The Jordan's Property for Certain Subsets of the Plane

Yatsuka Nakamura
Shinshu University
Nagano
Jarosław Kotowicz ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. Let S be a subset of the topological Euclidean plane $\mathcal{E}_{\mathrm{T}}^{2}$. We say that S has Jordan's property if there exist two non-empty, disjoint and connected subsets G_{1} and G_{2} of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $S^{\mathrm{c}}=G_{1} \cup G_{2}$ and $\overline{G_{1}} \backslash G_{1}=\overline{G_{2}} \backslash G_{2}$ (see [19], [10]). The aim is to prove that the boundaries of some special polygons in $\mathcal{E}_{\mathrm{T}}^{2}$ have this property (see Section $3)$. Moreover, it is proved that both the interior and the exterior of the boundary of any rectangle in $\mathcal{E}_{\mathrm{T}}^{2}$ is open and connected.

MML Identifier: JORDAN1.

The articles [22], [24], [11], [17], [1], [4], [5], [20], [3], [16], [7], [15], [23], [18], [12], [2], [21], [14], [13], [8], [6], and [9] provide the notation and terminology for this paper.

1. Selected theorems on connected spaces

In the sequel G_{1}, G_{2} are topological spaces and A is a subset of G_{1}. The following propositions are true:
(1) If $A \neq \emptyset$, then the carrier of $G_{1} \upharpoonright A=A$.
(2) For every topological space G_{1} if for every points x, y of G_{1} there exists G_{2} such that G_{2} is connected and there exists a map f from G_{2} into G_{1} such that f is continuous and $x \in \operatorname{rng} f$ and $y \in \operatorname{rng} f$, then G_{1} is connected.

The following propositions are true:

[^0](3) For every topological space G_{1} if for all points x, y of G_{1} such that $x \neq y$ there exists a map h from 0 into G_{1} such that h is continuous and $x=h(0)$ and $y=h(1)$, then G_{1} is connected.
(4) Let A be a subset of G_{1}. Then if $A \neq \emptyset_{G_{1}}$ and for all points x_{1}, y_{1} of G_{1} such that $x_{1} \in A$ and $y_{1} \in A$ and $x_{1} \neq y_{1}$ there exists a map h from $\mathbb{}$ into $G_{1} \upharpoonright A$ such that h is continuous and $x_{1}=h(0)$ and $y_{1}=h(1)$, then A is connected.
(5) For every G_{1} and for every subset A_{0} of G_{1} and for every subset A_{1} of G_{1} such that A_{0} is connected and A_{1} is connected and $A_{0} \cap A_{1} \neq \emptyset$ holds $A_{0} \cup A_{1}$ is connected.
(6) For every G_{1} and for all subsets A_{0}, A_{1}, A_{2} of G_{1} such that A_{0} is connected and A_{1} is connected and A_{2} is connected and $A_{0} \cap A_{1} \neq \emptyset$ and $A_{1} \cap A_{2} \neq \emptyset$ holds $A_{0} \cup A_{1} \cup A_{2}$ is connected.
(7) For every G_{1} and for all subsets $A_{0}, A_{1}, A_{2}, A_{3}$ of G_{1} such that A_{0} is connected and A_{1} is connected and A_{2} is connected and A_{3} is connected and $A_{0} \cap A_{1} \neq \emptyset$ and $A_{1} \cap A_{2} \neq \emptyset$ and $A_{2} \cap A_{3} \neq \emptyset$ holds $A_{0} \cup A_{1} \cup A_{2} \cup A_{3}$ is connected.

2. Certain connected and open subsets in the Euclidean plane

We follow a convention: P, Q, P_{1}, P_{2} denote subsets of $\mathcal{E}_{\mathrm{T}}^{2}$ and w_{1}, w_{2} denote points of $\mathcal{E}_{\mathrm{T}}^{2}$. One can prove the following proposition
(8) For every P such that $P \neq \emptyset_{\mathcal{E}_{\mathrm{T}}^{2}}$ and for all w_{1}, w_{2} such that $w_{1} \in P$ and $w_{2} \in P$ and $w_{1} \neq w_{2}$ holds $\mathcal{L}\left(w_{1}, w_{2}\right) \subseteq P$ holds P is connected.
We adopt the following rules: p_{1}, p_{2} will be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and $s_{1}, t_{1}, s_{2}, t_{2}, s$, $t, s_{3}, t_{3}, s_{4}, t_{4}, s_{5}, t_{5}, s_{6}, t_{6}, l, s_{7}, t_{7}$ will be real numbers. Next we state two propositions:
(9) If $s_{1}<s_{3}$ and $s_{1}<s_{4}$ and $0 \leq l$ and $l \leq 1$, then $s_{1}<(1-l) \cdot s_{3}+l \cdot s_{4}$.

If $s_{3}<s_{1}$ and $s_{4}<s_{1}$ and $0 \leq l$ and $l \leq 1$, then $(1-l) \cdot s_{3}+l \cdot s_{4}<s_{1}$.
In the sequel s_{8}, t_{8} denote real numbers. The following propositions are true:
$\left\{[s, t]: s_{1}<s \wedge s<s_{2} \wedge t_{1}<t \wedge t<t_{2}\right\}=\left\{\left[s_{3}, t_{3}\right]: s_{1}<s_{3}\right\} \cap\left\{\left[s_{4}\right.\right.$, $\left.\left.t_{4}\right]: s_{4}<s_{2}\right\} \cap\left\{\left[s_{5}, t_{5}\right]: t_{1}<t_{5}\right\} \cap\left\{\left[s_{6}, t_{6}\right]: t_{6}<t_{2}\right\}$.
(13) For all $s_{1}, t_{1}, s_{2}, t_{2}, P$ such that $s_{1}<s_{2}$ and $t_{1}<t_{2}$ and $P=\{[s$, $\left.t]: s_{1}<s \wedge s<s_{2} \wedge t_{1}<t \wedge t<t_{2}\right\}$ holds P is connected.

For all s_{1}, P such that $P=\left\{[s, t]: s_{1}<s\right\}$ holds P is connected.
For all s_{2}, P such that $P=\left\{[s, t]: s<s_{2}\right\}$ holds P is connected.
For all t_{1}, P such that $P=\left\{[s, t]: t_{1}<t\right\}$ holds P is connected.
For all t_{2}, P such that $P=\left\{[s, t]: t<t_{2}\right\}$ holds P is connected.
(18) For all $s_{1}, t_{1}, s_{2}, t_{2}, P$ such that $P=\left\{[s, t]: \neg\left(s_{1} \leq s \wedge s \leq s_{2} \wedge t_{1} \leq\right.\right.$ $\left.\left.t \wedge t \leq t_{2}\right)\right\}$ holds P is connected.
(19) For all s_{1}, P such that $P=\left\{[s, t]: s_{1}<s\right\}$ holds P is open.
(20) For all s_{1}, P such that $P=\left\{[s, t]: s_{1}>s\right\}$ holds P is open.
(21) For all s_{1}, P such that $P=\left\{[s, t]: s_{1}<t\right\}$ holds P is open.
(22) For all s_{1}, P such that $P=\left\{[s, t]: s_{1}>t\right\}$ holds P is open.
(23) For all $s_{1}, t_{1}, s_{2}, t_{2}, P$ such that $P=\left\{[s, t]: s_{1}<s \wedge s<s_{2} \wedge t_{1}<\right.$ $\left.t \wedge t<t_{2}\right\}$ holds P is open.
(24) For all $s_{1}, t_{1}, s_{2}, t_{2}, P$ such that $P=\left\{[s, t]: \neg\left(s_{1} \leq s \wedge s \leq s_{2} \wedge t_{1} \leq\right.\right.$ $\left.\left.t \wedge t \leq t_{2}\right)\right\}$ holds P is open.
(25) Given $s_{1}, t_{1}, s_{2}, t_{2}, P, Q$. Suppose $P=\left\{\left[s_{7}, t_{7}\right]: s_{1}<s_{7} \wedge s_{7}<s_{2} \wedge t_{1}<\right.$ $\left.t_{7} \wedge t_{7}<t_{2}\right\}$ and $Q=\left\{\left[s_{8}, t_{8}\right]: \neg\left(s_{1} \leq s_{8} \wedge s_{8} \leq s_{2} \wedge t_{1} \leq t_{8} \wedge t_{8} \leq t_{2}\right)\right\}$. Then $P \cap Q=\emptyset_{\mathcal{E}_{T}^{2}}$.
(26) For all real numbers $s_{1}, s_{2}, t_{1}, t_{2}$ holds $\left\{p: s_{1}<p_{\mathbf{1}} \wedge p_{\mathbf{1}}<s_{2} \wedge t_{1}<\right.$ $\left.p_{\mathbf{2}} \wedge p_{\mathbf{2}}<t_{2}\right\}=\left\{\left[s_{7}, t_{7}\right]: s_{1}<s_{7} \wedge s_{7}<s_{2} \wedge t_{1}<t_{7} \wedge t_{7}<t_{2}\right\}$, where p ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$.
(27) For all $s_{1}, s_{2}, t_{1}, t_{2}$ holds $\left\{q_{1}: \neg\left(s_{1} \leq q_{11} \wedge q_{11} \leq s_{2} \wedge t_{1} \leq q_{12} \wedge q_{12} \leq\right.\right.$ $\left.\left.t_{2}\right)\right\}=\left\{\left[s_{8}, t_{8}\right]: \neg\left(s_{1} \leq s_{8} \wedge s_{8} \leq s_{2} \wedge t_{1} \leq t_{8} \wedge t_{8} \leq t_{2}\right)\right\}$, where q_{1} ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$.
(28) For all $s_{1}, s_{2}, t_{1}, t_{2}$ holds $\left\{p_{0}: s_{1}<p_{01} \wedge p_{01}<s_{2} \wedge t_{1}<p_{02} \wedge p_{02}<t_{2}\right\}$, where p_{0} ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$, is a subset of $\mathcal{E}_{\mathrm{T}}^{2}$.
(29) For all $s_{1}, s_{2}, t_{1}, t_{2}$ holds $\left\{p_{3}: \neg\left(s_{1} \leq p_{31} \wedge p_{31} \leq s_{2} \wedge t_{1} \leq p_{32} \wedge p_{32} \leq\right.\right.$ $\left.\left.t_{2}\right)\right\}$, where p_{3} ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$, is a subset of $\mathcal{E}_{\mathrm{T}}^{2}$.
(30) For all $s_{1}, t_{1}, s_{2}, t_{2}, P$ such that $s_{1}<s_{2}$ and $t_{1}<t_{2}$ and $P=\left\{p_{0}\right.$: $\left.s_{1}<p_{01} \wedge p_{01}<s_{2} \wedge t_{1}<p_{02} \wedge p_{02}<t_{2}\right\}$, where p_{0} ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$ holds P is connected.
(31) For all $s_{1}, t_{1}, s_{2}, t_{2}, P$ such that $P=\left\{p_{3}: \neg\left(s_{1} \leq p_{31} \wedge p_{31} \leq s_{2} \wedge t_{1} \leq\right.\right.$ $\left.\left.p_{32} \wedge p_{32} \leq t_{2}\right)\right\}$, where p_{3} ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$ holds P is connected.
(32) For all $s_{1}, t_{1}, s_{2}, t_{2}, P$ such that $P=\left\{p_{0}: s_{1}<p_{01} \wedge p_{01}<s_{2} \wedge t_{1}<\right.$ $\left.p_{02} \wedge p_{02}<t_{2}\right\}$, where p_{0} ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$ holds P is open.
(33) For all $s_{1}, t_{1}, s_{2}, t_{2}, P$ such that $P=\left\{p_{3}: \neg\left(s_{1} \leq p_{31} \wedge p_{31} \leq s_{2} \wedge t_{1} \leq\right.\right.$ $\left.\left.p_{32} \wedge p_{32} \leq t_{2}\right)\right\}$, where p_{3} ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$ holds P is open.
(34) Given $s_{1}, t_{1}, s_{2}, t_{2}, P, Q$. Suppose $P=\left\{p: s_{1}<p_{\mathbf{1}} \wedge p_{\mathbf{1}}<s_{2} \wedge t_{1}<\right.$ $\left.p_{\mathbf{2}} \wedge p_{\mathbf{2}}<t_{2}\right\}$, where p ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$ and $Q=\left\{q_{1}: \neg\left(s_{1} \leq\right.\right.$ $\left.\left.q_{11} \wedge q_{11} \leq s_{2} \wedge t_{1} \leq q_{1_{2}} \wedge q_{12} \leq t_{2}\right)\right\}$, where q_{1} ranges over points of \mathcal{E}_{T}^{2}. Then $P \cap Q=\emptyset_{\mathcal{E}_{\mathrm{T}}^{2}}$.
(35) Given $s_{1}, t_{1}, s_{2}, t_{2}, P, P_{1}, P_{2}$. Suppose that
(i) $s_{1}<s_{2}$,
(ii) $t_{1}<t_{2}$,
(iii) $P=\left\{p: p_{\mathbf{1}}=s_{1} \wedge p_{\mathbf{2}} \leq t_{2} \wedge p_{\mathbf{2}} \geq t_{1} \vee p_{\mathbf{1}} \leq s_{2} \wedge p_{\mathbf{1}} \geq s_{1} \wedge p_{\mathbf{2}}=\right.$ $\left.t_{2} \vee p_{\mathbf{1}} \leq s_{2} \wedge p_{\mathbf{1}} \geq s_{1} \wedge p_{\mathbf{2}}=t_{1} \vee p_{\mathbf{1}}=s_{2} \wedge p_{\mathbf{2}} \leq t_{2} \wedge p_{\mathbf{2}} \geq t_{1}\right\}$, where p ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$,
(iv) $\quad P_{1}=\left\{p_{1}: s_{1}<p_{1 \mathbf{1}} \wedge p_{11}<s_{2} \wedge t_{1}<p_{1 \mathbf{2}} \wedge p_{12}<t_{2}\right\}$, where p_{1} ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$,
(v) $\quad P_{2}=\left\{p_{2}: \neg\left(s_{1} \leq p_{21} \wedge p_{21} \leq s_{2} \wedge t_{1} \leq p_{22} \wedge p_{22} \leq t_{2}\right)\right\}$, where p_{2} ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$.
Then
(vi) $\quad P^{\mathrm{c}}=P_{1} \cup P_{2}$,
(vii) $\quad P^{\mathrm{c}} \neq \emptyset$,
(viii) $\quad P_{1} \cap P_{2}=\emptyset$,
(ix) for all subsets P_{3}, P_{4} of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P^{\mathrm{c}}$ such that $P_{3}=P_{1}$ and $P_{4}=P_{2}$ holds P_{3} is a component of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P^{\mathrm{c}}$ and P_{4} is a component of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P^{\mathrm{c}}$.
(36) Given $s_{1}, t_{1}, s_{2}, t_{2}, P, P_{1}, P_{2}$. Suppose that
(i) $s_{1}<s_{2}$,
(ii) $t_{1}<t_{2}$,
(iii) $\quad P=\left\{p: p_{\mathbf{1}}=s_{1} \wedge p_{\mathbf{2}} \leq t_{2} \wedge p_{\mathbf{2}} \geq t_{1} \vee p_{\mathbf{1}} \leq s_{2} \wedge p_{\mathbf{1}} \geq s_{1} \wedge p_{\mathbf{2}}=\right.$ $\left.t_{2} \vee p_{\mathbf{1}} \leq s_{2} \wedge p_{\mathbf{1}} \geq s_{1} \wedge p_{\mathbf{2}}=t_{1} \vee p_{\mathbf{1}}=s_{2} \wedge p_{\mathbf{2}} \leq t_{2} \wedge p_{\mathbf{2}} \geq t_{1}\right\}$, where p ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$,
(iv) $P_{1}=\left\{p_{1}: s_{1}<p_{11} \wedge p_{11}<s_{2} \wedge t_{1}<p_{12} \wedge p_{12}<t_{2}\right\}$, where p_{1} ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$,
(v) $\quad P_{2}=\left\{p_{2}: \neg\left(s_{1} \leq p_{21} \wedge p_{21} \leq s_{2} \wedge t_{1} \leq p_{22} \wedge p_{22} \leq t_{2}\right)\right\}$, where p_{2} ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$.
Then $P=\overline{P_{1}} \backslash P_{1}$ and $P=\overline{P_{2}} \backslash P_{2}$.
(37) Given $s_{1}, s_{2}, t_{1}, t_{2}, P, P_{1}$. Suppose that
(i) $s_{1}<s_{2}$,
(ii) $t_{1}<t_{2}$,
(iii) $P=\left\{p: p_{\mathbf{1}}=s_{1} \wedge p_{\mathbf{2}} \leq t_{2} \wedge p_{\mathbf{2}} \geq t_{1} \vee p_{\mathbf{1}} \leq s_{2} \wedge p_{\mathbf{1}} \geq s_{1} \wedge p_{\mathbf{2}}=\right.$ $\left.t_{2} \vee p_{\mathbf{1}} \leq s_{2} \wedge p_{\mathbf{1}} \geq s_{1} \wedge p_{\mathbf{2}}=t_{1} \vee p_{\mathbf{1}}=s_{2} \wedge p_{\mathbf{2}} \leq t_{2} \wedge p_{\mathbf{2}} \geq t_{1}\right\}$, where p ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$,
(iv) $P_{1}=\left\{p_{1}: s_{1}<p_{1 \mathbf{1}} \wedge p_{1 \mathbf{1}}<s_{2} \wedge t_{1}<p_{1 \mathbf{2}} \wedge p_{12}<t_{2}\right\}$, where p_{1} ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$.
Then $P_{1} \subseteq \Omega_{\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \mid P^{\mathrm{C}}}$.
(38) Given $s_{1}, s_{2}, t_{1}, t_{2}, P, P_{1}$. Suppose that
(i) $s_{1}<s_{2}$,
(ii) $t_{1}<t_{2}$,
(iii) $P=\left\{p: p_{\mathbf{1}}=s_{1} \wedge p_{\mathbf{2}} \leq t_{2} \wedge p_{\mathbf{2}} \geq t_{1} \vee p_{\mathbf{1}} \leq s_{2} \wedge p_{\mathbf{1}} \geq s_{1} \wedge p_{\mathbf{2}}=\right.$ $\left.t_{2} \vee p_{\mathbf{1}} \leq s_{2} \wedge p_{\mathbf{1}} \geq s_{1} \wedge p_{\mathbf{2}}=t_{1} \vee p_{\mathbf{1}}=s_{2} \wedge p_{\mathbf{2}} \leq t_{2} \wedge p_{\mathbf{2}} \geq t_{1}\right\}$, where p ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$,
(iv) $P_{1}=\left\{p_{1}: s_{1}<p_{1 \mathbf{1}} \wedge p_{1 \mathbf{1}}<s_{2} \wedge t_{1}<p_{1 \mathbf{2}} \wedge p_{12}<t_{2}\right\}$, where p_{1} ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$.
Then P_{1} is a subset of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P^{\mathrm{c}}$.
(39) Given $s_{1}, s_{2}, t_{1}, t_{2}, P, P_{2}$. Suppose that
(i) $s_{1}<s_{2}$,
(ii) $t_{1}<t_{2}$,
(iii) $P=\left\{p: p_{\mathbf{1}}=s_{1} \wedge p_{\mathbf{2}} \leq t_{2} \wedge p_{\mathbf{2}} \geq t_{1} \vee p_{\mathbf{1}} \leq s_{2} \wedge p_{\mathbf{1}} \geq s_{1} \wedge p_{\mathbf{2}}=\right.$ $\left.t_{2} \vee p_{\mathbf{1}} \leq s_{2} \wedge p_{\mathbf{1}} \geq s_{1} \wedge p_{\mathbf{2}}=t_{1} \vee p_{\mathbf{1}}=s_{2} \wedge p_{\mathbf{2}} \leq t_{2} \wedge p_{\mathbf{2}} \geq t_{1}\right\}$, where p ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$,
(iv) $P_{2}=\left\{p_{2}: \neg\left(s_{1} \leq p_{21} \wedge p_{21} \leq s_{2} \wedge t_{1} \leq p_{22} \wedge p_{22} \leq t_{2}\right)\right\}$, where p_{2} ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$.
Then $P_{2} \subseteq \Omega_{\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \mid P^{\mathrm{c}}}$.
(40) Given $s_{1}, s_{2}, t_{1}, t_{2}, P, P_{2}$. Suppose that
(i) $s_{1}<s_{2}$,
(ii) $t_{1}<t_{2}$,
(iii) $P=\left\{p: p_{\mathbf{1}}=s_{1} \wedge p_{\mathbf{2}} \leq t_{2} \wedge p_{\mathbf{2}} \geq t_{1} \vee p_{\mathbf{1}} \leq s_{2} \wedge p_{\mathbf{1}} \geq s_{1} \wedge p_{\mathbf{2}}=\right.$ $\left.t_{2} \vee p_{\mathbf{1}} \leq s_{2} \wedge p_{\mathbf{1}} \geq s_{1} \wedge p_{\mathbf{2}}=t_{1} \vee p_{\mathbf{1}}=s_{2} \wedge p_{\mathbf{2}} \leq t_{2} \wedge p_{\mathbf{2}} \geq t_{1}\right\}$, where p ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$,
(iv) $\quad P_{2}=\left\{p_{2}: \neg\left(s_{1} \leq p_{21} \wedge p_{21} \leq s_{2} \wedge t_{1} \leq p_{2 \mathbf{2}} \wedge p_{2 \mathbf{2}} \leq t_{2}\right)\right\}$, where p_{2} ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$.
Then P_{2} is a subset of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P^{\mathrm{c}}$.

3. Jordan's property

In the sequel S, A_{1}, A_{2} will be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Let us consider S. We say that S has Jordan's property if and only if the conditions (Def.1) is satisfied.
(Def.1) (i) $\quad S^{\mathrm{c}} \neq \emptyset$,
(ii) _there exist A_{1}, A_{2} such that $S^{\mathrm{c}}=A_{1} \cup A_{2}$ and $A_{1} \cap A_{2}=\emptyset$ and $\overline{A_{1}} \backslash A_{1}=\overline{A_{2}} \backslash A_{2}$ and for all subsets C_{1}, C_{2} of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright S^{\mathrm{c}}$ such that $C_{1}=A_{1}$ and $C_{2}=A_{2}$ holds C_{1} is a component of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright S^{\mathrm{c}}$ and C_{2} is a component of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright S^{\mathrm{c}}$.
The following propositions are true:
(41) Suppose S has Jordan's property. Then
(i) $S^{\mathrm{c}} \neq \emptyset$,
(ii) there exist subsets A_{1}, A_{2} of $\mathcal{E}_{\mathrm{T}}^{2}$ and there exist subsets C_{1}, C_{2} of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright S^{\mathrm{c}}$ such that $S^{\mathrm{c}}=A_{1} \cup A_{2}$ and $A_{1} \cap A_{2}=\emptyset$ and $\overline{A_{1}} \backslash A_{1}=\overline{A_{2}} \backslash A_{2}$ and $C_{1}=A_{1}$ and $C_{2}=A_{2}$ and C_{1} is a component of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright S^{\mathrm{c}}$ and C_{2} is a component of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright S^{\mathrm{c}}$ and for every subset C_{3} of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright S^{\mathrm{c}}$ such that C_{3} is a component of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright S^{\mathrm{c}}$ holds $C_{3}=C_{1}$ or $C_{3}=C_{2}$.
(42) Given $s_{1}, s_{2}, t_{1}, t_{2}, P$. Suppose that
(i) $s_{1}<s_{2}$,
(ii) $t_{1}<t_{2}$,
(iii) $P=\left\{p: p_{\mathbf{1}}=s_{1} \wedge p_{\mathbf{2}} \leq t_{2} \wedge p_{\mathbf{2}} \geq t_{1} \vee p_{\mathbf{1}} \leq s_{2} \wedge p_{\mathbf{1}} \geq s_{1} \wedge p_{\mathbf{2}}=\right.$ $\left.t_{2} \vee p_{\mathbf{1}} \leq s_{2} \wedge p_{\mathbf{1}} \geq s_{1} \wedge p_{\mathbf{2}}=t_{1} \vee p_{\mathbf{1}}=s_{2} \wedge p_{\mathbf{2}} \leq t_{2} \wedge p_{\mathbf{2}} \geq t_{1}\right\}$, where p ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$.
Then P has Jordan's property.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[7] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[8] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[9] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[10] Dick Wick Hall and Guilford L.Spencer II. Elementary Topology. John Wiley and Sons Inc., 1955.
[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[12] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[13] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[14] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[15] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[16] Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[17] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[18] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[19] Yukio Takeuchi and Yatsuka Nakamura. On the Jordan curve theorem. Technical Report 19804, Dept. of Information Eng., Shinshu University, 500 Wakasato, Nagano city, Japan, April 1980.
[20] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[21] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[23] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Received August 24, 1992

[^0]: ${ }^{1}$ The article was written during my visit at Shinshu University in 1992.

