X such that dom $(F \upharpoonright X)$ is finite and dom $(F \upharpoonright X) =$ dom $(G \upharpoonright X)$ holds $\sum_{\kappa=0}^{X} (F + G)(\kappa) = \sum_{\kappa=0}^{X} F(\kappa) + \sum_{\kappa=0}^{X} G(\kappa).$

- (82) For every non-empty set D and for all partial functions F, G from D to \mathbb{R} and for every set X such that dom $(F \upharpoonright X)$ is finite and dom $(F \upharpoonright X) =$ dom $(G \upharpoonright X)$ holds $\sum_{\kappa=0}^{X} (F G)(\kappa) = \sum_{\kappa=0}^{X} F(\kappa) \sum_{\kappa=0}^{X} G(\kappa)$.
- (83) For every non-empty set D and for every partial function F from D to \mathbb{R} and for every set X and for every real number r such that dom $(F \upharpoonright X)$ is finite holds $\sum_{\kappa=0}^{X} (F-r)(\kappa) = \sum_{\kappa=0}^{X} F(\kappa) r \cdot \operatorname{card} \operatorname{dom}(F \upharpoonright X)$.
- (84) For every non-empty set D and for every partial function F from D to \mathbb{R} holds $\sum_{\kappa=0}^{\emptyset} F(\kappa) = 0$.
- (85) For every non-empty set D and for every partial function F from D to \mathbb{R} and for every element d of D such that $d \in \text{dom } F$ holds $\sum_{\kappa=0}^{\{d\}} F(\kappa) = F(d)$.
- (86) For every non-empty set D and for every partial function F from D to \mathbb{R} and for all sets X, Y such that dom $(F \upharpoonright (X \cup Y))$ is finite and $X \cap Y = \emptyset$ holds $\sum_{\kappa=0}^{X \cup Y} F(\kappa) = \sum_{\kappa=0}^{X} F(\kappa) + \sum_{\kappa=0}^{Y} F(\kappa)$.
- (87) For every non-empty set D and for every partial function F from D to \mathbb{R} and for all sets X, Y such that $\operatorname{dom}(F \upharpoonright (X \cup Y))$ is finite and $\operatorname{dom}(F \upharpoonright X) \cap \operatorname{dom}(F \upharpoonright Y) = \emptyset$ holds $\sum_{\kappa=0}^{X \cup Y} F(\kappa) = \sum_{\kappa=0}^{X} F(\kappa) + \sum_{\kappa=0}^{Y} F(\kappa)$.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643–649, 1990.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651–656, 1990.
- [10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [12] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. *Formalized Mathematics*, 2(5):617–621, 1991.
- [13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [14] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
- [15] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
- [16] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697–702, 1990.

- [17] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
- [18] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [19] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [20] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1(2):329–334, 1990.
- [21] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [22] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369–376, 1990.
- [23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [24] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received March 15, 1993