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Summary. Notions of domains of submodules, join and meet of
finite sequences of submodules and quotient modules. A few basic theo-
rems and schemes related to these notions are proved.
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The papers [17], [28], [3], [4], [2], [1], [16], [5], [29], [15], [24], [20], [25], [27], [21],
[18], [7], [6], [8], [26], [23], [22], [19], [14], [13], [11], [12], [9], and [10] provide the
terminology and notation for this paper.

1. Auxiliary theorems on free-modules

For simplicity we follow a convention: x is arbitrary, K is an associative ring, r
is a scalar of K, V , M , N are left modules over K, a, b, a1, a2 are vectors of V ,
A, A1, A2 are subsets of V , l is a linear combination of A, W is a submodule
of V , and L1 is a finite sequence of elements of Sub(V ). One can prove the
following propositions:

(1) If K is non-trivial and A is linearly independent, then 0V /∈ A.

(2) If a /∈ A, then l(a) = 0K .

(3) If K is trivial, then for every l holds support l = ∅ and Lin(A) is trivial.

(4) If V is non-trivial, then for every A such that A is base holds A 6= ∅.

(5) If A1 ∪ A2 is linearly independent and A1 ∩ A2 = ∅, then Lin(A1) ∩
Lin(A2) = 0V .

(6) If A is base and A = A1 ∪ A2 and A1 ∩ A2 = ∅, then V is the direct
sum of Lin(A1) and Lin(A2).
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2. Domains of submodules

Let us consider K, V . A non-empty set is called a non empty set of submodules
of V if:

(Def.1) if x ∈ it, then x is a strict submodule of V .

Let us consider K, V . Then Sub(V ) is a non empty set of submodules of V .
Let us consider K, V , and let D be a non empty set of submodules of V . We
see that the element of D is a strict submodule of V . Let us consider K, V , and
let D be a non empty set of submodules of V . One can verify that there exists
a strict element of D.

We now state two propositions:

(7) If x is an element of Sub(V ) qua a non-empty set, then x is an element
of Sub(V ).

(8) If x ∈ Sub(V ), then x is an element of Sub(V ).

We now define two new modes. Let us consider K, V . Let us assume that
V is non-trivial. A strict submodule of V is called a line of V if:

(Def.2) there exists a such that a 6= 0V and it =
∏

∗ a.

Let us consider K, V . A non-empty set is said to be a non empty set of lines of
V if:

(Def.3) if x ∈ it, then x is a line of V .

We now state two propositions:

(9) If W is strict and the group structure of W is strict, then W is an
element of Sub(V ) qua a non-empty set.

(10) If V is non-trivial, then every line of V is an element of Sub(V ).

We now define three new constructions. Let us consider K, V . Let us assume
that V is non-trivial. The functor lines(V ) yields a non empty set of lines of V
and is defined as follows:

(Def.4) lines(V ) is the set of all lines of V .

Let us consider K, V , and let D be a non empty set of lines of V . We see that
the element of D is a line of V . Let us consider K, V . Let us assume that V is
non-trivial and V is free. A strict submodule of V is said to be a hiperplane of
V if:

(Def.5) the group structure of it is strict and there exists a such that a 6= 0V

and V is the direct sum of
∏

∗ a and it.

Let us consider K, V . A non-empty set is called a non empty set of hiperplanes
of V if:

(Def.6) if x ∈ it, then x is a hiperplane of V .

One can prove the following proposition

(11) If V is non-trivial and V is free, then every hiperplane of V is an element
of Sub(V ).



domains of submodules, join and meet . . . 291

Let us consider K, V . Let us assume that V is non-trivial and V is free. The
functor hiperplanes(V ) yielding a non empty set of hiperplanes of V is defined
by:

(Def.7) hiperplanes(V ) is the set of all hiperplanes of V .

Let us consider K, V , and let D be a non empty set of hiperplanes of V . We
see that the element of D is a hiperplane of V .

3. Join and meet of finite sequences of submodules

We now define two new functors. Let us consider K, V , L1. The functor
∑

L1

yielding an element of Sub(V ) is defined as follows:

(Def.8)
∑

L1 = SubJoinV 
 L1.

The functor
⋂

L1 yields an element of Sub(V ) and is defined as follows:

(Def.9)
⋂

L1 = SubMeetV 
 L1.

The following propositions are true:

(12) For every lattice G holds the join operation of G is commutative and
the join operation of G is associative and the meet operation of G is
commutative and the meet operation of G is associative.

(13) For every element a of Sub(V ) holds the group structure of a is strict.

(14) SubJoinV is commutative and SubJoinV is associative and SubJoinV
has a unity and 0V = 1SubJoin V .

(15) If the group structure of V is strict, then SubMeetV is commutative and
SubMeetV is associative and SubMeetV has a unity and ΩV = 1SubMeet V .

4. Sum of subsets of module

Let us consider K, V , A1, A2. The functor A1 + A2 yields a subset of V and is
defined by:

(Def.10) x ∈ A1 + A2 if and only if there exist a1, a2 such that a1 ∈ A1 and
a2 ∈ A2 and x = a1 + a2.

5. Vector of subset

Let us consider K, V , A. Let us assume that A 6= ∅. A vector of V is said to
be a vector of A if:

(Def.11) it is an element of A.

One can prove the following propositions:
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(16) If A1 6= ∅ and A1 ⊆ A2, then for every x such that x is a vector of A1

holds x is a vector of A2.

(17) a2 ∈ a1 + W if and only if a1 − a2 ∈ W .

(18) a1 + W = a2 + W if and only if a1 − a2 ∈ W .

We now define two new functors. Let us consider K, V , W . The functor
V � W yields a non-empty set and is defined by:

(Def.12) x ∈ V � W if and only if there exists a such that x = a + W .

Let us consider K, V , W , a. The functor a � W yields an element of V � W
and is defined as follows:

(Def.13) a � W = a + W .

We now state two propositions:

(19) For every element x of V � W there exists a such that x = a � W .

(20) a1 � W = a2 � W if and only if a1 − a2 ∈ W .

In the sequel S1, S2 will denote elements of V � W . We now define five new
functors. Let us consider K, V , W , S1. The functor −S1 yields an element of
V � W and is defined by:

(Def.14) if S1 = a � W , then −S1 = (−a) � W .

Let us consider S2. The functor S1 + S2 yields an element of V � W and is
defined by:

(Def.15) if S1 = a1 � W and S2 = a2 � W , then S1 + S2 = (a1 + a2) � W .

Let us consider K, V , W . The functor COMPL(W ) yields a unary operation
on V � W and is defined as follows:

(Def.16) (COMPL(W ))(S1) = −S1.

The functor ADD(W ) yields a binary operation on V � W and is defined by:

(Def.17) (ADD(W ))(S1, S2) = S1 + S2.

Let us consider K, V , W . The functor V (W ) yields a strict group structure and
is defined by:

(Def.18) V (W ) = 〈V � W,ADD(W ),COMPL(W ), 0V � W 〉.

One can prove the following proposition

(21) a � W is an element of V (W ).

Let us consider K, V , W , a. The functor a(W ) yielding an element of V (W )
is defined by:

(Def.19) a(W ) = a � W .

We now state four propositions:

(22) For every element x of V (W ) there exists a such that x = a(W ).

(23) a1(W ) = a2(W ) if and only if a1 − a2 ∈ W .

(24) a(W ) + b(W ) = (a + b)(W ) and −a(W ) = (−a)(W ) and 0V (W ) =
0V (W ).

(25) V (W ) is a strict Abelian group.
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Let us consider K, V , W . Then V (W ) is a strict Abelian group.

In the sequel S is an element of V (W ). We now define three new functors.
Let us consider K, V , W , r, S. The functor r · S yielding an element of V (W )
is defined by:

(Def.20) if S = a(W ), then r · S = (r · a)(W ).

Let us consider K, V , W . The functor LMULT(W ) yielding a function from
[: the carrier of K, the carrier of V (W ) :] into the carrier of V (W ) is defined by:

(Def.21) (LMULT(W ))(r, S) = r · S.

Let us consider K, V , W . The functor V

W
yielding a strict vector space structure

over K is defined as follows:

(Def.22) V

W
= 〈the carrier of V (W ), the addition of V (W ), the reverse-map of

V (W ), the zero of V (W ),LMULT(W )〉.

We now state two propositions:

(26) a(W ) is a vector of V

W
.

(27) Every vector of V

W
is an element of V (W ).

Let us consider K, V , W , a. The functor a

W
yields a vector of V

W
and is

defined as follows:

(Def.23) a

W
= a(W ).

One can prove the following four propositions:

(28) For every vector x of V

W
there exists a such that x = a

W
.

(29) a1

W
= a2

W
if and only if a1 − a2 ∈ W .

(30) a

W
+ b

W
= a+b

W
and r · a

W
= r·a

W
.

(31) V

W
is a strict left module over K.

Let us consider K, V , W . Then V

W
is a strict left module over K.

6. Quotient modules

In this article we present several logical schemes. The scheme SetEq deals with
a unary predicate P, and states that:

for all sets X1, X2 such that for an arbitrary x holds x ∈ X1 if and only if
P[x] and for an arbitrary x holds x ∈ X2 if and only if P[x] holds X1 = X2

for all values of the parameter.
The scheme DomainEq deals with a unary predicate P, and states that:
for all non-empty sets X1, X2 such that for an arbitrary x holds x ∈ X1 if

and only if P[x] and for an arbitrary x holds x ∈ X2 if and only if P[x] holds
X1 = X2

for all values of the parameter.
The scheme ElementEq concerns a set A, and a unary predicate P, and states

that:
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for all elements X1, X2 of A such that for an arbitrary x holds x ∈ X1 if
and only if P[x] and for an arbitrary x holds x ∈ X2 if and only if P[x] holds
X1 = X2

for all values of the parameters.
The scheme TypeEq deals with a set A, a set B, and a unary predicate P,

and states that:
A = B

provided the parameters meet the following conditions:
• for an arbitrary x holds x ∈ A if and only if P[x],
• for an arbitrary x holds x ∈ B if and only if P[x].

The scheme FuncEq concerns a non-empty set A, a non-empty set B, and a
unary functor F and states that:

for all functions f1, f2 from A into B such that for every element x of A holds
f1(x) = F(x) and for every element x of A holds f2(x) = F(x) holds f1 = f2

for all values of the parameters.

The scheme UnOpEq deals with a non-empty set A and a unary functor F
and states that:

for all unary operations f1, f2 on A such that for every element a of A holds
f1(a) = F(a) and for every element a of A holds f2(a) = F(a) holds f1 = f2

for all values of the parameters.

The scheme BinOpEq concerns a non-empty set A and a binary functor F
and states that:

for all binary operations f1, f2 on A such that for all elements a, b of A holds
f1(a, b) = F(a, b) and for all elements a, b of A holds f2(a, b) = F(a, b) holds
f1 = f2

for all values of the parameters.

The scheme TriOpEq deals with a non-empty set A and a ternary functor F
and states that:

for all ternary operations f1, f2 on A such that for all elements a, b, c of
A holds f1(a, b, c) = F(a, b, c) and for all elements a, b, c of A holds f2(a, b,
c) = F(a, b, c) holds f1 = f2

for all values of the parameters.

The scheme QuaOpEq deals with a non-empty set A and a 4-ary functor F
and states that:

for all quadrary operations f1, f2 on A such that for all elements a, b, c, d
of A holds f1(a, b, c, d) = F(a, b, c, d) and for all elements a, b, c, d of A holds
f2(a, b, c, d) = F(a, b, c, d) holds f1 = f2

for all values of the parameters.
The scheme Fraenkel1 Ex concerns a non-empty set A, a non-empty set B, a

unary functor F yielding an element of B, and a unary predicate P, and states
that:

there exists a subset S of B such that S = {F(x) : P[x]}, where x ranges
over elements of A
for all values of the parameters.
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The scheme Fr 0 concerns a non-empty set A, an element B of A, and a
unary predicate P, and states that:

P[B]
provided the parameters meet the following requirement:

• B ∈ {a : P[a]}, where a ranges over elements of A.
The scheme Fr 1 deals with a set A, a non-empty set B, an element C of B,

and a unary predicate P, and states that:
C ∈ A if and only if P[C]

provided the following condition is satisfied:
• A = {a : P[a]}, where a ranges over elements of B.
The scheme Fr 2 concerns a set A, a non-empty set B, an element C of B,

and a unary predicate P, and states that:
P[C]

provided the following conditions are met:
• C ∈ A,
• A = {a : P[a]}, where a ranges over elements of B.
The scheme Fr 3 concerns a constant A, a set B, a non-empty set C, and a

unary predicate P, and states that:
A ∈ B if and only if there exists an element a of C such that A = a and P[a]

provided the parameters meet the following condition:
• B = {a : P[a]}, where a ranges over elements of C.
The scheme Fr 4 concerns a non-empty set A, a non-empty set B, a set C,

an element D of A, a unary functor F , and two binary predicates P and Q, and
states that:

D ∈ F(C) if and only if for every element b of B such that b ∈ C holds P[D,
b]
provided the parameters meet the following conditions:

• F(C) = {a : Q[a, C]}, where a ranges over elements of A,
• Q[D, C] if and only if for every element b of B such that b ∈ C holds

P[D, b].
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