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Summary. Notions of domains of submodules, join and meet of
finite sequences of submodules and quotient modules. A few basic theo-
rems and schemes related to these notions are proved.
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The papers [17], 28], 3], [4], [2], [1], [16], [5], [29], [15], [24], [20], [25], [27], [21],
(18], [7], [6], [8], [26], [23], [22], [19], [14], [13], [11], [12], [9], and [10] provide the
terminology and notation for this paper.

1. AUXILIARY THEOREMS ON FREE-MODULES

For simplicity we follow a convention: x is arbitrary, K is an associative ring, r
is a scalar of K, V', M, N are left modules over K, a, b, ay, as are vectors of V,
A, Ay, Ay are subsets of V, [ is a linear combination of A, W is a submodule
of V, and L; is a finite sequence of elements of Sub(V'). One can prove the
following propositions:

(1) If K is non-trivial and A is linearly independent, then Oy ¢ A.
2) Ifaé¢ A, then l(a) =0g.

w

(

(3) If K is trivial, then for every [ holds support! = () and Lin(A) is trivial.

(4) If V is non-trivial, then for every A such that A is base holds A # {).

(5) If Ay U Ay is linearly independent and Ay N Ay = (), then Lin(Ay) N
Lin(Ag) = Ov.

(6) If Ais base and A = A; U Ay and A; N Ay = (), then V is the direct

sum of Lin(A;) and Lin(As).
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2. DOMAINS OF SUBMODULES

Let us consider K, V. A non-empty set is called a non empty set of submodules
of V if:

(Def.1) if z € it, then z is a strict submodule of V.

Let us consider K, V. Then Sub(V) is a non empty set of submodules of V.
Let us consider K, V, and let D be a non empty set of submodules of V. We
see that the element of D is a strict submodule of V. Let us consider K, V', and
let D be a non empty set of submodules of V. One can verify that there exists
a strict element of D.

We now state two propositions:

(7) If z is an element of Sub(V) qua a non-empty set, then z is an element
of Sub(V).

(8) If z € Sub(V), then x is an element of Sub(V).

We now define two new modes. Let us consider K, V. Let us assume that
V' is non-trivial. A strict submodule of V is called a line of V' if:

(Def.2)  there exists a such that a # 0y and it = [[" a.
Let us consider K, V. A non-empty set is said to be a non empty set of lines of
V if:
(Det.3) if x € it, then x is a line of V.
We now state two propositions:

(9) If W is strict and the group structure of W is strict, then W is an
element of Sub(V) quaa non-empty set.

(10)  If V is non-trivial, then every line of V' is an element of Sub(V').

We now define three new constructions. Let us consider K, V. Let us assume
that V' is non-trivial. The functor lines(V') yields a non empty set of lines of V
and is defined as follows:

(Def.4)  lines(V) is the set of all lines of V.

Let us consider K, V, and let D be a non empty set of lines of V. We see that
the element of D is a line of V. Let us consider K, V. Let us assume that V is
non-trivial and V is free. A strict submodule of V' is said to be a hiperplane of
V if:
(Def.5)  the group structure of it is strict and there exists a such that a # Oy
and V is the direct sum of [[*a and it.

Let us consider K, V. A non-empty set is called a non empty set of hiperplanes
of V if:

(Def.6) if x € it, then x is a hiperplane of V.

One can prove the following proposition

(11) IfV is non-trivial and V is free, then every hiperplane of V' is an element
of Sub(V).
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Let us consider K, V. Let us assume that V is non-trivial and V' is free. The
functor hiperplanes(V') yielding a non empty set of hiperplanes of V' is defined
by:

(Def.7)  hiperplanes(V') is the set of all hiperplanes of V.

Let us consider K, V, and let D be a non empty set of hiperplanes of V. We
see that the element of D is a hiperplane of V.

3. JOIN AND MEET OF FINITE SEQUENCES OF SUBMODULES

We now define two new functors. Let us consider K, V', Li. The functor > L;
yielding an element of Sub(V) is defined as follows:

(Def.8) > Ly =SubJoinV & L;.
The functor () Ly yields an element of Sub(V') and is defined as follows:
(Def.9) Ly =SubMeetV ® L.

The following propositions are true:

(12)  For every lattice G holds the join operation of G is commutative and
the join operation of GG is associative and the meet operation of G is
commutative and the meet operation of G is associative.

(13)  For every element a of Sub(V') holds the group structure of a is strict.

(14)  SubJoinV is commutative and SubJoin V' is associative and SubJoin V'
has a unity and Oy = 1subjoinV -

(15)  If the group structure of V is strict, then SubMeet V' is commutative and
SubMeet V is associative and SubMeet V' has a unity and Qv = 1subMeet V-

4. SUM OF SUBSETS OF MODULE

Let us consider K, V, Ay, As. The functor A; + Ay yields a subset of V' and is
defined by:

(Def.10)  x € A; + Ay if and only if there exist aj, ay such that a; € A; and
as € Ay and x = a1 + as.

5. VECTOR OF SUBSET

Let us consider K, V, A. Let us assume that A # (). A vector of V is said to
be a vector of A if:

(Def.11) it is an element of A.

One can prove the following propositions:
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(16) If A} # 0 and A; C As, then for every x such that z is a vector of A;
holds z is a vector of As.

(17)  ag € a; + W if and only if a3 — az € W.
(18) a1+ W =ay+ W if and only if a; —ay € W.
We now define two new functors. Let us consider K, V', W. The functor
V «p W yields a non-empty set and is defined by:
(Def.12)  x € V « W if and only if there exists a such that = a + W.

Let us consider K, V., W, a. The functor a «¢ W yields an element of V « W
and is defined as follows:

(Def13) a«p W =a+W.

We now state two propositions:
(19)  For every element x of V' <« W there exists a such that z = a «¢ W.
(20) a1 <P W =ag «¢ W if and only if a; —as € W.

In the sequel S1, Sy will denote elements of V' «¢ W. We now define five new

functors. Let us consider K, V, W, S;. The functor —S; yields an element of
V «p W and is defined by:

(Def.14) it Sy =a «¢ W, then —S; = (—a) «¢ W.
Let us consider S3. The functor S7 + S5 yields an element of V « W and is
defined by:

(Def.l5) if 51 =a1 <P W and S2 = ag <P W, then Sl + Sg = ((11 + (12) ~+ W.
Let us consider K, V, W. The functor COMPL(W) yields a unary operation
on V «¢ W and is defined as follows:

(Def.16)  (COMPL(W))(S1) = —51.
The functor ADD(W) yields a binary operation on V'« W and is defined by:
(Def.l?) (ADD(W))(Sl, Sy) = S1 + Ss.

Let us consider K, V, W. The functor V(W) yields a strict group structure and
is defined by:

(Def.18) V(W) = (V « W,ADD(W), COMPL(W),0y « W).
One can prove the following proposition
(21) a«p W is an element of V(W).

Let us consider K, V, W, a. The functor a(W) yielding an element of V(W)
is defined by:

(Def19)  a(W)=a« W.
We now state four propositions:
(22)  For every element z of V(W) there exists a such that x = a(W).
(23) a1 (W) = ao(W) if and only if a3 —ag € W.
(24)  a(W) +b(W) = (a+b)(W) and —a(W) = (—a)(W) and Oyyy =
Oy (W).
(25) V(W) is a strict Abelian group.
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Let us consider K, V, W. Then V(W) is a strict Abelian group.

In the sequel S is an element of V(). We now define three new functors.
Let us consider K, V, W, r, S. The functor r - S yielding an element of V(W)
is defined by:

(Def.20) if S =a(W), then r-S = (r-a)(W).

Let us consider K, V, W. The functor LMULT(W) yielding a function from
fthe carrier of K, the carrier of V(W) { into the carrier of V(W) is defined by:
(Def.21)  (LMULT(W))(r, S) =r-S.

Let us consider K, V', W. The functor % yielding a strict vector space structure
over K is defined as follows:

(Def.22) = (the carrier of V(W),the addition of V (W), the reverse-map of
V(W), the zero of V(W), LMULT(W)).

We now state two propositions:
: v
(26) a(W) is a vector of ;.
(27)  Every vector of % is an element of V().

Let us consider K, V, W, a. The functor {4 yields a vector of % and is
defined as follows:

(Def.23) 5 = a(W).

One can prove the following four propositions:

s=

31) % is a strict left module over K.

(28)  For every vector x of % there exists a such that x = .
(29) =2 ifand onlyifa; —ax € W.

(30) E+L=%Landr & =1

(

Let us consider K, V, W. Then % is a strict left module over K.

6. QUOTIENT MODULES

In this article we present several logical schemes. The scheme SetFEq deals with
a unary predicate P, and states that:

for all sets Xy, X5 such that for an arbitrary z holds = € X if and only if
Plz] and for an arbitrary z holds x € X3 if and only if P[z] holds X; = X»
for all values of the parameter.

The scheme DomainFEq deals with a unary predicate P, and states that:

for all non-empty sets X1, X5 such that for an arbitrary « holds z € Xy if
and only if P[z] and for an arbitrary = holds x € X9 if and only if P[z] holds
X1 =X
for all values of the parameter.

The scheme ElementEq concerns a set A, and a unary predicate P, and states
that:
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for all elements X1, X5 of A such that for an arbitrary x holds x € X if
and only if P[z] and for an arbitrary z holds = € X3 if and only if P[z] holds
X =Xy
for all values of the parameters.

The scheme TypeFq deals with a set A, a set B, and a unary predicate P,
and states that:

A=B
provided the parameters meet the following conditions:

e for an arbitrary x holds x € A if and only if P[z],

e for an arbitrary x holds z € B if and only if P[z].

The scheme FuncFEq concerns a non-empty set A, a non-empty set 13, and a
unary functor F and states that:

for all functions f1, fo from A into B such that for every element z of A holds
fi(z) = F(x) and for every element x of A holds fa(x) = F(z) holds f1 = fo
for all values of the parameters.

The scheme UnOpEq deals with a non-empty set A and a unary functor F
and states that:

for all unary operations f1, fo on A such that for every element a of A holds
fi(a) = F(a) and for every element a of A holds fa(a) = F(a) holds f1 = fo
for all values of the parameters.

The scheme BinOpEq concerns a non-empty set A and a binary functor F
and states that:

for all binary operations f1, f on A such that for all elements a, b of A holds
fi(a, b) = F(a,b) and for all elements a, b of A holds fa(a, b) = F(a,b) holds
fi=fo
for all values of the parameters.

The scheme TriOpFEq deals with a non-empty set A and a ternary functor F
and states that:

for all ternary operations fi, fo on A such that for all elements a, b, ¢ of
A holds fi(a, b, ¢) = F(a,b,c) and for all elements a, b, ¢ of A holds fs(a, b,
¢) = F(a,b,c) holds f1 = fa
for all values of the parameters.

The scheme QuaOpEq deals with a non-empty set A and a 4-ary functor F
and states that:

for all quadrary operations f1, fo on A such that for all elements a, b, ¢, d
of A holds fi(a, b, ¢, d) = F(a,b,c,d) and for all elements a, b, ¢, d of A holds
fa(a, b, ¢, d) = F(a,b,c,d) holds f1 = fo
for all values of the parameters.

The scheme Fraenkell_Ex concerns a non-empty set A, a non-empty set B, a
unary functor F yielding an element of B, and a unary predicate P, and states
that:

there exists a subset S of B such that S = {F(z) : P[x]}, where z ranges
over elements of A
for all values of the parameters.
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The scheme Fr_0 concerns a non-empty set A, an element B of A, and a
unary predicate P, and states that:

P[B]
provided the parameters meet the following requirement:

e B € {a: Pla]}, where a ranges over elements of A.

The scheme Fr_1 deals with a set A, a non-empty set B, an element C of B,
and a unary predicate P, and states that:

C € A if and only if P[C]
provided the following condition is satisfied:

e A ={a:Pla]}, where a ranges over elements of B.

The scheme Fr_2 concerns a set A, a non-empty set B, an element C of B,
and a unary predicate P, and states that:

P[C]
provided the following conditions are met:

e Ce A,

e A ={a:Pla]}, where a ranges over elements of B.

The scheme Fr_8 concerns a constant A, a set B, a non-empty set C, and a
unary predicate P, and states that:

A € B if and only if there exists an element a of C such that A = a and Pla]
provided the parameters meet the following condition:

e B ={a:Pla]}, where a ranges over elements of C.

The scheme Fr_4 concerns a non-empty set A, a non-empty set B, a set C,
an element D of A, a unary functor F, and two binary predicates P and Q, and
states that:

D € F(C) if and only if for every element b of B such that b € C holds P[D,
0]
provided the parameters meet the following conditions:

e F(C)={a: Qla,C]}, where a ranges over elements of A,

e Q[D,(] if and only if for every element b of B such that b € C holds

P[D,b).
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