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Summary. The monoid of functions yielding elements of a group
is introduced. The monoid of multisets over a set is constructed as such
monoid where the target group is the group of natural numbers with addi-
tion. Moreover, the generalization of group operation onto the operation
on subsets is present. That generalization is used to introduce the group
2G of subsets of a group G.

MML Identifier: MONOID 1.

The articles [21], [22], [15], [3], [17], [10], [5], [14], [11], [7], [16], [20], [9], [8], [19],
[6], [13], [1], [18], [23], [24], [12], [2], and [4] provide the notation and terminology
for this paper.

1. Updating

We adopt the following convention: x, y are arbitrary, X, Y , Z are sets, and
n is a natural number. We now define two new constructions. Let D be a non-
empty set, and let d be an element of D. Then {d} is a non-empty subset of
D. Let D be a non-empty set, and let X1, X2 be subsets of D. Then X1 ∪ X2

is a subset of D. Let D be a non-empty set, and let X1 be a subset of D, and
let X2 be a non-empty subset of D. Then X1 ∪X2 is a non-empty subset of D.
Let D1, D2, D be non-empty sets. A binary function from D1, D2 into D is a
function from [:D1, D2 :] into D.

Let f be a function, and let x1, x2, y be arbitrary. The functor f(x1, x2)(y)
is defined by:

(Def.1) f(x1, x2)(y) = f(〈〈x1, x2〉〉)(y).

The following proposition is true
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(1) For all functions f , g and for arbitrary x1, x2, x such that 〈〈x1, x2〉〉 ∈
dom f and g = f(x1, x2) and x ∈ dom g holds f(x1, x2)(x) = g(x).

Let A, D1, D2, D be non-empty sets, and let f be a binary function from
D1, D2 into DA, and let x1 be an element of D1, and let x2 be an element of
D2, and let x be an element of A. Then f(x1, x2)(x) is an element of D. Let A

be a set, and let D1, D2, D be non-empty sets, and let f be a binary function
from D1, D2 into D, and let g1 be a function from A into D1, and let g2 be
a function from A into D2. Then f ◦(g1, g2) is an element of DA. Let A be a
non-empty set, and let n be a natural number, and let x be an element of A.
Then n 7−→ x is a finite sequence of elements of A. We introduce the functor
n 7−→. x as a synonym of n 7−→ x. Let D be a non-empty set, and let A be a set,
and let d be an element of D. Then A 7−→ d is an element of DA. Let A be a
set, and let D1, D2, D be non-empty sets, and let f be a binary function from
D1, D2 into D, and let d be an element of D1, and let g be a function from A

into D2. Then f ◦(d, g) is an element of DA. Let A be a set, and let D1, D2, D

be non-empty sets, and let f be a binary function from D1, D2 into D, and let
g be a function from A into D1, and let d be an element of D2. Then f ◦(g, d)
is an element of DA.

We now state the proposition

(2) For all functions f , g and for every set X holds (f
�
X) · g = f · (X

�
g).

The scheme NonUniqFuncDEx concerns a set A, a non-empty set B, and a
binary predicate P, and states that:

there exists a function f from A into B such that for every x such that x ∈ A
holds P[x, f(x)]
provided the following condition is met:

• for every x such that x ∈ A there exists an element y of B such
that P[x, y].

2. Monoid of functions into a semigroup

Let D1, D2, D be non-empty sets, and let f be a binary function from D1, D2

into D, and let A be a set. The functor f ◦
A yields a binary function from D1

A,
D2

A into DA and is defined by:

(Def.2) for every element f1 of D1
A and for every element f2 of D2

A holds
(f◦

A)(f1, f2) = f ◦(f1, f2).

Next we state the proposition

(3) For all non-empty sets D1, D2, D and for every binary function f from
D1, D2 into D and for every set A and for every function f1 from A into
D1 and for every function f2 from A into D2 and for every x such that
x ∈ A holds (f ◦

A)(f1, f2)(x) = f(f1(x), f2(x)).

For simplicity we adopt the following convention: A will denote a set, D

will denote a non-empty set, a will denote an element of D, o, o′ will denote
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binary operations on D, and f , g, h will denote functions from A into D. The
following propositions are true:

(4) If o is commutative, then o◦(f, g) = o◦(g, f).

(5) If o is associative, then o◦(o◦(f, g), h) = o◦(f, o◦(g, h)).

(6) If a is a unity w.r.t. o, then o◦(a, f) = f and o◦(f, a) = f .

(7) If o is idempotent, then o◦(f, f) = f .

(8) If o is commutative, then o◦A is commutative.

(9) If o is associative, then o◦A is associative.

(10) If a is a unity w.r.t. o, then A 7−→ a is a unity w.r.t. o◦A.

(11) If o has a unity, then 1o◦
A

= A 7−→ 1o and o◦A has a unity.

(12) If o is idempotent, then o◦A is idempotent.

(13) If o is invertible, then o◦A is invertible.

(14) If o is cancelable, then o◦A is cancelable.

(15) If o has uniquely decomposable unity, then o◦A has uniquely decompos-
able unity.

(16) If o absorbs o′, then o◦A absorbs o′◦A.

(17) For all non-empty sets D1, D2, D, E1, E2, E and for every binary
function o1 from D1, D2 into D and for every binary function o2 from E1,
E2 into E such that o1 ≤ o2 holds o1

◦
A ≤ o2

◦
A.

Let G be a half group structure, and let A be a set. The functor GA yielding
a half group structure is defined by:

(Def.3) (i) GA = 〈(the carrier of G)A, (the operation of
G)◦A, A 7−→ 1the operation of G

qua an element of (the carrier of G)A qua a non-empty set〉 if G is unital,
(ii) GA = 〈(the carrier of G)A, (the operation of G)◦A〉, otherwise.

In the sequel G denotes a half group structure. We now state two proposi-
tions:

(18) The carrier of GX = (the carrier of G)X and the operation of GX = (the
operation of G)◦X .

(19) x is an element of GX if and only if x is a function from X into the
carrier of G.

Let G be a half group structure, and let A be a set. Then GA is a constituted
functions half group structure.

We now state two propositions:

(20) For every element f of GX holds dom f = X and rng f ⊆ the carrier of
G.

(21) For all elements f , g of GX if for every x such that x ∈ X holds
f(x) = g(x), then f = g.

Let G be a half group structure, and let A be a non-empty set, and let f be
an element of GA. Then rng f is a non-empty subset of G. Let a be an element
of A. Then f(a) is an element of G.
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We now state the proposition

(22) For all elements f1, f2 of GD and for every element a of D holds (f1 ·
f2)(a) = f1(a) · f2(a).

Let G be a unital half group structure, and let A be a set. Then GA is a well
unital constituted functions strict monoid structure.

One can prove the following propositions:

(23) For every G being a unital half group structure holds the unity of GX =
X 7−→ 1the operation of G.

(24) Let G be a half group structure. Let A be a set. Then
(i) if G is commutative, then GA is commutative,
(ii) if G is associative, then GA is associative,
(iii) if G is idempotent, then GA is idempotent,
(iv) if G is invertible, then GA is invertible,
(v) if G is cancelable, then GA is cancelable,
(vi) if G has uniquely decomposable unity, then GA has uniquely decom-

posable unity.

(25) For every subsystem H of G holds HX is a subsystem of GX .

(26) For every G being a unital half group structure and for every subsystem
H of G such that 1the operation of G ∈ the carrier of H holds HX is a
monoidal subsystem of GX .

Let G be a unital associative commutative cancelable half group structure
with uniquely decomposable unity, and let A be a set. Then GA is a commuta-
tive cancelable constituted functions strict monoid with uniquely decomposable
unity.

3. Monoid of multisets over a set

Let A be a set. The functor A⊗
ω yields a commutative cancelable constituted

functions strict monoid with uniquely decomposable unity and is defined by:

(Def.4) A⊗
ω = 〈 � , +, 0〉A.

Next we state the proposition

(27) The carrier of X⊗
ω = � X and the operation of X⊗

ω = (+ � )◦X and the
unity of X⊗

ω = X 7−→ 0.

Let A be a set. A multiset over A is an element of A⊗
ω .

Next we state two propositions:

(28) x is a multiset over X if and only if x is a function from X into � .

(29) For every multiset m over X holds domm = X and rng m ⊆ � .

Let A be a non-empty set, and let m be a multiset over A. Then rng m is
a non-empty subset of � . Let a be an element of A. Then m(a) is a natural
number.

Next we state two propositions:
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(30) For all multisets m1, m2 over D and for every element a of D holds
(m1 ⊗ m2)(a) = m1(a) + m2(a).

(31) χY,X is a multiset over X.

Let us consider Y , X. Then χY,X is a multiset over X. Let us consider X,
and let n be a natural number. Then X 7−→ n is a multiset over X. Let A be a
non-empty set, and let a be an element of A. The functor χa yields a multiset
over A and is defined as follows:

(Def.5) χa = χ
{a},A.

One can prove the following proposition

(32) For every non-empty set A and for all elements a, b of A holds (χa)(a) =
1 and also if b 6= a, then (χa)(b) = 0.

For simplicity we follow a convention: A denotes a non-empty set, a denotes
an element of A, p, q denote finite sequences of elements of A, and m1, m2

denote multisets over A. Next we state the proposition

(33) If for every a holds m1(a) = m2(a), then m1 = m2.

Let A be a set. The functor A⊗ yields a strict monoidal subsystem of A⊗
ω

and is defined as follows:

(Def.6) for every multiset f over A holds f ∈ the carrier of A⊗ if and only if
f −1 ( � \ {0}) is finite.

The following three propositions are true:

(34) χa is an element of A⊗.

(35) dom({x}
�
(p � 〈x〉)) = dom({x}

�
p) ∪ {len p + 1}.

(36) If x 6= y, then dom({x}
�
(p � 〈y〉)) = dom({x}

�
p).

Let A be a non-empty set, and let p be a finite sequence of elements of A.
The functor |p| yields a multiset over A and is defined as follows:

(Def.7) for every element a of A holds |p|(a) = card dom({a}
�
p).

We now state several propositions:

(37) |εA|(a) = 0.

(38) |εA| = A 7−→ 0.

(39) |〈a〉| = χa.

(40) |p � 〈a〉| = |p| ⊗ χa.

(41) |p � q| = |p| ⊗ |q|.

(42) |n 7−→. a|(a) = n and for every element b of A such that b 6= a holds
|n 7−→. a|(b) = 0.

Next we state two propositions:

(43) |p| is an element of A⊗.

(44) If x is an element of A⊗, then there exists p such that x = |p|.
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4. Monoid of subsets of a semigroup

In the sequel a, b will be elements of D. Let D1, D2, D be non-empty sets, and
let f be a binary function from D1, D2 into D. The functor ◦ f yields a binary
function from 2D1 , 2D2 into 2D and is defined by:

(Def.8) for every element x of [: 2D1 , 2D2 :] holds (◦ f)(x) = f ◦ [: x1, x2 :].

One can prove the following propositions:

(45) For all non-empty sets D1, D2, D and for every binary function f from
D1, D2 into D and for every subset X1 of D1 and for every subset X2 of
D2 holds (◦ f)(X1, X2) = f ◦ [: X1, X2 :].

(46) For all non-empty sets D1, D2, D and for every binary function f from
D1, D2 into D and for every subset X1 of D1 and for every subset X2 of
D2 and for arbitrary x1, x2 such that x1 ∈ X1 and x2 ∈ X2 holds f(x1,

x2) ∈ (◦ f)(X1, X2).

(47) For all non-empty sets D1, D2, D and for every binary function f from
D1, D2 into D and for every subset X1 of D1 and for every subset X2 of
D2 holds (◦ f)(X1, X2) = {f(a, b) : a ∈ X1 ∧ b ∈ X2}, where a ranges
over elements of D1, and b ranges over elements of D2.

(48) If o is commutative, then o ◦ [: X, Y :] = o ◦ [:Y, X :].

(49) If o is associative, then o ◦ [: o ◦ [: X, Y :], Z :] = o ◦ [:X, o ◦ [: Y, Z :] :].

(50) If o is commutative, then ◦ o is commutative.

(51) If o is associative, then ◦ o is associative.

(52) If a is a unity w.r.t. o, then o ◦ [: {a}, X :] = D ∩ X and o ◦ [: X, {a} :] =
D ∩ X.

(53) If a is a unity w.r.t. o, then {a} is a unity w.r.t. ◦ o and ◦ o has a unity
and 1◦ o = {a}.

(54) If o has a unity, then ◦ o has a unity and {1o} is a unity w.r.t. ◦ o and

1◦ o = {1o}.

(55) If o has uniquely decomposable unity, then ◦ o has uniquely decompos-
able unity.

Let G be a half group structure. The functor 2G yields a half group structure
and is defined by:

(Def.9) (i) 2G = 〈2the carrier of G, ◦ (the operation of G), {1the operation of G}〉 if
G is unital,

(ii) 2G = 〈2the carrier of G, ◦ (the operation of G)〉, otherwise.

Let G be a unital half group structure. Then 2G is a well unital strict monoid
structure.

One can prove the following three propositions:

(56) The carrier of 2G = 2the carrier of G and the operation of 2G = ◦ (the
operation of G).



monoid of multisets and subsets 233

(57) For every G being a unital half group structure holds the unity of 2G =
{1the operation of G}.

(58) For every G being a half group structure holds if G is commutative,
then 2G is commutative and also if G is associative, then 2G is associative
and also if G has uniquely decomposable unity, then 2G has uniquely
decomposable unity.
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[6] Czes law Byliński. Basic functions and operations on functions. Formalized Mathematics,

1(1):245–254, 1990.
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