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Summary. The article consists of two parties. In the first one we
consider notion of nonnegative and nonpositive part of a real numbers. In
the second we consider partial function from a domain to the set of real
numbers (or more general to a domain). We define a few new operations
for these functions and show connections between finite sequences of real
numbers and functions which domain is finite. We introduce integrations

for finite domain real valued functions.
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The articles [23], [25], [7], [21], [3], [4], [1], [11], [13], [2], [18], [20], [22], [6], [24],
[8], [5], [9], [10], [19], [16], [17], [15], [12], and [14] provide the notation and
terminology for this paper.

1. Nonnegative and Nonpositive Part of a Real Number

In the sequel n is a natural number and r is a real number. We now define
two new functors. Let n, m be natural numbers. Then min(n,m) is a natural
number. Let r be a real number. The functor max+(r) yielding a real number
is defined as follows:

(Def.1) max+(r) = max(r, 0).

The functor max−(r) yielding a real number is defined as follows:

(Def.2) max−(r) = max(−r, 0).

We now state several propositions:

(1) For every real number r holds r = max+(r) − max−(r).

(2) For every real number r holds |r| = max+(r) + max−(r).
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(3) For every real number r holds 2 · max+(r) = r + |r|.

(4) For all real numbers r, s such that 0 ≤ r holds max+(r ·s) = r ·max+(s).

(5) For all real numbers r, s holds max+(r + s) ≤ max+(r) + max+(s).

(6) For every real number r holds 0 ≤ max+(r) and 0 ≤ max−(r).

(7) For all real numbers r1, r2, s1, s2 such that r1 ≤ s1 and r2 ≤ s2 holds
max(r1, r2) ≤ max(s1, s2).

2. Properties of Real Function

One can prove the following propositions:

(8) For every non-empty set D and for every partial function F from D to �
and for all real numbers r, s such that r 6= 0 holds F −1{ s

r
} = (r F )−1 {s}.

(9) For every non-empty set D and for every partial function F from D to
� holds (0 F ) −1 {0} = domF .

(10) For every non-empty set D and for every partial function F from D to �
and for every real number r such that 0 < r holds |F |−1{r} = F −1{−r, r}.

(11) For every non-empty set D and for every partial function F from D to
� holds |F | −1 {0} = F −1 {0}.

(12) For every non-empty set D and for every partial function F from D to
� and for every real number r such that r < 0 holds |F | −1 {r} = ∅.

(13) For all non-empty sets D, C and for every partial function F from D to
� and for every partial function G from C to � and for every real number
r such that r 6= 0 holds F and G are fiwerwise equipotent if and only if
r F and r G are fiwerwise equipotent.

(14) For all non-empty sets D, C and for every partial function F from D

to � and for every partial function G from C to � holds F and G are
fiwerwise equipotent if and only if −F and −G are fiwerwise equipotent.

(15) For all non-empty sets D, C and for every partial function F from D

to � and for every partial function G from C to � such that F and G are
fiwerwise equipotent holds |F | and |G| are fiwerwise equipotent.

We now define two new constructions. Let X, Y be sets. A non-empty set
of functions is said to be a non empty set of partial functions from X to Y if:

(Def.3) every element of it is a partial function from X to Y .

Let X, Y be sets. Then X→̇Y is a non empty set of partial functions from X

to Y . Let P be a non empty set of partial functions from X to Y . We see that
the element of P is a partial function from X to Y . Let D, C be non-empty
sets, and let X be a subset of D, and let c be an element of C. Then X 7−→ c

is an element of D→̇C. Let D be a non-empty set, and let F1, F2 be elements
of D→̇ � . Then F1 + F2 is an element of D→̇ � . Then F1 − F2 is an element
of D→̇ � . Then F1 F2 is an element of D→̇ � . Then F1

F2
is an element of D→̇ � .

Let D be a non-empty set, and let F be an element of D→̇ � . Then |F | is an
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element of D→̇ � . Then −F is an element of D→̇ � . Then 1
F

is an element of
D→̇ � . Let D be a non-empty set, and let F be an element of D→̇ � , and let r

be a real number. Then r F is an element of D→̇ � . Let D be a non-empty set.
The functor +D→̇ � yielding a binary operation on D→̇ � is defined as follows:

(Def.4) for all elements F1, F2 of D→̇ � holds +D→̇ � (F1, F2) = F1 + F2.

The following propositions are true:

(16) For every non-empty set D holds +D→̇ � is commutative.

(17) For every non-empty set D holds +D→̇ � is associative.

(18) For every non-empty set D holds ΩD 7−→ 0 qua a real number is a unity
w.r.t. +D→̇ � .

(19) For every non-empty set D holds 1+D→̇ � = ΩD 7−→ 0 qua a real number.

(20) For every non-empty set D holds +D→̇ � has a unity.

Let D be a non-empty set, and let f be a finite sequence of elements of D→̇ � .
The functor

∑
f yielding an element of D→̇ � is defined as follows:

(Def.5)
∑

f = +D→̇ � 
 f .

Next we state several propositions:

(21) For every non-empty set D holds
∑

(ε(D→̇ � )) = ΩD 7−→ 0 qua a real
number.

(22) For every non-empty set D and for every element G of D→̇ � holds
∑
〈G〉 = G.

(23) For every non-empty set D and for every finite sequence f of elements
of D→̇ � and for every element G of D→̇ � holds

∑
(f � 〈G〉) =

∑
f + G.

(24) For every non-empty set D and for all finite sequences f1, f2 of elements
of D→̇ � holds

∑
(f1 � f2) =

∑
f1 +

∑
f2.

(25) For every non-empty set D and for every finite sequence f of elements
of D→̇ � and for every element G of D→̇ � holds

∑
(〈G〉 � f) = G +

∑
f .

(26) For every non-empty set D and for all elements G1, G2 of D→̇ � holds
∑
〈G1, G2〉 = G1 + G2.

(27) For every non-empty set D and for all elements G1, G2, G3 of D→̇ �
holds

∑
〈G1, G2, G3〉 = G1 + G2 + G3.

(28) For every non-empty set D and for all finite sequences f , g of elements
of D→̇ � such that f and g are fiwerwise equipotent holds

∑
f =

∑
g.

We now define four new constructions. Let D be a non-empty set, and let
f be a finite sequence. The functor CHI(f,D) yielding a finite sequence of
elements of D→̇ � is defined by:

(Def.6) len CHI(f,D) = len f and for every n such that n ∈ dom CHI(f,D)
holds (CHI(f,D))(n) = χ

f(n),D.

Let D be a non-empty set, and let f be a finite sequence of elements of D→̇ � ,
and let R be a finite sequence of elements of � . The functor R f yields a finite
sequence of elements of D→̇ � and is defined as follows:
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(Def.7) len(R f) = min(len R, len f) and for every n such that n ∈ dom(R f)
and for every partial function F from D to � and for every r such that
r = R(n) and F = f(n) holds (R f)(n) = r F .

Let D, C be non-empty sets, and let f be a finite sequence of elements of
D→̇C, and let d be an element of D. The functor f#d yields a finite sequence
of elements of C and is defined as follows:

(Def.8) len(f#d) = len f and for every natural number n and for every element
G of D→̇C such that n ∈ dom(f#d) and f(n) = G holds (f#d)(n) =
G(d).

Let D, C be non-empty sets, and let f be a finite sequence of elements of D→̇C,
and let d be an element of D. We say that d is common for dom f if and only
if:

(Def.9) for every element G of D→̇C and for every natural number n such that
n ∈ dom f and f(n) = G holds d ∈ dom G.

One can prove the following propositions:

(29) For all non-empty sets D, C and for every finite sequence f of elements
of D→̇C and for every element d of D and for every natural number n

such that d is common for dom f and n 6= 0 holds d is common for dom
f

�
n.

(30) For all non-empty sets D, C and for every finite sequence f of elements
of D→̇C and for every element d of D and for every natural number n

such that d is common for dom f holds d is common for dom f � n .

(31) For every non-empty set D and for every element d of D and for every
finite sequence f of elements of D→̇ � such that len f 6= 0 holds d is
common for dom f if and only if d ∈ dom

∑
f .

(32) For all non-empty sets D, C and for every finite sequence f of elements
of D→̇C and for every element d of D and for every natural number n

holds (f
�
n)#d = (f#d)

�
n.

(33) For every non-empty set D and for every finite sequence f and for every
element d of D holds d is common for dom CHI(f,D).

(34) For every non-empty set D and for every element d of D and for every
finite sequence f of elements of D→̇ � and for every finite sequence R of
elements of � such that d is common for dom f holds d is common for
dom R f .

(35) For every non-empty set D and for every finite sequence f and for every
finite sequence R of elements of � and for every element d of D holds d is
common for dom R CHI(f,D).

(36) For every non-empty set D and for every element d of D and for every
finite sequence f of elements of D→̇ � such that d is common for dom f

holds (
∑

f)(d) =
∑

(f#d).

We now define two new functors. Let D be a non-empty set, and let F be a
partial function from D to � . The functor max+(F ) yielding a partial function
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from D to � is defined as follows:

(Def.10) dom max+(F ) = domF and for every element d of D such that d ∈
dom max+(F ) holds (max+(F ))(d) = max+(F (d)).

The functor max−(F ) yielding a partial function from D to � is defined as
follows:

(Def.11) dom max−(F ) = domF and for every element d of D such that d ∈
dom max−(F ) holds (max−(F ))(d) = max−(F (d)).

The following propositions are true:

(37) For every non-empty set D and for every partial function F from D to
� holds F = max+(F ) − max−(F ) and |F | = max+(F ) + max−(F ) and
2 max+(F ) = F + |F |.

(38) For every non-empty set D and for every partial function F from D

to � and for every real number r such that 0 < r holds F −1 {r} =
(max+(F )) −1 {r}.

(39) For every non-empty set D and for every partial function F from D to
� holds F −1 ]−∞, 0] = (max+(F )) −1 {0}.

(40) For every non-empty set D and for every partial function F from D

to � and for every element d of D such that d ∈ dom F holds 0 ≤
(max+(F ))(d).

(41) For every non-empty set D and for every partial function F from D

to � and for every real number r such that 0 < r holds F −1 {−r} =
(max−(F )) −1 {r}.

(42) For every non-empty set D and for every partial function F from D to
� holds F −1 [0,+∞[ = (max−(F )) −1 {0}.

(43) For every non-empty set D and for every partial function F from D

to � and for every element d of D such that d ∈ dom F holds 0 ≤
(max−(F ))(d).

(44) For all non-empty sets D, C and for every partial function F from
D to � and for every partial function G from C to � such that F and
G are fiwerwise equipotent holds max+(F ) and max+(G) are fiwerwise
equipotent.

(45) For all non-empty sets D, C and for every partial function F from
D to � and for every partial function G from C to � such that F and
G are fiwerwise equipotent holds max−(F ) and max−(G) are fiwerwise
equipotent.

(46) For all non-empty sets D, C and for every partial function F from D to
� and for every partial function G from C to � such that domF is finite
and domG is finite and max+(F ) and max+(G) are fiwerwise equipotent
and max−(F ) and max−(G) are fiwerwise equipotent holds F and G are
fiwerwise equipotent.

(47) For every non-empty set D and for every partial function F from D to
� and for every set X holds max+(F )

�
X = max+(F

�
X).
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(48) For every non-empty set D and for every partial function F from D to
� and for every set X holds max−(F )

�
X = max−(F

�
X).

(49) For every non-empty set D and for every partial function F from D to
� if for every element d of D such that d ∈ dom F holds F (d) ≥ 0, then
max+(F ) = F .

(50) For every non-empty set D and for every partial function F from D to
� if for every element d of D such that d ∈ dom F holds F (d) ≤ 0, then
max−(F ) = −F .

Let D be a non-empty set, and let F be a partial function from D to � , and
let r be a real number. The functor F − r yields a partial function from D to �
and is defined as follows:

(Def.12) dom(F − r) = domF and for every element d of D such that d ∈
dom(F − r) holds (F − r)(d) = F (d) − r.

We now state four propositions:

(51) For every non-empty set D and for every partial function F from D to
� holds F − 0 = F .

(52) For every non-empty set D and for every partial function F from D to
� and for every real number r and for every set X holds F

�
X − r =

(F − r)
�
X.

(53) For every non-empty set D and for every partial function F from D to
� and for all real numbers r, s holds F −1 {s + r} = (F − r) −1 {s}.

(54) For all non-empty sets D, C and for every partial function F from D to
� and for every partial function G from C to � and for every real number
r holds F and G are fiwerwise equipotent if and only if F − r and G − r

are fiwerwise equipotent.

Let F be a partial function from � to � , and let X be a set. We say that F

is convex on X if and only if the conditions (Def.13) is satisfied.

(Def.13) (i) X ⊆ domF ,

(ii) for every real number p such that 0 ≤ p and p ≤ 1 and for all real
numbers r, s such that r ∈ X and s ∈ X and p · r + (1− p) · s ∈ X holds
F (p · r + (1 − p) · s) ≤ p · F (r) + (1 − p) · F (s).

The following propositions are true:

(55) Let a, b be real numbers. Let F be a partial function from � to � . Then
F is convex on [a, b] if and only if the following conditions are satisfied:

(i) [a, b] ⊆ dom F ,

(ii) for every real number p such that 0 ≤ p and p ≤ 1 and for all real
numbers r, s such that r ∈ [a, b] and s ∈ [a, b] holds F (p · r +(1− p) · s) ≤
p · F (r) + (1 − p) · F (s).

(56) Let a, b be real numbers. Let F be a partial function from � to � . Then
F is convex on [a, b] if and only if the following conditions are satisfied:

(i) [a, b] ⊆ dom F ,
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(ii) for all real numbers x1, x2, x3 such that x1 ∈ [a, b] and x2 ∈ [a, b] and

x3 ∈ [a, b] and x1 < x2 and x2 < x3 holds F (x1)−F (x2)
x1−x2

≤ F (x2)−F (x3)
x2−x3

.

(57) For every partial function F from � to � and for all sets X, Y such that
F is convex on X and Y ⊆ X holds F is convex on Y .

(58) For every partial function F from � to � and for every set X and for
every real number r holds F is convex on X if and only if F − r is convex
on X.

(59) For every partial function F from � to � and for every set X and for
every real number r such that 0 < r holds F is convex on X if and only
if r F is convex on X.

(60) For every partial function F from � to � and for every set X such that
X ⊆ dom F holds 0 F is convex on X.

(61) For all partial functions F , G from � to � and for every set X such that
F is convex on X and G is convex on X holds F + G is convex on X.

(62) For every partial function F from � to � and for every set X and for
every real number r such that F is convex on X holds max+(F − r) is
convex on X.

(63) For every partial function F from � to � and for every set X such that
F is convex on X holds max+(F ) is convex on X.

(64) id(Ω � ) is convex on � .

(65) For every real number r holds max+(id(Ω � ) − r) is convex on � .

Let D be a non-empty set, and let F be a partial function from D to � , and
let X be a set. Let us assume that dom(F

�
X) is finite. The functor FinS(F,X)

yields a non-increasing finite sequence of elements of � and is defined by:

(Def.14) F
�
X and FinS(F,X) are fiwerwise equipotent.

Next we state a number of propositions:

(66) For every non-empty set D and for every partial function F from D to �
and for every set X such that dom(F

�
X) is finite holds FinS(F,dom(F

�
X)) = FinS(F,X).

(67) For every non-empty set D and for every partial function F from D to �
and for every set X such that dom(F

�
X) is finite holds FinS(F

�
X,X) =

FinS(F,X).

(68) For every non-empty set D and for every element d of D and for every
set X and for every partial function F from D to � such that X is finite
and d ∈ dom(F

�
X) holds (FinS(F,X \ {d})) � 〈F (d)〉 and F

�
X are

fiwerwise equipotent.

(69) For every non-empty set D and for every element d of D and for every
set X and for every partial function F from D to � such that dom(F

�
X)

is finite and d ∈ dom(F
�
X) holds (FinS(F,X \ {d})) � 〈F (d)〉 and F

�
X

are fiwerwise equipotent.

(70) For every non-empty set D and for every partial function F from D to �
and for every set X such that dom(F

�
X) is finite holds len FinS(F,X) =
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card dom(F
�
X).

(71) For every non-empty set D and for every partial function F from D to
� holds FinS(F, ∅) = ε � .

(72) For every non-empty set D and for every partial function F from D to
� and for every element d of D such that d ∈ dom F holds FinS(F, {d}) =
〈F (d)〉.

(73) Let D be a non-empty set. Let F be a partial function from D to � .
Then for every set X and for every element d of D such that dom(F

�
X)

is finite and d ∈ dom(F
�
X) and (FinS(F,X))(len FinS(F,X)) = F (d)

holds FinS(F,X) = (FinS(F,X \ {d})) � 〈F (d)〉.

(74) Let D be a non-empty set. Let F be a partial function from D to � .
Let X, Y be sets. Suppose dom(F

�
X) is finite and Y ⊆ X and for all

elements d1, d2 of D such that d1 ∈ dom(F
�
Y ) and d2 ∈ dom(F

�
(X \Y ))

holds F (d1) ≥ F (d2). Then FinS(F,X) = (FinS(F, Y )) � FinS(F,X \ Y ).

(75) Let D be a non-empty set. Let F be a partial function from D to � .
Let r be a real number. Let X be a set. Then for every element d of D

such that dom(F
�
X) is finite and d ∈ dom(F

�
X) holds

(FinS(F − r,X))(len FinS(F − r,X)) = (F − r)(d)
if and only if (FinS(F,X))(len FinS(F,X)) = F (d).

(76) For every non-empty set D and for every partial function F from D to
� and for every real number r and for every set X such that dom(F

�
X)

is finite holds FinS(F − r,X) = FinS(F,X) − (card dom(F
�
X) 7−→ r).

(77) For every non-empty set D and for every partial function F from D to �
and for every set X such that dom(F

�
X) is finite and for every element d

of D such that d ∈ dom(F
�
X) holds F (d) ≥ 0 holds FinS(max+(F ),X) =

FinS(F,X).

(78) For every non-empty set D and for every partial function F from D to
� and for every set X and for every real number r such that dom(F

�
X)

is finite and rng(F
�
X) = {r} holds FinS(F,X) = card dom(F

�
X) 7−→ r.

(79) For every non-empty set D and for every partial function F from D to
� and for all sets X, Y such that dom(F

�
(X ∪ Y )) is finite and X ∩

Y = ∅ holds FinS(F,X ∪ Y ) and (FinS(F,X)) � FinS(F, Y ) are fiwerwise
equipotent.

Let D be a non-empty set, and let F be a partial function from D to � , and
let X be a set. The functor

∑X
κ=0 F (κ) yields a real number and is defined as

follows:

(Def.15)
∑X

κ=0 F (κ) =
∑

FinS(F,X).

One can prove the following propositions:

(80) For every non-empty set D and for every partial function F from D to
� and for every set X and for every real number r such that dom(F

�
X)

is finite holds
∑X

κ=0(r F )(κ) = r ·
∑X

κ=0 F (κ).

(81) For every non-empty set D and for all partial functions F , G from D to
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� and for every set X such that dom(F
�
X) is finite and dom(F

�
X) =

dom(G
�
X) holds

∑X
κ=0(F + G)(κ) =

∑X
κ=0 F (κ) +

∑X
κ=0 G(κ).

(82) For every non-empty set D and for all partial functions F , G from D to
� and for every set X such that dom(F

�
X) is finite and dom(F

�
X) =

dom(G
�
X) holds

∑X
κ=0(F − G)(κ) =

∑X
κ=0 F (κ) −

∑X
κ=0 G(κ).

(83) For every non-empty set D and for every partial function F from D to
� and for every set X and for every real number r such that dom(F

�
X)

is finite holds
∑X

κ=0(F − r)(κ) =
∑X

κ=0 F (κ) − r · card dom(F
�
X).

(84) For every non-empty set D and for every partial function F from D to

� holds
∑∅

κ=0 F (κ) = 0.

(85) For every non-empty set D and for every partial function F from D to

� and for every element d of D such that d ∈ domF holds
∑{d}

κ=0 F (κ) =
F (d).

(86) For every non-empty set D and for every partial function F from D to
� and for all sets X, Y such that dom(F

�
(X∪Y )) is finite and X∩Y = ∅

holds
∑X∪Y

κ=0 F (κ) =
∑X

κ=0 F (κ) +
∑Y

κ=0 F (κ).

(87) For every non-empty set D and for every partial function F from D

to � and for all sets X, Y such that dom(F
�
(X ∪ Y )) is finite and

dom(F
�
X)∩dom(F

�
Y ) = ∅ holds

∑X∪Y
κ=0 F (κ) =

∑X
κ=0 F (κ)+

∑Y
κ=0 F (κ).
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