The Jordan's Property for Certain Subsets of the Plane

Yatsuka Nakamura Shinshu University Nagano Jarosław Kotowicz¹ Warsaw University Białystok

Summary. Let S be a subset of the topological Euclidean plane \mathcal{E}_{T}^{2} . We say that S has Jordan's property if there exist two non-empty, disjoint and connected subsets G_1 and G_2 of \mathcal{E}_{T}^{2} such that $S^{c} = G_1 \cup G_2$ and $\overline{G_1} \setminus G_1 = \overline{G_2} \setminus G_2$ (see [19], [10]). The aim is to prove that the boundaries of some special polygons in \mathcal{E}_{T}^{2} have this property (see Section 3). Moreover, it is proved that both the interior and the exterior of the boundary of any rectangle in \mathcal{E}_{T}^{2} is open and connected.

MML Identifier: JORDAN1.

The articles [22], [24], [11], [17], [1], [4], [5], [20], [3], [16], [7], [15], [23], [18], [12], [2], [21], [14], [13], [8], [6], and [9] provide the notation and terminology for this paper.

1. Selected theorems on connected spaces

In the sequel G_1 , G_2 are topological spaces and A is a subset of G_1 . The following propositions are true:

- (1) If $A \neq \emptyset$, then the carrier of $G_1 \upharpoonright A = A$.
- (2) For every topological space G_1 if for every points x, y of G_1 there exists G_2 such that G_2 is connected and there exists a map f from G_2 into G_1 such that f is continuous and $x \in \operatorname{rng} f$ and $y \in \operatorname{rng} f$, then G_1 is connected.

The following propositions are true:

C 1992 Fondation Philippe le Hodey ISSN 0777-4028

¹The article was written during my visit at Shinshu University in 1992.

- (3) For every topological space G_1 if for all points x, y of G_1 such that $x \neq y$ there exists a map h from \mathbb{I} into G_1 such that h is continuous and x = h(0) and y = h(1), then G_1 is connected.
- (4) Let A be a subset of G_1 . Then if $A \neq \emptyset_{G_1}$ and for all points x_1, y_1 of G_1 such that $x_1 \in A$ and $y_1 \in A$ and $x_1 \neq y_1$ there exists a map h from \mathbb{I} into $G_1 \upharpoonright A$ such that h is continuous and $x_1 = h(0)$ and $y_1 = h(1)$, then A is connected.
- (5) For every G_1 and for every subset A_0 of G_1 and for every subset A_1 of G_1 such that A_0 is connected and A_1 is connected and $A_0 \cap A_1 \neq \emptyset$ holds $A_0 \cup A_1$ is connected.
- (6) For every G_1 and for all subsets A_0 , A_1 , A_2 of G_1 such that A_0 is connected and A_1 is connected and A_2 is connected and $A_0 \cap A_1 \neq \emptyset$ and $A_1 \cap A_2 \neq \emptyset$ holds $A_0 \cup A_1 \cup A_2$ is connected.
- (7) For every G_1 and for all subsets A_0 , A_1 , A_2 , A_3 of G_1 such that A_0 is connected and A_1 is connected and A_2 is connected and A_3 is connected and $A_0 \cap A_1 \neq \emptyset$ and $A_1 \cap A_2 \neq \emptyset$ and $A_2 \cap A_3 \neq \emptyset$ holds $A_0 \cup A_1 \cup A_2 \cup A_3$ is connected.

2. Certain connected and open subsets in the Euclidean plane

We follow a convention: P, Q, P_1, P_2 denote subsets of \mathcal{E}_T^2 and w_1, w_2 denote points of \mathcal{E}_T^2 . One can prove the following proposition

(8) For every P such that $P \neq \emptyset_{\mathcal{E}^2_{\mathrm{T}}}$ and for all w_1, w_2 such that $w_1 \in P$ and $w_2 \in P$ and $w_1 \neq w_2$ holds $\mathcal{L}(w_1, w_2) \subseteq P$ holds P is connected.

We adopt the following rules: p_1 , p_2 will be points of \mathcal{E}_T^2 and s_1 , t_1 , s_2 , t_2 , s_1 , t_3 , t_3 , s_4 , t_4 , s_5 , t_5 , s_6 , t_6 , l, s_7 , t_7 will be real numbers. Next we state two propositions:

(9) If $s_1 < s_3$ and $s_1 < s_4$ and $0 \le l$ and $l \le 1$, then $s_1 < (1-l) \cdot s_3 + l \cdot s_4$.

(10) If $s_3 < s_1$ and $s_4 < s_1$ and $0 \le l$ and $l \le 1$, then $(1-l) \cdot s_3 + l \cdot s_4 < s_1$. In the sequel s_8 , t_8 denote real numbers. The following propositions are true:

- (11) $\{ [s,t] : s_1 < s \land s < s_2 \land t_1 < t \land t < t_2 \} = \{ [s_3,t_3] : s_1 < s_3 \} \cap \{ [s_4, t_4] : s_4 < s_2 \} \cap \{ [s_5,t_5] : t_1 < t_5 \} \cap \{ [s_6,t_6] : t_6 < t_2 \}.$
- $\begin{array}{ll} (12) \quad \{[s,t]: \neg(s_1 \leq s \land s \leq s_2 \land t_1 \leq t \land t \leq t_2)\} = \{[s_3,t_3]: s_3 < s_1\} \cup \{[s_4,t_4]: t_4 < t_1\} \cup \{[s_5,t_5]: s_2 < s_5\} \cup \{[s_6,t_6]: t_2 < t_6\}. \end{array}$
- (13) For all s_1, t_1, s_2, t_2, P such that $s_1 < s_2$ and $t_1 < t_2$ and $P = \{[s, t] : s_1 < s \land s < s_2 \land t_1 < t \land t < t_2\}$ holds P is connected.
- (14) For all s_1 , P such that $P = \{[s,t] : s_1 < s\}$ holds P is connected.
- (15) For all s_2 , P such that $P = \{[s,t] : s < s_2\}$ holds P is connected.
- (16) For all t_1 , P such that $P = \{[s, t] : t_1 < t\}$ holds P is connected.
- (17) For all t_2 , P such that $P = \{[s,t] : t < t_2\}$ holds P is connected.

- (18) For all s_1 , t_1 , s_2 , t_2 , P such that $P = \{[s,t] : \neg(s_1 \leq s \land s \leq s_2 \land t_1 \leq t \land t \leq t_2)\}$ holds P is connected.
- (19) For all s_1 , P such that $P = \{[s,t] : s_1 < s\}$ holds P is open.
- (20) For all s_1 , P such that $P = \{[s,t] : s_1 > s\}$ holds P is open.
- (21) For all s_1 , P such that $P = \{[s, t] : s_1 < t\}$ holds P is open.
- (22) For all s_1 , P such that $P = \{[s, t] : s_1 > t\}$ holds P is open.
- (23) For all s_1 , t_1 , s_2 , t_2 , P such that $P = \{[s,t] : s_1 < s \land s < s_2 \land t_1 < t \land t < t_2\}$ holds P is open.
- (24) For all s_1, t_1, s_2, t_2, P such that $P = \{[s,t] : \neg (s_1 \le s \land s \le s_2 \land t_1 \le t \land t \le t_2)\}$ holds P is open.
- (25) Given s_1, t_1, s_2, t_2, P, Q . Suppose $P = \{[s_7, t_7] : s_1 < s_7 \land s_7 < s_2 \land t_1 < t_7 \land t_7 < t_2\}$ and $Q = \{[s_8, t_8] : \neg (s_1 \leq s_8 \land s_8 \leq s_2 \land t_1 \leq t_8 \land t_8 \leq t_2)\}$. Then $P \cap Q = \emptyset_{\mathcal{E}^2_T}$.
- (26) For all real numbers s_1 , s_2 , t_1 , t_2 holds $\{p : s_1 < p_1 \land p_1 < s_2 \land t_1 < p_2 \land p_2 < t_2\} = \{[s_7, t_7] : s_1 < s_7 \land s_7 < s_2 \land t_1 < t_7 \land t_7 < t_2\}$, where p ranges over points of $\mathcal{E}_{\mathrm{T}}^2$.
- (27) For all s_1, s_2, t_1, t_2 holds $\{q_1 : \neg (s_1 \leq q_{11} \land q_{11} \leq s_2 \land t_1 \leq q_{12} \land q_{12} \leq t_2)\} = \{[s_8, t_8] : \neg (s_1 \leq s_8 \land s_8 \leq s_2 \land t_1 \leq t_8 \land t_8 \leq t_2)\}$, where q_1 ranges over points of $\mathcal{E}^2_{\mathrm{T}}$.
- (28) For all s_1 , s_2 , t_1 , t_2 holds { $p_0 : s_1 < p_{01} \land p_{01} < s_2 \land t_1 < p_{02} \land p_{02} < t_2$ }, where p_0 ranges over points of $\mathcal{E}^2_{\mathrm{T}}$, is a subset of $\mathcal{E}^2_{\mathrm{T}}$.
- (29) For all s_1 , s_2 , t_1 , t_2 holds $\{p_3 : \neg (s_1 \leq p_{31} \land p_{31} \leq s_2 \land t_1 \leq p_{32} \land p_{32} \leq t_2)\}$, where p_3 ranges over points of \mathcal{E}_T^2 , is a subset of \mathcal{E}_T^2 .
- (30) For all s_1 , t_1 , s_2 , t_2 , P such that $s_1 < s_2$ and $t_1 < t_2$ and $P = \{p_0 : s_1 < p_{01} \land p_{01} < s_2 \land t_1 < p_{02} \land p_{02} < t_2\}$, where p_0 ranges over points of $\mathcal{E}_{\mathrm{T}}^2$ holds P is connected.
- (31) For all s_1, t_1, s_2, t_2, P such that $P = \{p_3 : \neg (s_1 \leq p_{31} \land p_{31} \leq s_2 \land t_1 \leq p_{32} \land p_{32} \leq t_2)\}$, where p_3 ranges over points of \mathcal{E}_T^2 holds P is connected.
- (32) For all s_1 , t_1 , s_2 , t_2 , P such that $P = \{p_0 : s_1 < p_{01} \land p_{01} < s_2 \land t_1 < p_{02} \land p_{02} < t_2\}$, where p_0 ranges over points of \mathcal{E}_T^2 holds P is open.
- (33) For all s_1, t_1, s_2, t_2, P such that $P = \{p_3 : \neg(s_1 \leq p_{31} \land p_{31} \leq s_2 \land t_1 \leq p_{32} \land p_{32} \leq t_2)\}$, where p_3 ranges over points of \mathcal{E}_T^2 holds P is open.
- (34) Given s_1, t_1, s_2, t_2, P, Q . Suppose $P = \{p : s_1 < p_1 \land p_1 < s_2 \land t_1 < p_2 \land p_2 < t_2\}$, where p ranges over points of \mathcal{E}_T^2 and $Q = \{q_1 : \neg (s_1 \leq q_{11} \land q_{11} \leq s_2 \land t_1 \leq q_{12} \land q_{12} \leq t_2)\}$, where q_1 ranges over points of \mathcal{E}_T^2 . Then $P \cap Q = \emptyset_{\mathcal{E}_T^2}$.
- (35) Given $s_1, t_1, s_2, t_2, P, P_1, P_2$. Suppose that
 - (i) $s_1 < s_2$,
 - (ii) $t_1 < t_2$,
 - (iii) $P = \{p : p_1 = s_1 \land p_2 \le t_2 \land p_2 \ge t_1 \lor p_1 \le s_2 \land p_1 \ge s_1 \land p_2 = t_2 \lor p_1 \le s_2 \land p_1 \ge s_1 \land p_2 = t_1 \lor p_1 = s_2 \land p_2 \le t_2 \land p_2 \ge t_1\},$ where p ranges over points of $\mathcal{E}_{\mathrm{T}}^2$,

- (iv) $P_1 = \{p_1 : s_1 < p_{11} \land p_{11} < s_2 \land t_1 < p_{12} \land p_{12} < t_2\}$, where p_1 ranges over points of \mathcal{E}^2_T ,
- (v) $P_2 = \{p_2 : \neg (s_1 \leq p_{21} \land p_{21} \leq s_2 \land t_1 \leq p_{22} \land p_{22} \leq t_2)\},$ where p_2 ranges over points of $\mathcal{E}^2_{\mathrm{T}}$.

(vi) $P^{c} = P_1 \cup P_2$,

- (vi) $I = I_1 \cup I_2$ (vii) $P^c \neq \emptyset$,
- (vii) $P_1 \cap P_2 = \emptyset$, (viii) $P_1 \cap P_2 = \emptyset$,
- (ix) for all subsets P_3 , P_4 of $(\mathcal{E}_T^2) \upharpoonright P^c$ such that $P_3 = P_1$ and $P_4 = P_2$ holds P_3 is a component of $(\mathcal{E}_T^2) \upharpoonright P^c$ and P_4 is a component of $(\mathcal{E}_T^2) \upharpoonright P^c$.
- (36) Given $s_1, t_1, s_2, t_2, P, P_1, P_2$. Suppose that
 - (i) $s_1 < s_2$,
 - (ii) $t_1 < t_2$,
 - (iii) $P = \{ p : p_1 = s_1 \land p_2 \leq t_2 \land p_2 \geq t_1 \lor p_1 \leq s_2 \land p_1 \geq s_1 \land p_2 = t_2 \lor p_1 \leq s_2 \land p_1 \geq s_1 \land p_2 = t_1 \lor p_1 = s_2 \land p_2 \leq t_2 \land p_2 \geq t_1 \},$ where p ranges over points of $\mathcal{E}_{\mathrm{T}}^2$,
 - (iv) $P_1 = \{p_1 : s_1 < p_{11} \land p_{11} < s_2 \land t_1 < p_{12} \land p_{12} < t_2\}$, where p_1 ranges over points of \mathcal{E}^2_{T} ,
 - (v) $P_2 = \{p_2 : \neg (s_1 \leq p_{21} \land p_{21} \leq s_2 \land t_1 \leq p_{22} \land p_{22} \leq t_2)\},$ where p_2 ranges over points of $\mathcal{E}^2_{\mathrm{T}}$.

Then $P = \overline{P_1} \setminus P_1$ and $P = \overline{P_2} \setminus P_2$.

- (37) Given $s_1, s_2, t_1, t_2, P, P_1$. Suppose that
 - (i) $s_1 < s_2$,
 - (ii) $t_1 < t_2$,
 - (iii) $P = \{p : p_1 = s_1 \land p_2 \leq t_2 \land p_2 \geq t_1 \lor p_1 \leq s_2 \land p_1 \geq s_1 \land p_2 = t_2 \lor p_1 \leq s_2 \land p_1 \geq s_1 \land p_2 = t_1 \lor p_1 = s_2 \land p_2 \leq t_2 \land p_2 \geq t_1\}, \text{ where } p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2,$
 - (iv) $P_1 = \{p_1 : s_1 < p_{11} \land p_{11} < s_2 \land t_1 < p_{12} \land p_{12} < t_2\}$, where p_1 ranges over points of \mathcal{E}^2_T .

Then $P_1 \subseteq \Omega_{(\mathcal{E}^2_T) \upharpoonright P^c}$.

- (38) Given $s_1, s_2, t_1, t_2, P, P_1$. Suppose that
 - (i) $s_1 < s_2$,
 - (ii) $t_1 < t_2$,
 - (iii) $P = \{ p : p_1 = s_1 \land p_2 \leq t_2 \land p_2 \geq t_1 \lor p_1 \leq s_2 \land p_1 \geq s_1 \land p_2 = t_2 \lor p_1 \leq s_2 \land p_1 \geq s_1 \land p_2 = t_1 \lor p_1 = s_2 \land p_2 \leq t_2 \land p_2 \geq t_1 \}, \text{ where } p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2,$
 - (iv) $P_1 = \{p_1 : s_1 < p_{11} \land p_{11} < s_2 \land t_1 < p_{12} \land p_{12} < t_2\}, \text{ where } p_1 \text{ ranges over points of } \mathcal{E}_T^2.$

Then P_1 is a subset of $(\mathcal{E}_T^2) \upharpoonright P^c$.

- (39) Given s_1 , s_2 , t_1 , t_2 , P, P_2 . Suppose that
 - (i) $s_1 < s_2$,
 - (ii) $t_1 < t_2$,

- (iii) $P = \{p : p_1 = s_1 \land p_2 \le t_2 \land p_2 \ge t_1 \lor p_1 \le s_2 \land p_1 \ge s_1 \land p_2 = t_2 \lor p_1 \le s_2 \land p_1 \ge s_1 \land p_2 = t_1 \lor p_1 = s_2 \land p_2 \le t_2 \land p_2 \ge t_1\}, \text{ where } p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2,$
- (iv) $P_2 = \{p_2 : \neg (s_1 \leq p_{21} \land p_{21} \leq s_2 \land t_1 \leq p_{22} \land p_{22} \leq t_2)\},$ where p_2 ranges over points of $\mathcal{E}^2_{\mathrm{T}}$. Then $P_2 \subseteq \Omega_{(\mathcal{E}^2_{\mathrm{T}})\uparrow P^c}$.
- (40) Given $s_1, s_2, t_1, t_2, P, P_2$. Suppose that
 - (i) $s_1 < s_2$,
 - (ii) $t_1 < t_2$,
 - (iii) $P = \{p : p_1 = s_1 \land p_2 \leq t_2 \land p_2 \geq t_1 \lor p_1 \leq s_2 \land p_1 \geq s_1 \land p_2 = t_2 \lor p_1 \leq s_2 \land p_1 \geq s_1 \land p_2 = t_1 \lor p_1 = s_2 \land p_2 \leq t_2 \land p_2 \geq t_1\}, \text{ where } p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2,$
 - (iv) $P_2 = \{p_2 : \neg (s_1 \leq p_{21} \land p_{21} \leq s_2 \land t_1 \leq p_{22} \land p_{22} \leq t_2)\}$, where p_2 ranges over points of $\mathcal{E}^2_{\mathrm{T}}$. Then P_2 is a subset of $(\mathcal{E}^2_{\mathrm{T}}) \upharpoonright P^{\mathrm{c}}$.

3. JORDAN'S PROPERTY

In the sequel S, A_1 , A_2 will be subsets of $\mathcal{E}^2_{\mathrm{T}}$. Let us consider S. We say that S has Jordan's property if and only if the conditions (Def.1) is satisfied.

- (Def.1) (i) $S^{c} \neq \emptyset$,
 - (ii) there exist A_1 , A_2 such that $S^c = A_1 \cup A_2$ and $A_1 \cap A_2 = \emptyset$ and $\overline{A_1} \setminus A_1 = \overline{A_2} \setminus A_2$ and for all subsets C_1 , C_2 of $(\mathcal{E}_T^2) \upharpoonright S^c$ such that $C_1 = A_1$ and $C_2 = A_2$ holds C_1 is a component of $(\mathcal{E}_T^2) \upharpoonright S^c$ and C_2 is a component of $(\mathcal{E}_T^2) \upharpoonright S^c$.

The following propositions are true:

- (41) Suppose S has Jordan's property. Then
 - (i) $S^{c} \neq \emptyset$,
 - (ii) there exist subsets A_1 , A_2 of \mathcal{E}_T^2 and there exist subsets C_1 , C_2 of $(\mathcal{E}_T^2) \upharpoonright S^c$ such that $S^c = A_1 \cup A_2$ and $A_1 \cap A_2 = \emptyset$ and $\overline{A_1} \setminus A_1 = \overline{A_2} \setminus A_2$ and $C_1 = A_1$ and $C_2 = A_2$ and C_1 is a component of $(\mathcal{E}_T^2) \upharpoonright S^c$ and C_2 is a component of $(\mathcal{E}_T^2) \upharpoonright S^c$ and for every subset C_3 of $(\mathcal{E}_T^2) \upharpoonright S^c$ such that C_3 is a component of $(\mathcal{E}_T^2) \upharpoonright S^c$ holds $C_3 = C_1$ or $C_3 = C_2$.
- (42) Given s_1, s_2, t_1, t_2, P . Suppose that
 - (i) $s_1 < s_2$,
 - (ii) $t_1 < t_2$,
 - (iii) $P = \{p : p_1 = s_1 \land p_2 \leq t_2 \land p_2 \geq t_1 \lor p_1 \leq s_2 \land p_1 \geq s_1 \land p_2 = t_2 \lor p_1 \leq s_2 \land p_1 \geq s_1 \land p_2 = t_1 \lor p_1 = s_2 \land p_2 \leq t_2 \land p_2 \geq t_1\}, \text{ where } p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2.$

Then P has Jordan's property.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [7] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [8] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.
- [9] Agata Darmochwał and Yatsuka Nakamura. The topological space \(\mathcal{E}_T^2\). Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
- [10] Dick Wick Hall and Guilford L.Spencer II. *Elementary Topology*. John Wiley and Sons Inc., 1955.
- [11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [12] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [13] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477–481, 1990.
- [14] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [15] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
- [16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [17] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [18] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [19] Yukio Takeuchi and Yatsuka Nakamura. On the Jordan curve theorem. Technical Report 19804, Dept. of Information Eng., Shinshu University, 500 Wakasato, Nagano city, Japan, April 1980.
- [20] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [21] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
- [22] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [23] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received August 24, 1992