Domains of Submodules, Join and Meet of Finite Sequences of Submodules and Quotient Modules

Michał Muzalewski
Warsaw University
Białystok

Abstract

Summary. Notions of domains of submodules, join and meet of finite sequences of submodules and quotient modules. A few basic theorems and schemes related to these notions are proved.

MML Identifier: LMOD_7.

The papers [17], [28], [3], [4], [2], [1], [16], [5], [29], [15], [24], [20], [25], [27], [21], [18], [7], [6], [8], [26], [23], [22], [19], [14], [13], [11], [12], [9], and [10] provide the terminology and notation for this paper.

1. Auxiliary theorems on free-modules

For simplicity we follow a convention: x is arbitrary, K is an associative ring, r is a scalar of K, V, M, N are left modules over K, a, b, a_{1}, a_{2} are vectors of V, A, A_{1}, A_{2} are subsets of V, l is a linear combination of A, W is a submodule of V, and L_{1} is a finite sequence of elements of $\operatorname{Sub}(V)$. One can prove the following propositions:
(1) If K is non-trivial and A is linearly independent, then $0_{V} \notin A$.
(2) If $a \notin A$, then $l(a)=0_{K}$.
(3) If K is trivial, then for every l holds support $l=\emptyset$ and $\operatorname{Lin}(A)$ is trivial.
(4) If V is non-trivial, then for every A such that A is base holds $A \neq \emptyset$.
(5) If $A_{1} \cup A_{2}$ is linearly independent and $A_{1} \cap A_{2}=\emptyset$, then $\operatorname{Lin}\left(A_{1}\right) \cap$ $\operatorname{Lin}\left(A_{2}\right)=\mathbf{0}_{V}$.
(6) If A is base and $A=A_{1} \cup A_{2}$ and $A_{1} \cap A_{2}=\emptyset$, then V is the direct sum of $\operatorname{Lin}\left(A_{1}\right)$ and $\operatorname{Lin}\left(A_{2}\right)$.

2. Domains of submodules

Let us consider K, V. A non-empty set is called a non empty set of submodules of V if:
(Def.1) if $x \in$ it, then x is a strict submodule of V.
Let us consider K, V. Then $\operatorname{Sub}(V)$ is a non empty set of submodules of V. Let us consider K, V, and let D be a non empty set of submodules of V. We see that the element of D is a strict submodule of V. Let us consider K, V, and let D be a non empty set of submodules of V. One can verify that there exists a strict element of D.

We now state two propositions:
(7) If x is an element of $\operatorname{Sub}(V)$ qua a non-empty set, then x is an element of $\operatorname{Sub}(V)$.
(8) If $x \in \operatorname{Sub}(V)$, then x is an element of $\operatorname{Sub}(V)$.

We now define two new modes. Let us consider K, V. Let us assume that V is non-trivial. A strict submodule of V is called a line of V if:
(Def.2) there exists a such that $a \neq 0_{V}$ and it $=\prod^{*} a$.
Let us consider K, V. A non-empty set is said to be a non empty set of lines of V if:
(Def.3) if $x \in$ it, then x is a line of V.
We now state two propositions:
(9) If W is strict and the group structure of W is strict, then W is an element of $\operatorname{Sub}(V)$ qua a non-empty set.
(10) If V is non-trivial, then every line of V is an element of $\operatorname{Sub}(V)$.

We now define three new constructions. Let us consider K, V. Let us assume that V is non-trivial. The functor $\operatorname{lines}(V)$ yields a non empty set of lines of V and is defined as follows:
(Def.4) $\quad \operatorname{lines}(V)$ is the set of all lines of V.
Let us consider K, V, and let D be a non empty set of lines of V. We see that the element of D is a line of V. Let us consider K, V. Let us assume that V is non-trivial and V is free. A strict submodule of V is said to be a hiperplane of V if:
(Def.5) the group structure of it is strict and there exists a such that $a \neq 0_{V}$ and V is the direct sum of $\prod^{*} a$ and it.
Let us consider K, V. A non-empty set is called a non empty set of hiperplanes of V if:
(Def.6) if $x \in$ it, then x is a hiperplane of V.
One can prove the following proposition
(11) If V is non-trivial and V is free, then every hiperplane of V is an element of $\operatorname{Sub}(V)$.

Let us consider K, V. Let us assume that V is non-trivial and V is free. The functor hiperplanes (V) yielding a non empty set of hiperplanes of V is defined by:
(Def.7) hiperplanes (V) is the set of all hiperplanes of V.
Let us consider K, V, and let D be a non empty set of hiperplanes of V. We see that the element of D is a hiperplane of V.

3. Join and meet of finite sequences of submodules

We now define two new functors. Let us consider K, V, L_{1}. The functor $\sum L_{1}$ yielding an element of $\operatorname{Sub}(V)$ is defined as follows:
(Def.8) $\quad \sum L_{1}=$ SubJoin $V \circledast L_{1}$.
The functor $\bigcap L_{1}$ yields an element of $\operatorname{Sub}(V)$ and is defined as follows:
(Def.9) $\cap L_{1}=$ SubMeet $V \circledast L_{1}$.
The following propositions are true:
(12) For every lattice G holds the join operation of G is commutative and the join operation of G is associative and the meet operation of G is commutative and the meet operation of G is associative.
(13) For every element a of $\operatorname{Sub}(V)$ holds the group structure of a is strict.
(14) SubJoin V is commutative and SubJoin V is associative and SubJoin V has a unity and $\mathbf{0}_{V}=\mathbf{1}_{\text {SubJoin } V}$.
(15) If the group structure of V is strict, then SubMeet V is commutative and SubMeet V is associative and SubMeet V has a unity and $\Omega_{V}=\mathbf{1}_{\text {SubMeet } V}$.

4. Sum of subsets of module

Let us consider K, V, A_{1}, A_{2}. The functor $A_{1}+A_{2}$ yields a subset of V and is defined by:
(Def.10)
$x \in A_{1}+A_{2}$ if and only if there exist a_{1}, a_{2} such that $a_{1} \in A_{1}$ and $a_{2} \in A_{2}$ and $x=a_{1}+a_{2}$.

5. Vector of subset

Let us consider K, V, A. Let us assume that $A \neq \emptyset$. A vector of V is said to be a vector of A if:
(Def.11) it is an element of A.
One can prove the following propositions:
(16) If $A_{1} \neq \emptyset$ and $A_{1} \subseteq A_{2}$, then for every x such that x is a vector of A_{1} holds x is a vector of A_{2}.

$$
\begin{equation*}
a_{2} \in a_{1}+W \text { if and only if } a_{1}-a_{2} \in W . \tag{17}
\end{equation*}
$$

$a_{1}+W=a_{2}+W$ if and only if $a_{1}-a_{2} \in W$.
We now define two new functors. Let us consider K, V, W. The functor $V \leftrightarrow W$ yields a non-empty set and is defined by:
(Def.12) $\quad x \in V \leftrightarrow W$ if and only if there exists a such that $x=a+W$.
Let us consider K, V, W, a. The functor $a \leftrightarrow W$ yields an element of $V \leftrightarrow W$ and is defined as follows:

$$
\begin{equation*}
a \hookleftarrow W=a+W . \tag{Def.13}
\end{equation*}
$$

We now state two propositions:
(19) For every element x of $V \leftrightarrow W$ there exists a such that $x=a \leftrightarrow W$. $a_{1} \leftrightarrow W=a_{2} \leftrightarrow W$ if and only if $a_{1}-a_{2} \in W$.
In the sequel S_{1}, S_{2} will denote elements of $V \leftrightarrows W$. We now define five new functors. Let us consider K, V, W, S_{1}. The functor $-S_{1}$ yields an element of $V \leftrightarrows W$ and is defined by:
(Def.14) if $S_{1}=a \hookleftarrow W$, then $-S_{1}=(-a) \hookleftarrow W$.
Let us consider S_{2}. The functor $S_{1}+S_{2}$ yields an element of $V \leftrightarrow W$ and is defined by:
(Def.15) if $S_{1}=a_{1} \leftrightarrow W$ and $S_{2}=a_{2} \hookleftarrow W$, then $S_{1}+S_{2}=\left(a_{1}+a_{2}\right) \leftrightarrow W$.
Let us consider K, V, W. The functor $\operatorname{COMPL}(W)$ yields a unary operation on $V \leftarrow W$ and is defined as follows:
(Def.16) $\quad(\operatorname{COMPL}(W))\left(S_{1}\right)=-S_{1}$.
The functor $\operatorname{ADD}(W)$ yields a binary operation on $V \leftrightarrow W$ and is defined by:
(Def.17) $\quad(\operatorname{ADD}(W))\left(S_{1}, S_{2}\right)=S_{1}+S_{2}$.
Let us consider K, V, W. The functor $V(W)$ yields a strict group structure and is defined by:
(Def.18) $\quad V(W)=\left\langle V \leftrightarrow W, \operatorname{ADD}(W), \operatorname{COMPL}(W), 0_{V} \leftrightarrow W\right\rangle$.
One can prove the following proposition
(21) $\quad a \hookleftarrow W$ is an element of $V(W)$.

Let us consider K, V, W, a. The functor $a(W)$ yielding an element of $V(W)$ is defined by:
(Def.19)

$$
a(W)=a \hookleftarrow W .
$$

We now state four propositions:
(22) For every element x of $V(W)$ there exists a such that $x=a(W)$.

$$
\begin{equation*}
a_{1}(W)=a_{2}(W) \text { if and only if } a_{1}-a_{2} \in W \tag{23}
\end{equation*}
$$

$a(W)+b(W)=(a+b)(W)$ and $-a(W)=(-a)(W)$ and $0_{V(W)}=$ $0_{V}(W)$.
(25) $\quad V(W)$ is a strict Abelian group.

Let us consider K, V, W. Then $V(W)$ is a strict Abelian group.
In the sequel S is an element of $V(W)$. We now define three new functors. Let us consider K, V, W, r, S. The functor $r \cdot S$ yielding an element of $V(W)$ is defined by:
(Def.20) if $S=a(W)$, then $r \cdot S=(r \cdot a)(W)$.
Let us consider K, V, W. The functor $\operatorname{LMULT}(W)$ yielding a function from : the carrier of K, the carrier of $V(W)$: into the carrier of $V(W)$ is defined by:
$($ Def.21) $\quad(\operatorname{LMULT}(W))(r, S)=r \cdot S$.
Let us consider K, V, W. The functor $\frac{V}{W}$ yielding a strict vector space structure over K is defined as follows:
(Def.22) $\quad \frac{V}{W}=\langle$ the carrier of $V(W)$, the addition of $V(W)$, the reverse-map of $V(W)$, the zero of $V(W), \operatorname{LMULT}(W)\rangle$.
We now state two propositions:

$$
\begin{equation*}
a(W) \text { is a vector of } \frac{V}{W} \text {. } \tag{26}
\end{equation*}
$$

(27) Every vector of $\frac{V}{W}$ is an element of $V(W)$.

Let us consider K, V, W, a. The functor $\frac{a}{W}$ yields a vector of $\frac{V}{W}$ and is defined as follows:
(Def.23) $\quad \frac{a}{W}=a(W)$.
One can prove the following four propositions:
(28) For every vector x of $\frac{V}{W}$ there exists a such that $x=\frac{a}{W}$.
(31) $\frac{V}{W}$ is a strict left module over K.

Let us consider K, V, W. Then $\frac{V}{W}$ is a strict left module over K.

6. Quotient modules

In this article we present several logical schemes. The scheme SetEq deals with a unary predicate \mathcal{P}, and states that:
for all sets X_{1}, X_{2} such that for an arbitrary x holds $x \in X_{1}$ if and only if $\mathcal{P}[x]$ and for an arbitrary x holds $x \in X_{2}$ if and only if $\mathcal{P}[x]$ holds $X_{1}=X_{2}$ for all values of the parameter.

The scheme DomainEq deals with a unary predicate \mathcal{P}, and states that:
for all non-empty sets X_{1}, X_{2} such that for an arbitrary x holds $x \in X_{1}$ if and only if $\mathcal{P}[x]$ and for an arbitrary x holds $x \in X_{2}$ if and only if $\mathcal{P}[x]$ holds $X_{1}=X_{2}$ for all values of the parameter.

The scheme ElementEq concerns a set \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
for all elements X_{1}, X_{2} of \mathcal{A} such that for an arbitrary x holds $x \in X_{1}$ if and only if $\mathcal{P}[x]$ and for an arbitrary x holds $x \in X_{2}$ if and only if $\mathcal{P}[x]$ holds $X_{1}=X_{2}$
for all values of the parameters.
The scheme TypeEq deals with a set \mathcal{A}, a set \mathcal{B}, and a unary predicate \mathcal{P}, and states that:

$$
\mathcal{A}=\mathcal{B}
$$

provided the parameters meet the following conditions:

- for an arbitrary x holds $x \in \mathcal{A}$ if and only if $\mathcal{P}[x]$,
- for an arbitrary x holds $x \in \mathcal{B}$ if and only if $\mathcal{P}[x]$.

The scheme $F u n c E q$ concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, and a unary functor \mathcal{F} and states that:
for all functions f_{1}, f_{2} from \mathcal{A} into \mathcal{B} such that for every element x of \mathcal{A} holds $f_{1}(x)=\mathcal{F}(x)$ and for every element x of \mathcal{A} holds $f_{2}(x)=\mathcal{F}(x)$ holds $f_{1}=f_{2}$ for all values of the parameters.

The scheme $U n O p E q$ deals with a non-empty set \mathcal{A} and a unary functor \mathcal{F} and states that:
for all unary operations f_{1}, f_{2} on \mathcal{A} such that for every element a of \mathcal{A} holds $f_{1}(a)=\mathcal{F}(a)$ and for every element a of \mathcal{A} holds $f_{2}(a)=\mathcal{F}(a)$ holds $f_{1}=f_{2}$ for all values of the parameters.

The scheme $\operatorname{Bin} O p E q$ concerns a non-empty set \mathcal{A} and a binary functor \mathcal{F} and states that:
for all binary operations f_{1}, f_{2} on \mathcal{A} such that for all elements a, b of \mathcal{A} holds $f_{1}(a, b)=\mathcal{F}(a, b)$ and for all elements a, b of \mathcal{A} holds $f_{2}(a, b)=\mathcal{F}(a, b)$ holds $f_{1}=f_{2}$
for all values of the parameters.
The scheme $\operatorname{TriOpEq}$ deals with a non-empty set \mathcal{A} and a ternary functor \mathcal{F} and states that:
for all ternary operations f_{1}, f_{2} on \mathcal{A} such that for all elements a, b, c of \mathcal{A} holds $f_{1}(a, b, c)=\mathcal{F}(a, b, c)$ and for all elements a, b, c of \mathcal{A} holds $f_{2}(a, b$, $c)=\mathcal{F}(a, b, c)$ holds $f_{1}=f_{2}$
for all values of the parameters.
The scheme $Q u a O p E q$ deals with a non-empty set \mathcal{A} and a 4-ary functor \mathcal{F} and states that:
for all quadrary operations f_{1}, f_{2} on \mathcal{A} such that for all elements a, b, c, d of \mathcal{A} holds $f_{1}(a, b, c, d)=\mathcal{F}(a, b, c, d)$ and for all elements a, b, c, d of \mathcal{A} holds $f_{2}(a, b, c, d)=\mathcal{F}(a, b, c, d)$ holds $f_{1}=f_{2}$ for all values of the parameters.

The scheme Fraenkel1_Ex concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a unary functor \mathcal{F} yielding an element of \mathcal{B}, and a unary predicate \mathcal{P}, and states that:
there exists a subset S of \mathcal{B} such that $S=\{\mathcal{F}(x): \mathcal{P}[x]\}$, where x ranges over elements of \mathcal{A} for all values of the parameters.

The scheme $F_{-} 0$ concerns a non-empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
$\mathcal{P}[\mathcal{B}]$
provided the parameters meet the following requirement:

- $\mathcal{B} \in\{a: \mathcal{P}[a]\}$, where a ranges over elements of \mathcal{A}.

The scheme $F r_{-} 1$ deals with a set \mathcal{A}, a non-empty set \mathcal{B}, an element \mathcal{C} of \mathcal{B}, and a unary predicate \mathcal{P}, and states that:
$\mathcal{C} \in \mathcal{A}$ if and only if $\mathcal{P}[\mathcal{C}]$
provided the following condition is satisfied:

- $\mathcal{A}=\{a: \mathcal{P}[a]\}$, where a ranges over elements of \mathcal{B}.

The scheme $\operatorname{Fr} _2$ concerns a set \mathcal{A}, a non-empty set \mathcal{B}, an element \mathcal{C} of \mathcal{B}, and a unary predicate \mathcal{P}, and states that:
$\mathcal{P}[\mathcal{C}]$
provided the following conditions are met:

- $\mathcal{C} \in \mathcal{A}$,
- $\mathcal{A}=\{a: \mathcal{P}[a]\}$, where a ranges over elements of \mathcal{B}.

The scheme $F r_{-} 3$ concerns a constant \mathcal{A}, a set \mathcal{B}, a non-empty set \mathcal{C}, and a unary predicate \mathcal{P}, and states that:
$\mathcal{A} \in \mathcal{B}$ if and only if there exists an element a of \mathcal{C} such that $\mathcal{A}=a$ and $\mathcal{P}[a]$ provided the parameters meet the following condition:

- $\mathcal{B}=\{a: \mathcal{P}[a]\}$, where a ranges over elements of \mathcal{C}.

The scheme $F_{-}-4$ concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a set \mathcal{C}, an element \mathcal{D} of \mathcal{A}, a unary functor \mathcal{F}, and two binary predicates \mathcal{P} and \mathcal{Q}, and states that:
$\mathcal{D} \in \mathcal{F}(\mathcal{C})$ if and only if for every element b of \mathcal{B} such that $b \in \mathcal{C}$ holds $\mathcal{P}[\mathcal{D}$, b]
provided the parameters meet the following conditions:

- $\mathcal{F}(\mathcal{C})=\{a: \mathcal{Q}[a, \mathcal{C}]\}$, where a ranges over elements of \mathcal{A},
- $\mathcal{Q}[\mathcal{D}, \mathcal{C}]$ if and only if for every element b of \mathcal{B} such that $b \in \mathcal{C}$ holds $\mathcal{P}[\mathcal{D}, b]$.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651-656, 1990.
[6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[7] Wojciech Leończuk and Krzysztof Prażmowski. A construction of analytical projective space. Formalized Mathematics, 1(4):761-766, 1990.
[8] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[9] Michał Muzalewski. Free modules. Formalized Mathematics, 2(4):587-589, 1991.
[10] Michał Muzalewski. Submodules. Formalized Mathematics, 3(1):47-51, 1992.
[11] Michał Muzalewski and Wojciech Skaba. Linear combinations in left module over associative ring. Formalized Mathematics, 2(2):295-300, 1991.
[12] Michał Muzalewski and Wojciech Skaba. Linear independence in left module over domain. Formalized Mathematics, 2(2):301-303, 1991.
[13] Michał Muzalewski and Wojciech Skaba. Operations on submodules in left module over associative ring. Formalized Mathematics, 2(2):289-293, 1991.
[14] Michał Muzalewski and Wojciech Skaba. Submodules and cosets of submodules in left module over associative ring. Formalized Mathematics, 2(2):283-287, 1991.
[15] Michał Muzalewski and Wojciech Skaba. Three-argument operations and four-argument operations. Formalized Mathematics, 2(2):221-224, 1991.
[16] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[18] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.
[19] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990.
[20] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[21] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.
[22] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877-882, 1990.
[23] Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics, 1(5):871-876, 1990.
[24] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.
[25] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.
[26] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.
[27] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[29] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215222, 1990.

Received March 29, 1993

