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Summary. We define notions of fiberwise equipotent functions,
non-increasing finite sequences of real numbers and new operations on
finite sequences. Equivalent conditions for fiberwise equivalent functions
and basic facts about new constructions are shown.

MML Identifier: RFINSEQ.

The articles [11], [4], [5], [3], [1], [8], [10], [2], [12], [6], [7], and [9] provide
the notation and terminology for this paper. In the sequel n will be a natural
number. Let F , G be functions. We say that F and G are fiwerwise equipotent
if and only if:

(Def.1) for an arbitrary x holds F −1 {x} = G −1 {x} .

Let us observe that the predicate defined above is reflexive and symmetric.

One can prove the following propositions:

(1) For all functions F , G such that F and G are fiwerwise equipotent holds
rng F = rng G.

(2) For all functions F , G, H such that F and G are fiwerwise equipo-
tent and F and H are fiwerwise equipotent holds G and H are fiwerwise
equipotent.

(3) For all functions F , G holds F and G are fiwerwise equipotent if and only
if there exists a function H such that domH = domF and rng H = domG

and H is one-to-one and F = G · H.

(4) For all functions F , G holds F and G are fiwerwise equipotent if and

only if for every set X holds F −1 X = G −1 X .

(5) For every non-empty set D and for all functions F , G such that rng F ⊆
D and rng G ⊆ D holds F and G are fiwerwise equipotent if and only if

for every element d of D holds F −1 {d} = G −1 {d} .
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(6) For all functions F , G such that domF = domG holds F and G are
fiwerwise equipotent if and only if there exists a permutation P of domF

such that F = G · P .

(7) For all functions F , G such that F and G are fiwerwise equipotent holds

dom F = dom G.

(8) For all functions F , G such that domF is finite and domG is finite
holds F and G are fiwerwise equipotent if and only if for an arbitrary x

holds card(F −1 {x}) = card(G −1 {x}).

(9) For all functions F , G such that domF is finite and domG is finite
holds F and G are fiwerwise equipotent if and only if for every set X

holds card(F −1 X) = card(G −1 X).

(10) For all functions F , G such that domF is finite and domG is finite and
F and G are fiwerwise equipotent holds card domF = card domG.

(11) For every non-empty set D and for all functions F , G such that rng F ⊆
D and rng G ⊆ D and domF is finite and domG is finite holds F and
G are fiwerwise equipotent if and only if for every element d of D holds
card(F −1 {d}) = card(G −1 {d}).

(12) For all finite sequences f , g holds f and g are fiwerwise equipotent if
and only if for an arbitrary x holds card(f −1 {x}) = card(g −1 {x}).

(13) For all finite sequences f , g holds f and g are fiwerwise equipotent if
and only if for every set X holds card(f −1 X) = card(g −1 X).

(14) For all finite sequences f , g, h holds f and g are fiwerwise equipotent
if and only if f � h and g � h are fiwerwise equipotent.

(15) For all finite sequences f , g holds f � g and g � f are fiwerwise equipotent.

(16) For all finite sequences f , g such that f and g are fiwerwise equipotent
holds len f = len g and dom f = dom g.

(17) For all finite sequences f , g holds f and g are fiwerwise equipotent if
and only if there exists a permutation P of dom g such that f = g · P .

(18) For every function F and for every finite set X there exists a finite
sequence f such that F

�
X and f are fiwerwise equipotent.

Let D be a non-empty set, and let f be a finite sequence of elements of
D, and let n be a natural number. The functor f � n yields a finite sequence of
elements of D and is defined as follows:

(Def.2) (i) len(f � n) = len f − n and for every natural number m such that
m ∈ dom(f � n) holds f � n(m) = f(m + n) if n ≤ len f ,

(ii) f � n = εD, otherwise.

The following propositions are true:

(19) For every non-empty set D and for every finite sequence f of elements
of D and for all natural numbers n, m such that n ∈ dom f and m ∈ Seg n

holds (f
�
n)(m) = f(m) and m ∈ dom f .

(20) For every non-empty set D and for every finite sequence f of elements
of D and for every natural number n and for an arbitrary x such that
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len f = n + 1 and x = f(n + 1) holds f = (f
�
n) � 〈x〉.

(21) For every non-empty set D and for every finite sequence f of elements
of D and for every natural number n holds (f

�
n) � (f � n) = f .

(22) For all finite sequences R1, R2 of elements of � such that R1 and R2

are fiwerwise equipotent holds
∑

R1 =
∑

R2.

Let R be a finite sequence of elements of � . The functor MIM(R) yielding a
finite sequence of elements of � is defined by the conditions (Def.3).

(Def.3) (i) len MIM(R) = len R,
(ii) (MIM(R))(len MIM(R)) = R(len R),
(iii) for every natural number n such that 1 ≤ n and n ≤ len MIM(R) − 1

and for all real numbers r, s such that R(n) = r and R(n + 1) = s holds
(MIM(R))(n) = r − s.

Next we state several propositions:

(23) For every finite sequence R of elements of � and for every real number r

and for every natural number n such that len R = n+2 and R(n+1) = r

holds MIM(R
�
(n + 1)) = (MIM(R)

�
n) � 〈r〉.

(24) For every finite sequence R of elements of � and for all real numbers r, s

and for every natural number n such that len R = n+2 and R(n+1) = r

and R(n + 2) = s holds MIM(R) = (MIM(R)
�
n) � 〈r − s, s〉.

(25) MIM(ε � ) = ε � .

(26) For every real number r holds MIM(〈r〉) = 〈r〉.

(27) For all real numbers r, s holds MIM(〈r, s〉) = 〈r − s, s〉.

(28) For every finite sequence R of elements of � and for every natural num-
ber n holds (MIM(R)) � n = MIM(R � n ).

(29) For every finite sequence R of elements of � such that len R 6= 0 holds
∑

MIM(R) = R(1).

(30) For every finite sequence R of elements of � and for every natural num-
ber n such that 1 ≤ n and n < len R holds

∑
MIM(R � n) = R(n + 1).

A finite sequence of elements of � is non-increasing if:

(Def.4) for every natural number n such that n ∈ dom it and n + 1 ∈ dom it
and for all real numbers r, s such that r = it(n) and s = it(n + 1) holds
r ≥ s.

One can check that there exists a non-increasing finite sequence of elements of
� .

We now state several propositions:

(31) For every finite sequence R of elements of � such that len R = 0 or
len R = 1 holds R is non-increasing.

(32) For every finite sequence R of elements of � holds R is non-increasing
if and only if for all natural numbers n, m such that n ∈ dom R and
m ∈ domR and n < m and for all real numbers r, s such that R(n) = r

and R(m) = s holds r ≥ s.
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(33) For every non-increasing finite sequence R of elements of � and for
every natural number n holds R

�
n is a non-increasing finite sequence of

elements of � .

(34) For every non-increasing finite sequence R of elements of � and for
every natural number n holds R � n is a non-increasing finite sequence of
elements of � .

(35) For every finite sequence R of elements of � there exists a non-increasing
finite sequence R1 of elements of � such that R and R1 are fiwerwise
equipotent.

(36) For all non-increasing finite sequences R1, R2 of elements of � such that
R1 and R2 are fiwerwise equipotent holds R1 = R2.

(37) For every finite sequence R of elements of � and for all real numbers r,
s such that r 6= 0 holds R −1 { s

r
} = (r · R) −1 {s}.

(38) For every finite sequence R of elements of � holds (0·R)−1{0} = domR.
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