Properties of the Intervals of Real Numbers

Białas Józef
Łódź University

Abstract

Summary. The paper contains definitions and basic properties of the intervals of real numbers.

The article includes the text being a continuation of the paper [5]. Some theorems concerning basic properties of intervals are proved.

MML Identifier: MEASURE5.

The notation and terminology used here are introduced in the following papers: [16], [15], [11], [12], [9], [10], [1], [14], [2], [13], [4], [6], [8], [7], [3], [5], and [17]. The following propositions are true:
(1) For all Real numbers x, y such that $x \neq-\infty$ and $x \neq+\infty$ and $x \leq y$ holds $0_{\overline{\mathbb{R}}} \leq y-x$.
(2) For all Real numbers x, y such that it is not true that: $x=-\infty$ and $y=-\infty$ and it is not true that: $x=+\infty$ and $y=+\infty$ and $x \leq y$ holds $0_{\overline{\mathbb{R}}} \leq y-x$.
(3) For all Real numbers x, y holds $x \leq y$ or $y \leq x$.
(4) For all Real numbers x, y such that $x \neq y$ holds $x<y$ or $y<x$.
(5) For all Real numbers x, y holds $x<y$ or $y \leq x$.
(6) For all Real numbers x, y holds $x<y$ if and only if $y \not \leq x$.
(7) For all Real numbers x, y, z such that $x<y$ and $y<z$ holds $x<z$.
(8) For all Real numbers a, b, c such that $b \neq-\infty$ and $b \neq+\infty$ and it is not true that: $a=-\infty$ and $c=-\infty$ and it is not true that: $a=+\infty$ and $c=+\infty$ holds $(c-b)+(b-a)=c-a$.
(9) For all Real numbers a_{1}, a_{2} holds $\inf \left\{a_{1}, a_{2}\right\} \leq a_{1}$ and $\inf \left\{a_{1}, a_{2}\right\} \leq a_{2}$ and $a_{1} \leq \sup \left\{a_{1}, a_{2}\right\}$ and $a_{2} \leq \sup \left\{a_{1}, a_{2}\right\}$.
(10) For all Real numbers a, b, c such that $a \leq b$ and $b<c$ or $a<b$ and $b \leq c$ holds $a<c$.

We now define several new constructions. Let a, b be Real numbers. The functor $[a, b]$ yielding a subset of \mathbb{R} is defined as follows:
(Def.1) for every Real number x holds $x \in[a, b]$ if and only if $a \leq x$ and $x \leq b$ and $x \in \mathbb{R}$.
Let a, b be Real numbers. The functor $] a, b[$ yields a subset of \mathbb{R} and is defined as follows:
(Def.2) for every Real number x holds $x \in] a, b[$ if and only if $a<x$ and $x<b$ and $x \in \mathbb{R}$.
Let a, b be Real numbers. The functor $] a, b]$ yielding a subset of \mathbb{R} is defined by:
(Def.3) for every Real number x holds $x \in] a, b]$ if and only if $a<x$ and $x \leq b$ and $x \in \mathbb{R}$.
Let a, b be Real numbers. The functor $[a, b[$ yields a subset of \mathbb{R} and is defined by:
(Def.4) for every Real number x holds $x \in[a, b[$ if and only if $a \leq x$ and $x<b$ and $x \in \mathbb{R}$.
A subset of \mathbb{R} is called an open interval if:
(Def.5) there exist Real numbers a, b such that $a \leq b$ and it $=] a, b[$.
A subset of \mathbb{R} is said to be a closed interval if:
(Def.6) there exist Real numbers a, b such that $a \leq b$ and it $=[a, b]$.
A subset of \mathbb{R} is said to be a right-open interval if:
(Def.7) there exist Real numbers a, b such that $a \leq b$ and it $=[a, b[$.
A subset of \mathbb{R} is called a left-open interval if:
(Def.8) there exist Real numbers a, b such that $a \leq b$ and it $=] a, b]$.
A subset of \mathbb{R} is said to be an interval if:
(Def.9) it is an open interval or it is a closed interval or it is a right-open interval or it is a left-open interval.
We see that the open interval is an interval. We see that the closed interval is an interval. We see that the right-open interval is an interval. We see that the left-open interval is an interval.

We now state a number of propositions:
(11) For an arbitrary x and for all Real numbers a, b such that $x \in] a, b[$ or $x \in[a, b]$ or $x \in[a, b[$ or $x \in] a, b]$ holds x is a Real number.
(12) For all Real numbers a, b such that $b<a$ holds $] a, b[=\emptyset$ and $[a, b]=\emptyset$ and $[a, b[=\emptyset$ and $] a, b]=\emptyset$.
(13) For every Real number a holds $] a, a[=\emptyset$ and $[a, a[=\emptyset$ and $] a, a]=\emptyset$.
(14) For every Real number a holds if $a=-\infty$ or $a=+\infty$, then $[a, a]=\emptyset$ and also if $a \neq-\infty$ and $a \neq+\infty$, then $[a, a]=\{a\}$.
(15) For all Real numbers a, b such that $b \leq a$ holds $] a, b[=\emptyset$ and $[a, b[=\emptyset$ and $] a, b]=\emptyset$ and $[a, b] \subseteq\{a\}$ and $[a, b] \subseteq\{b\}$.
(16) For all Real numbers a, b, c such that $a<b$ and $b<c$ holds $b \in \mathbb{R}$.
(17) For all Real numbers a, b such that $a<b$ there exists a Real number x such that $a<x$ and $x<b$ and $x \in \mathbb{R}$.
(18) For all Real numbers a, b, c such that $a<b$ and $a<c$ there exists a Real number x such that $a<x$ and $x<b$ and $x<c$ and $x \in \mathbb{R}$.
(19) For all Real numbers a, b, c such that $a<c$ and $b<c$ there exists a Real number x such that $a<x$ and $b<x$ and $x<c$ and $x \in \mathbb{R}$.
(20) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $a_{1}<a_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $\left.x \in\right] a_{1}, b_{1}[$ and $x \notin] a_{2}, b_{2}[$ or $x \notin] a_{1}, b_{1}[$ and $x \in] a_{2}, b_{2}[$.
(21) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $b_{1}<b_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $\left.x \in\right] a_{1}, b_{1}[$ and $x \notin] a_{2}, b_{2}[$ or $x \notin] a_{1}, b_{1}[$ and $x \in] a_{2}, b_{2}[$.
(22) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $a_{1}<a_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $x \in\left[a_{1}, b_{1}\right]$ and $\left.x \notin\right] a_{2}, b_{2}[$ or $x \notin\left[a_{1}, b_{1}\right]$ and $\left.x \in\right] a_{2}, b_{2}[$.
(23) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $b_{1}<b_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $x \in\left[a_{1}, b_{1}\right]$ and $\left.x \notin\right] a_{2}, b_{2}[$ or $x \notin\left[a_{1}, b_{1}\right]$ and $\left.x \in\right] a_{2}, b_{2}[$.
(24) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $a_{1}<a_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $\left.x \in\right] a_{1}, b_{1}\left[\right.$ and $x \notin\left[a_{2}, b_{2}\right]$ or $x \notin] a_{1}, b_{1}\left[\right.$ and $x \in\left[a_{2}, b_{2}\right]$.
(25) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $b_{1}<b_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $\left.x \in\right] a_{1}, b_{1}\left[\right.$ and $x \notin\left[a_{2}, b_{2}\right]$ or $x \notin] a_{1}, b_{1}\left[\right.$ and $x \in\left[a_{2}, b_{2}\right]$.
(26) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $a_{1}<a_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $\left.x \in\right] a_{1}, b_{1}\left[\right.$ and $x \notin\left[a_{2}, b_{2}[\right.$ or $x \notin] a_{1}, b_{1}\left[\right.$ and $x \in\left[a_{2}, b_{2}[\right.$.
(27) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $b_{1}<b_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $\left.x \in\right] a_{1}, b_{1}\left[\right.$ and $x \notin\left[a_{2}, b_{2}[\right.$ or $x \notin] a_{1}, b_{1}\left[\right.$ and $x \in\left[a_{2}, b_{2}[\right.$.
(28) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $a_{1}<a_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $x \in\left[a_{1}, b_{1}[\right.$ and $x \notin] a_{2}, b_{2}[$ or $x \notin\left[a_{1}, b_{1}[\right.$ and $x \in] a_{2}, b_{2}[$.
(29) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $b_{1}<b_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $x \in\left[a_{1}, b_{1}[\right.$ and $x \notin] a_{2}, b_{2}[$ or $x \notin\left[a_{1}, b_{1}[\right.$ and $x \in] a_{2}, b_{2}[$.
(30) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $a_{1}<a_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $\left.x \in\right] a_{1}, b_{1}[$ and $\left.x \notin] a_{2}, b_{2}\right]$ or $x \notin] a_{1}, b_{1}[$ and $\left.x \in] a_{2}, b_{2}\right]$.
(31) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $b_{1}<b_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $\left.x \in\right] a_{1}, b_{1}[$ and $\left.x \notin] a_{2}, b_{2}\right]$ or $x \notin] a_{1}, b_{1}[$ and $\left.x \in] a_{2}, b_{2}\right]$.
(32) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $a_{1}<a_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $\left.\left.x \in\right] a_{1}, b_{1}\right]$ and $\left.x \notin\right] a_{2}, b_{2}[$ or $\left.x \notin] a_{1}, b_{1}\right]$ and $\left.x \in\right] a_{2}, b_{2}[$.
(33) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $b_{1}<b_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $\left.\left.x \in\right] a_{1}, b_{1}\right]$ and $\left.x \notin\right] a_{2}, b_{2}[$ or $\left.x \notin] a_{1}, b_{1}\right]$ and $\left.x \in\right] a_{2}, b_{2}[$.
(34) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $a_{1}<a_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $x \in\left[a_{1}, b_{1}\right]$ and $x \notin\left[a_{2}, b_{2}\right]$ or $x \notin\left[a_{1}, b_{1}\right]$ and $x \in\left[a_{2}, b_{2}\right]$.
(35) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $b_{1}<b_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $x \in\left[a_{1}, b_{1}\right]$ and $x \notin\left[a_{2}, b_{2}\right]$ or $x \notin\left[a_{1}, b_{1}\right]$ and $x \in\left[a_{2}, b_{2}\right]$.
(36) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $a_{1}<a_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $x \in\left[a_{1}, b_{1}\right]$ and $x \notin\left[a_{2}, b_{2}[\right.$ or $x \notin\left[a_{1}, b_{1}\right]$ and $x \in\left[a_{2}, b_{2}[\right.$.
For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $b_{1}<b_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $x \in\left[a_{1}, b_{1}\right]$ and $x \notin\left[a_{2}, b_{2}[\right.$ or $x \notin\left[a_{1}, b_{1}\right]$ and $x \in\left[a_{2}, b_{2}[\right.$.
(38) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $a_{1}<a_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $x \in\left[a_{1}, b_{1}\left[\right.\right.$ and $x \notin\left[a_{2}, b_{2}\right]$ or $x \notin\left[a_{1}, b_{1}\left[\right.\right.$ and $x \in\left[a_{2}, b_{2}\right]$.
(39) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $b_{1}<b_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $x \in\left[a_{1}, b_{1}\left[\right.\right.$ and $x \notin\left[a_{2}, b_{2}\right]$ or $x \notin\left[a_{1}, b_{1}\left[\right.\right.$ and $x \in\left[a_{2}, b_{2}\right]$.
(40) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $a_{1}<a_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $x \in\left[a_{1}, b_{1}\right]$ and $\left.\left.x \notin\right] a_{2}, b_{2}\right]$ or $x \notin\left[a_{1}, b_{1}\right]$ and $\left.\left.x \in\right] a_{2}, b_{2}\right]$.
(41) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $b_{1}<b_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $x \in\left[a_{1}, b_{1}\right]$ and $\left.\left.x \notin\right] a_{2}, b_{2}\right]$ or $x \notin\left[a_{1}, b_{1}\right]$ and $\left.\left.x \in\right] a_{2}, b_{2}\right]$.
Next we state a number of propositions:
(42) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $a_{1}<a_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $\left.\left.x \in\right] a_{1}, b_{1}\right]$ and $x \notin\left[a_{2}, b_{2}\right]$ or $\left.x \notin] a_{1}, b_{1}\right]$ and $x \in\left[a_{2}, b_{2}\right]$.
(43) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $b_{1}<b_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $\left.\left.x \in\right] a_{1}, b_{1}\right]$ and $x \notin\left[a_{2}, b_{2}\right]$ or $\left.x \notin] a_{1}, b_{1}\right]$ and $x \in\left[a_{2}, b_{2}\right]$.
(44) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $a_{1}<a_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $x \in\left[a_{1}, b_{1}\left[\right.\right.$ and $x \notin\left[a_{2}, b_{2}[\right.$ or $x \notin\left[a_{1}, b_{1}\left[\right.\right.$ and $x \in\left[a_{2}, b_{2}[\right.$.
(45) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $b_{1}<b_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $x \in\left[a_{1}, b_{1}\left[\right.\right.$ and $x \notin\left[a_{2}, b_{2}[\right.$ or $x \notin\left[a_{1}, b_{1}\left[\right.\right.$ and $x \in\left[a_{2}, b_{2}[\right.$.
(46) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $a_{1}<a_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $x \in\left[a_{1}, b_{1}[\right.$ and $\left.x \notin] a_{2}, b_{2}\right]$ or $x \notin\left[a_{1}, b_{1}[\right.$ and $\left.x \in] a_{2}, b_{2}\right]$.
(47) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $b_{1}<b_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $x \in\left[a_{1}, b_{1}[\right.$ and $\left.x \notin] a_{2}, b_{2}\right]$ or $x \notin\left[a_{1}, b_{1}[\right.$ and $\left.x \in] a_{2}, b_{2}\right]$.
(48) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $a_{1}<a_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $\left.\left.x \in\right] a_{1}, b_{1}\right]$ and $x \notin\left[a_{2}, b_{2}[\right.$ or $\left.x \notin] a_{1}, b_{1}\right]$ and $x \in\left[a_{2}, b_{2}[\right.$.
(49) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $b_{1}<b_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $\left.\left.x \in\right] a_{1}, b_{1}\right]$ and $x \notin\left[a_{2}, b_{2}[\right.$ or $\left.x \notin] a_{1}, b_{1}\right]$ and $x \in\left[a_{2}, b_{2}[\right.$.
(50) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $a_{1}<a_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $\left.\left.x \in\right] a_{1}, b_{1}\right]$ and $\left.\left.x \notin\right] a_{2}, b_{2}\right]$ or $\left.x \notin] a_{1}, b_{1}\right]$ and $\left.x \in\right] a_{2}, b_{2}$.
(51) For all Real numbers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $b_{1}<b_{2}$ and also $a_{1}<b_{1}$ or $a_{2}<b_{2}$ there exists a Real number x such that $\left.\left.x \in\right] a_{1}, b_{1}\right]$ and $\left.\left.x \notin\right] a_{2}, b_{2}\right]$ or $\left.x \notin] a_{1}, b_{1}\right]$ and $\left.x \in\right] a_{2}, b_{2}$.
(52) Let A be an interval. Let $a_{1}, a_{2}, b_{1}, b_{2}$ be Real numbers. Suppose that
(i) $a_{1}<b_{1}$ or $a_{2}<b_{2}$,
(ii) $A=] a_{1}, b_{1}\left[\right.$ or $A=\left[a_{1}, b_{1}\right]$ or $A=\left[a_{1}, b_{1}[\right.$ or $\left.A=] a_{1}, b_{1}\right]$ and also $A=] a_{2}, b_{2}\left[\right.$ or $A=\left[a_{2}, b_{2}\right]$ or $A=\left[a_{2}, b_{2}[\right.$ or $\left.A=] a_{2}, b_{2}\right]$.
Then $a_{1}=a_{2}$ and $b_{1}=b_{2}$.
Let A be an interval. The functor $\operatorname{vol}(A)$ yielding a Real number is defined as follows:
(Def.10) there exist Real numbers a, b such that $A=] a, b[$ or $A=[a, b]$ or $A=[a, b[$ or $A=] a, b]$ and also if $a<b$, then $\operatorname{vol}(A)=b-a$ and also if $b \leq a$, then $\operatorname{vol}(A)=0_{\overline{\mathbb{R}}}$.
One can prove the following propositions:
(53) For every open interval A and for all Real numbers a, b such that $A=$ $] a, b\left[\right.$ holds if $a<b$, then $\operatorname{vol}(A)=b-a$ and also if $b \leq a$, then $\operatorname{vol}(A)=0_{\overline{\mathrm{R}}}$.
(54) For every closed interval A and for all Real numbers a, b such that $A=[a, b]$ holds if $a<b$, then $\operatorname{vol}(A)=b-a$ and also if $b \leq a$, then $\operatorname{vol}(A)=0_{\overline{\mathrm{R}}}$.
(55) For every right-open interval A and for all Real numbers a, b such that $A=[a, b[$ holds if $a<b$, then $\operatorname{vol}(A)=b-a$ and also if $b \leq a$, then $\operatorname{vol}(A)=0_{\overline{\mathbb{R}}}$.
(56) For every left-open interval A and for all Real numbers a, b such that $A=] a, b]$ holds if $a<b$, then $\operatorname{vol}(A)=b-a$ and also if $b \leq a$, then $\operatorname{vol}(A)=0_{\overline{\mathrm{R}}}$.
(57) Let A be an interval. Let a, b, c be Real numbers. Suppose that
(i) $a=-\infty$,
(ii) $b \in \mathbb{R}$,
(iii) $c=+\infty$,
(iv) $A=] a, b[$ or $A=] b, c[$ or $A=[a, b]$ or $A=[b, c]$ or $A=[a, b[$ or $A=[b, c[$ or $A=] a, b]$ or $A=] b, c]$. Then $\operatorname{vol}(A)=+\infty$.
(58) For every interval A and for all Real numbers a, b such that $a=-\infty$ and $b=+\infty$ and also $A=] a, b[$ or $A=[a, b]$ or $A=[a, b[$ or $A=] a, b]$ holds $\operatorname{vol}(A)=+\infty$.
(59) For every interval A and for every Real number a such that $A=] a, a[$ or $A=[a, a]$ or $A=[a, a[$ or $A=] a, a] \operatorname{holds} \operatorname{vol}(A)=0_{\overline{\mathbb{R}}}$.
Let us note that there exists an empty interval.
Let us note that it makes sense to consider the following constant. Then \emptyset is an empty interval.

Next we state four propositions:

$$
\begin{equation*}
\operatorname{vol}(\emptyset)=0_{\overline{\mathbb{R}}} \tag{60}
\end{equation*}
$$

(61) For all intervals A, B and for all Real numbers a, b such that $A \subseteq B$ and $B=[a, b]$ and $b \leq a$ holds $\operatorname{vol}(A)=0_{\overline{\mathbb{R}}}$ and $\operatorname{vol}(B)=0_{\overline{\mathbb{R}}}$.
(62) For all intervals A, B such that $A \subseteq B$ holds $\operatorname{vol}(A) \leq \operatorname{vol}(B)$.
(63) For every interval A holds $0_{\overline{\mathbb{R}}} \leq \operatorname{vol}(A)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Józef Biał as. Completeness of the σ-additive measure. measure theory. Formalized Mathematics, 2(5):689-693, 1991.
[4] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
[5] Józef Białas. Properties of Caratheodor's measure. Formalized Mathematics, 3(1):67-70, 1992.
[6] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
[7] Józef Białas. Several properties of the σ-additive measure. Formalized Mathematics, 2(4):493-497, 1991.
[8] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
[9] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[10] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[11] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[12] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[14] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[15] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Received January 12, 1993

