Functions and Finite Sequences of Real Numbers

Jarosław Kotowicz
Warsaw University
Białystok

Abstract

Summary. We define notions of fiberwise equipotent functions, non-increasing finite sequences of real numbers and new operations on finite sequences. Equivalent conditions for fiberwise equivalent functions and basic facts about new constructions are shown.

MML Identifier: RFINSEQ.

The articles [11], [4], [5], [3], [1], [8], [10], [2], [12], [6], [7], and [9] provide the notation and terminology for this paper. In the sequel n will be a natural number. Let F, G be functions. We say that F and G are fiwerwise equipotent if and only if:
(Def.1) for an arbitrary x holds $\overline{\overline{F^{-1}\{x\}}}=\overline{\overline{G^{-1}\{x\}}}$.
Let us observe that the predicate defined above is reflexive and symmetric.
One can prove the following propositions:
(1) For all functions F, G such that F and G are fiwerwise equipotent holds $\operatorname{rng} F=\operatorname{rng} G$.
(2) For all functions F, G, H such that F and G are fiwerwise equipotent and F and H are fiwerwise equipotent holds G and H are fiwerwise equipotent.
(3) For all functions F, G holds F and G are fiwerwise equipotent if and only if there exists a function H such that $\operatorname{dom} H=\operatorname{dom} F$ and $\operatorname{rng} H=\operatorname{dom} G$ and H is one-to-one and $F=G \cdot H$.
(4) For all functions F, G holds F and G are fiwerwise equipotent if and only if for every set X holds $\overline{\overline{F^{-1} X}}=\overline{\overline{G^{-1} X}}$.
(5) For every non-empty set D and for all functions F, G such that rng $F \subseteq$ D and $\operatorname{rng} G \subseteq D$ holds F and G are fiwerwise equipotent if and only if for every element d of D holds $\overline{\overline{F^{-1}\{d\}}}=\overline{\overline{G^{-1}\{d\}}}$.
(6) fiwerwise equipotent if and only if there exists a permutation P of $\operatorname{dom} F$ such that $F=G \cdot P$.
For all functions F, G such that F and G are fiwerwise equipotent holds $\overline{\overline{\operatorname{dom} F}}=\overline{\overline{\operatorname{dom} G}}$.
(8)
, F such that dom F is finite and dom G is finite holds F and G are fiwerwise equipotent if and only if for an arbitrary x holds $\operatorname{card}\left(F^{-1}\{x\}\right)=\operatorname{card}\left(G^{-1}\{x\}\right)$.
(9) For all functions F, G such that $\operatorname{dom} F$ is finite and $\operatorname{dom} G$ is finite holds F and G are fiwerwise equipotent if and only if for every set X $\operatorname{holds} \operatorname{card}\left(F^{-1} X\right)=\operatorname{card}\left(G^{-1} X\right)$.
(10) For all functions F, G such that $\operatorname{dom} F$ is finite and dom G is finite and F and G are fiwerwise equipotent holds card $\operatorname{dom} F=\operatorname{card} \operatorname{dom} G$.
(11) For every non-empty set D and for all functions F, G such that $\operatorname{rng} F \subseteq$ D and $\operatorname{rng} G \subseteq D$ and $\operatorname{dom} F$ is finite and $\operatorname{dom} G$ is finite holds F and G are fiwerwise equipotent if and only if for every element d of D holds $\operatorname{card}\left(F^{-1}\{d\}\right)=\operatorname{card}\left(G^{-1}\{d\}\right)$.
(12) For all finite sequences f, g holds f and g are fiwerwise equipotent if and only if for an arbitrary x holds $\operatorname{card}\left(f^{-1}\{x\}\right)=\operatorname{card}\left(g^{-1}\{x\}\right)$.
(13) For all finite sequences f, g holds f and g are fiwerwise equipotent if and only if for every set X holds card $\left(f^{-1} X\right)=\operatorname{card}\left(g^{-1} X\right)$.
(14) For all finite sequences f, g, h holds f and g are fiwerwise equipotent if and only if $f^{\wedge} h$ and $g^{\wedge} h$ are fiwerwise equipotent.
(15) For all finite sequences f, g holds $f^{\wedge} g$ and $g^{\wedge} f$ are fiwerwise equipotent. holds len $f=\operatorname{len} g$ and $\operatorname{dom} f=\operatorname{dom} g$.
(17) For all finite sequences f, g holds f and g are fiwerwise equipotent if and only if there exists a permutation P of $\operatorname{dom} g$ such that $f=g \cdot P$.
(18) For every function F and for every finite set X there exists a finite sequence f such that $F \upharpoonright X$ and f are fiwerwise equipotent.
Let D be a non-empty set, and let f be a finite sequence of elements of D, and let n be a natural number. The functor $f_{\downarrow n}$ yields a finite sequence of elements of D and is defined as follows:
(Def.2) (i) $\quad \operatorname{len}\left(f_{l n}\right)=\operatorname{len} f-n$ and for every natural number m such that $m \in \operatorname{dom}\left(f_{\text {ln }}\right)$ holds $f_{\text {ln }}(m)=f(m+n)$ if $n \leq \operatorname{len} f$
(ii) $f_{\text {ln }}=\varepsilon_{D}$, otherwise.

The following propositions are true:
(19) For every non-empty set D and for every finite sequence f of elements of D and for all natural numbers n, m such that $n \in \operatorname{dom} f$ and $m \in \operatorname{Seg} n$ holds $(f \upharpoonright n)(m)=f(m)$ and $m \in \operatorname{dom} f$.
(20) For every non-empty set D and for every finite sequence f of elements of D and for every natural number n and for an arbitrary x such that
len $f=n+1$ and $x=f(n+1)$ holds $f=(f \upharpoonright n)^{\wedge}\langle x\rangle$.
(21) For every non-empty set D and for every finite sequence f of elements of D and for every natural number n holds $(f \upharpoonright n)^{\wedge}\left(f_{\text {ln }}\right)=f$.
(22) For all finite sequences R_{1}, R_{2} of elements of \mathbb{R} such that R_{1} and R_{2} are fiwerwise equipotent holds $\sum R_{1}=\sum R_{2}$.
Let R be a finite sequence of elements of \mathbb{R}. The functor $\operatorname{MIM}(R)$ yielding a finite sequence of elements of \mathbb{R} is defined by the conditions (Def.3).
(Def.3) (i) $\quad \operatorname{len} \operatorname{MIM}(R)=\operatorname{len} R$,
(ii) $\quad(\operatorname{MIM}(R))(\operatorname{len} \operatorname{MIM}(R))=R(\operatorname{len} R)$,
(iii) for every natural number n such that $1 \leq n$ and $n \leq \operatorname{len} \operatorname{MIM}(R)-1$ and for all real numbers r, s such that $R(n)=r$ and $R(n+1)=s$ holds $(\operatorname{MIM}(R))(n)=r-s$.
Next we state several propositions:
(23) For every finite sequence R of elements of \mathbb{R} and for every real number r and for every natural number n such that len $R=n+2$ and $R(n+1)=r$ holds $\operatorname{MIM}(R \upharpoonright(n+1))=(\operatorname{MIM}(R) \upharpoonright n)^{\wedge}\langle r\rangle$.
(24) For every finite sequence R of elements of \mathbb{R} and for all real numbers r, s and for every natural number n such that len $R=n+2$ and $R(n+1)=r$ and $R(n+2)=s$ holds $\operatorname{MIM}(R)=(\operatorname{MIM}(R) \upharpoonright n) \wedge\langle r-s, s\rangle$.
(25) $\quad \operatorname{MIM}\left(\varepsilon_{\mathbb{R}}\right)=\varepsilon_{\mathbb{R}}$.
(26) For every real number r holds $\operatorname{MIM}(\langle r\rangle)=\langle r\rangle$.
(27) For all real numbers r, s holds $\operatorname{MIM}(\langle r, s\rangle)=\langle r-s, s\rangle$.
(28) For every finite sequence R of elements of \mathbb{R} and for every natural number n holds $(\operatorname{MIM}(R))_{\mid n}=\operatorname{MIM}\left(R_{\mid n}\right)$.
(29) For every finite sequence R of elements of \mathbb{R} such that len $R \neq 0$ holds $\sum \operatorname{MIM}(R)=R(1)$.
(30) For every finite sequence R of elements of \mathbb{R} and for every natural number n such that $1 \leq n$ and $n<\operatorname{len} R$ holds $\sum \operatorname{MIM}\left(R_{\downarrow n}\right)=R(n+1)$.
A finite sequence of elements of \mathbb{R} is non-increasing if:
(Def.4) for every natural number n such that $n \in$ domit and $n+1 \in$ domit and for all real numbers r, s such that $r=\operatorname{it}(n)$ and $s=\operatorname{it}(n+1)$ holds $r \geq s$.
One can check that there exists a non-increasing finite sequence of elements of \mathbb{R}.

We now state several propositions:
(31) For every finite sequence R of elements of \mathbb{R} such that len $R=0$ or len $R=1$ holds R is non-increasing.
(32) For every finite sequence R of elements of \mathbb{R} holds R is non-increasing if and only if for all natural numbers n, m such that $n \in \operatorname{dom} R$ and $m \in \operatorname{dom} R$ and $n<m$ and for all real numbers r, s such that $R(n)=r$ and $R(m)=s$ holds $r \geq s$.
(33) For every non-increasing finite sequence R of elements of \mathbb{R} and for every natural number n holds $R \upharpoonright n$ is a non-increasing finite sequence of elements of \mathbb{R}.
(34) For every non-increasing finite sequence R of elements of \mathbb{R} and for every natural number n holds $R_{\downarrow n}$ is a non-increasing finite sequence of elements of \mathbb{R}.
(35) For every finite sequence R of elements of \mathbb{R} there exists a non-increasing finite sequence R_{1} of elements of \mathbb{R} such that R and R_{1} are fiwerwise equipotent.
(36) For all non-increasing finite sequences R_{1}, R_{2} of elements of \mathbb{R} such that R_{1} and R_{2} are fiwerwise equipotent holds $R_{1}=R_{2}$.
(37) For every finite sequence R of elements of \mathbb{R} and for all real numbers r, s such that $r \neq 0$ holds $R^{-1}\left\{\frac{s}{r}\right\}=(r \cdot R)^{-1}\{s\}$.
(38) For every finite sequence R of elements of \mathbb{R} holds $(0 \cdot R)^{-1}\{0\}=\operatorname{dom} R$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651-656, 1990.
[7] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[9] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[12] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Received March 15, 1993

