Sum and Product of Finite Sequences of Elements of a Field

Katarzyna Zawadzka Warsaw University Białystok

Summary. This article is concerned with a generalization of concepts introduced in [10], i.e., there are introduced the sum and the product of finite number of elements of any field. Moreover, the product of vectors which yields a vector is introduced. According to [10], some operations on *i*-tuples of elements of field are introduced: addition, subtraction, and complement. Some properties on the sum and the product of finite number of elements of a field are present.

 ${\rm MML} \ {\rm Identifier:} \ {\tt FVSUM_1}.$

The articles [17], [2], [18], [7], [8], [3], [4], [14], [13], [15], [19], [16], [6], [5], [9], [1], [20], [22], [21], [11], and [12] provide the notation and terminology for this paper.

1. AUXILIARY THEOREMS

For simplicity we adopt the following convention: i, j, k will denote natural numbers, K will denote a field, a, a', a_1, a_2, a_3 will denote elements of the carrier of K, p, p_1, p_2, q will denote finite sequences of elements of the carrier of K, and R, R_1, R_2, R_3 will denote elements of (the carrier of K)^{*i*}. We now state a number of propositions:

- (1) $-0_K = 0_K$.
- (2) The addition of K is commutative.
- (3) The addition of K is associative.
- (4) The multiplication of K is commutative.
- (5) The multiplication of K is associative.
- (6) 1_K is a unity w.r.t. the multiplication of K.

205

C 1992 Fondation Philippe le Hodey ISSN 0777-4028

- (7) $\mathbf{1}_{\text{the multiplication of } K} = \mathbf{1}_K.$
- (8) 0_K is a unity w.r.t. the addition of K.
- (9) $\mathbf{1}_{\text{the addition of } K} = 0_K.$
- (10) The addition of K has a unity.
- (11) The multiplication of K has a unity.
- (12) The multiplication of K is distributive w.r.t. the addition of K.

We now define two new functors. Let us consider K, and let a be an element of the carrier of K. The functor \cdot^a yields a unary operation on the carrier of K and is defined by:

(Def.1) $\cdot^a = (\text{the multiplication of } K)^{\circ}(a, \text{id}_{(\text{the carrier of } K)}).$

Let us consider K. The functor $-_K$ yields a binary operation on the carrier of K and is defined as follows:

(Def.2) $-_{K} = (\text{the addition of } K) \circ (\text{id}_{(\text{the carrier of } K)}, \text{the reverse-map of } K).$

We now state several propositions:

- (13) $-_K = (\text{the addition of } K) \circ (\text{id}_{(\text{the carrier of } K)}, \text{the reverse-map of } K).$
- (14) $-_K(a_1, a_2) = a_1 a_2.$
- (15) \cdot^{a} is distributive w.r.t. the addition of K.
- (16) The reverse-map of K is an inverse operation w.r.t. the addition of K.
- (17) The addition of K has an inverse operation.
- (18) The inverse operation w.r.t. the addition of K = the reverse-map of K.
- (19) The reverse-map of K is distributive w.r.t. the addition of K.

Let us consider K, p_1 , p_2 . The functor $p_1 + p_2$ yielding a finite sequence of elements of the carrier of K is defined as follows:

(Def.3) $p_1 + p_2 = (\text{the addition of } K)^{\circ}(p_1, p_2).$

Next we state two propositions:

- (20) $p_1 + p_2 = (\text{the addition of } K)^{\circ}(p_1, p_2).$
- (21) If $i \in \text{Seg len}(p_1 + p_2)$ and $a_1 = p_1(i)$ and $a_2 = p_2(i)$, then $(p_1 + p_2)(i) = a_1 + a_2$.

Let us consider *i*, and let us consider *K*, and let R_1 , R_2 be elements of (the carrier of K)^{*i*}. Then $R_1 + R_2$ is an element of (the carrier of K)^{*i*}.

Next we state several propositions:

- (22) If $j \in \text{Seg } i$ and $a_1 = R_1(j)$ and $a_2 = R_2(j)$, then $(R_1 + R_2)(j) = a_1 + a_2$.
- (23) $\varepsilon_{\text{(the carrier of } K)} + p = \varepsilon_{\text{(the carrier of } K)}$ and $p + \varepsilon_{\text{(the carrier of } K)} = \varepsilon_{\text{(the carrier of } K)}$.
- (24) $\langle a_1 \rangle + \langle a_2 \rangle = \langle a_1 + a_2 \rangle.$
- $(25) \quad (i \longmapsto a_1) + (i \longmapsto a_2) = i \longmapsto a_1 + a_2.$
- $(26) \quad R_1 + R_2 = R_2 + R_1.$
- $(27) \quad R_1 + (R_2 + R_3) = (R_1 + R_2) + R_3.$
- (28) $R + (i \longmapsto 0_K) = R$ and $R = (i \longmapsto 0_K) + R$.

Let us consider K, p. The functor -p yields a finite sequence of elements of the carrier of K and is defined as follows:

(Def.4) $-p = (\text{the reverse-map of } K) \cdot p.$

The following two propositions are true:

(29) $-p = (\text{the reverse-map of } K) \cdot p.$

(30) If $i \in \text{Seg len}(-p)$ and a = p(i), then (-p)(i) = -a.

Let us consider i, K, R. Then -R is an element of (the carrier of K)^{*i*}. One can prove the following propositions:

(31) If $j \in \text{Seg } i$ and a = R(j), then (-R)(j) = -a.

(32) $-\varepsilon_{\text{(the carrier of }K)} = \varepsilon_{\text{(the carrier of }K)}.$

$$(33) \quad -\langle a\rangle = \langle -a\rangle.$$

- $(34) \quad -(i\longmapsto a)=i\longmapsto -a.$
- (35) $R + -R = i \longmapsto 0_K \text{ and } -R + R = i \longmapsto 0_K.$
- (36) If $R_1 + R_2 = i \mapsto 0_K$, then $R_1 = -R_2$ and $R_2 = -R_1$.
- $(37) \quad --R = R.$
- (38) If $-R_1 = -R_2$, then $R_1 = R_2$.
- (39) If $R_1 + R = R_2 + R$ or $R_1 + R = R + R_2$, then $R_1 = R_2$.
- $(40) \quad -(R_1 + R_2) = -R_1 + -R_2.$

Let us consider K, p_1 , p_2 . The functor $p_1 - p_2$ yielding a finite sequence of elements of the carrier of K is defined as follows:

(Def.5)
$$p_1 - p_2 = (-_K)^{\circ}(p_1, p_2).$$

Next we state two propositions:

- (41) $p_1 p_2 = (-_K)^{\circ}(p_1, p_2).$
- (42) If $i \in \text{Seg len}(p_1 p_2)$ and $a_1 = p_1(i)$ and $a_2 = p_2(i)$, then $(p_1 p_2)(i) = a_1 a_2$.

Let us consider i, K, R_1, R_2 . Then $R_1 - R_2$ is an element of (the carrier of K)^{*i*}.

The following propositions are true:

(43) If
$$j \in \text{Seg } i$$
 and $a_1 = R_1(j)$ and $a_2 = R_2(j)$, then $(R_1 - R_2)(j) = a_1 - a_2$.

- (44) $\varepsilon_{\text{(the carrier of } K)} p = \varepsilon_{\text{(the carrier of } K)}$ and $p \varepsilon_{\text{(the carrier of } K)} = \varepsilon_{\text{(the carrier of } K)}$.
- (45) $\langle a_1 \rangle \langle a_2 \rangle = \langle a_1 a_2 \rangle.$

$$(46) \quad (i \longmapsto a_1) - (i \longmapsto a_2) = i \longmapsto a_1 - a_2$$

- $(47) \quad R_1 R_2 = R_1 + -R_2.$
- (48) $R (i \longmapsto 0_K) = R.$
- $(49) \quad (i \longmapsto 0_K) R = -R.$

(50)
$$R_1 - -R_2 = R_1 + R_2.$$

- (51) $-(R_1 R_2) = R_2 R_1.$
- $(52) \quad -(R_1 R_2) = -R_1 + R_2.$

- $(53) \quad R R = i \longmapsto 0_K.$
- (54) If $R_1 R_2 = i \longmapsto 0_K$, then $R_1 = R_2$.
- (55) $R_1 R_2 R_3 = R_1 (R_2 + R_3).$
- (56) $R_1 + (R_2 R_3) = (R_1 + R_2) R_3.$
- (57) $R_1 (R_2 R_3) = (R_1 R_2) + R_3.$
- (58) $R_1 = (R_1 + R) R.$
- (59) $R_1 = (R_1 R) + R.$
- (60) For all elements a, b of the carrier of K holds ((the multiplication of K)° $(a, \operatorname{id}_{(\text{the carrier of } K)}))(b) = a \cdot b.$
- (61) For all elements a, b of the carrier of K holds $\cdot^a(b) = a \cdot b$.

Let us consider K, and let p be a finite sequence of elements of the carrier of K, and let a be an element of the carrier of K. The functor $a \cdot p$ yielding a finite sequence of elements of the carrier of K is defined as follows:

(Def.6) $a \cdot p = \cdot^a \cdot p.$

Next we state the proposition

(62) If $i \in \text{Seglen}(a \cdot p)$ and a' = p(i), then $(a \cdot p)(i) = a \cdot a'$.

Let us consider i, K, R, a. Then $a \cdot R$ is an element of (the carrier of K)^{*i*}. The following propositions are true:

- (63) If $j \in \text{Seg } i$ and a' = R(j), then $(a \cdot R)(j) = a \cdot a'$.
- (64) $a \cdot \varepsilon_{\text{(the carrier of } K)} = \varepsilon_{\text{(the carrier of } K)}$.
- $(65) \quad a \cdot \langle a_1 \rangle = \langle a \cdot a_1 \rangle.$
- $(66) \quad a_1 \cdot (i \longmapsto a_2) = i \longmapsto a_1 \cdot a_2.$
- (67) $(a_1 \cdot a_2) \cdot R = a_1 \cdot (a_2 \cdot R).$
- (68) $(a_1 + a_2) \cdot R = a_1 \cdot R + a_2 \cdot R.$
- (69) $a \cdot (R_1 + R_2) = a \cdot R_1 + a \cdot R_2.$
- $(70) \quad 1_K \cdot R = R.$
- (71) $0_K \cdot R = i \longmapsto 0_K.$
- $(72) \quad (-1_K) \cdot R = -R.$

Let us consider K, p_1 , p_2 . The functor $p_1 \bullet p_2$ yields a finite sequence of elements of the carrier of K and is defined as follows:

(Def.7) $p_1 \bullet p_2 = (\text{the multiplication of } K)^{\circ}(p_1, p_2).$

One can prove the following proposition

(73) If $i \in \text{Seg len}(p_1 \bullet p_2)$ and $a_1 = p_1(i)$ and $a_2 = p_2(i)$, then $(p_1 \bullet p_2)(i) = a_1 \cdot a_2$.

Let us consider i, K, R_1, R_2 . Then $R_1 \bullet R_2$ is an element of (the carrier of $K)^i$.

We now state a number of propositions:

(74) If $j \in \text{Seg } i$ and $a_1 = R_1(j)$ and $a_2 = R_2(j)$, then $(R_1 \bullet R_2)(j) = a_1 \cdot a_2$.

- (75) $\varepsilon_{\text{(the carrier of } K)} \bullet p = \varepsilon_{\text{(the carrier of } K)}$ and $p \bullet \varepsilon_{\text{(the carrier of } K)} = \varepsilon_{\text{(the carrier of } K)}$.
- (76) $\langle a_1 \rangle \bullet \langle a_2 \rangle = \langle a_1 \cdot a_2 \rangle.$
- $(77) \quad R_1 \bullet R_2 = R_2 \bullet R_1.$
- (78) $p \bullet q = q \bullet p.$
- (79) $R_1 \bullet (R_2 \bullet R_3) = (R_1 \bullet R_2) \bullet R_3.$
- (80) $(i \longmapsto a) \bullet R = a \cdot R \text{ and } R \bullet (i \longmapsto a) = a \cdot R.$
- $(81) \quad (i \longmapsto a_1) \bullet (i \longmapsto a_2) = i \longmapsto a_1 \cdot a_2.$
- (82) $a \cdot (R_1 \bullet R_2) = a \cdot R_1 \bullet R_2.$
- (83) $a \cdot (R_1 \bullet R_2) = a \cdot R_1 \bullet R_2$ and $a \cdot (R_1 \bullet R_2) = R_1 \bullet a \cdot R_2$.
- (84) $a \cdot R = (i \longmapsto a) \bullet R.$

Let us consider K, and let p be a finite sequence of elements of the carrier of K. The functor $\sum p$ yielding an element of the carrier of K is defined as follows: (Def.8) $\sum p =$ the addition of $K \circledast p$.

The following propositions are true:

(85)
$$\sum (\varepsilon_{\text{(the carrier of } K)}) = 0_K.$$

- (86) $\sum \langle a \rangle = a.$
- (87) $\sum (p \land \langle a \rangle) = \sum p + a.$
- (88) $\sum (p_1 \cap p_2) = \sum p_1 + \sum p_2.$
- (89) $\sum (\langle a \rangle \cap p) = a + \sum p.$
- $(90) \quad \sum \langle a_1, a_2 \rangle = a_1 + a_2.$
- (91) $\sum \langle a_1, a_2, a_3 \rangle = a_1 + a_2 + a_3.$
- (92) $\sum (a \cdot p) = a \cdot \sum p.$
- (93) For every element R of (the carrier of K)⁰ holds $\sum R = 0_K$.

(94)
$$\sum (-p) = -\sum p.$$

(95)
$$\sum (R_1 + R_2) = \sum R_1 + \sum R_2.$$

(96) $\sum (R_1 - R_2) = \sum R_1 - \sum R_2.$

Let us consider K, and let p be a finite sequence of elements of the carrier of K. The functor $\prod p$ yielding an element of the carrier of K is defined by:

(Def.9) $\prod p$ = the multiplication of $K \circledast p$.

The following propositions are true:

- (97) $\prod p = \text{the multiplication of } K \circledast p.$
- (98) $\prod (\varepsilon_{\text{(the carrier of } K)}) = 1_K.$
- (99) $\prod \langle a \rangle = a.$
- (100) $\prod (p \land \langle a \rangle) = \prod p \cdot a.$
- (101) $\prod (p_1 \cap p_2) = \prod p_1 \cdot \prod p_2.$
- (102) $\prod (\langle a \rangle \cap p) = a \cdot \prod p.$
- (103) $\prod \langle a_1, a_2 \rangle = a_1 \cdot a_2.$
- (104) $\prod \langle a_1, a_2, a_3 \rangle = a_1 \cdot a_2 \cdot a_3.$

- (105) For every element R of (the carrier of K)⁰ holds $\prod R = 1_K$.
- (106) $\prod(i \longmapsto 1_K) = 1_K.$
- (107) There exists k such that $k \in \text{Seglen } p$ and $p(k) = 0_K$ if and only if $\prod p = 0_K$.
- (108) $\prod(i+j \mapsto a) = \prod(i \mapsto a) \cdot \prod(j \mapsto a).$
- (109) $\prod(i \cdot j \longmapsto a) = \prod(j \longmapsto \prod(i \longmapsto a)).$
- (110) $\prod(i \longmapsto a_1 \cdot a_2) = \prod(i \longmapsto a_1) \cdot \prod(i \longmapsto a_2).$
- (111) $\prod (R_1 \bullet R_2) = \prod R_1 \cdot \prod R_2.$
- (112) $\prod (a \cdot R) = \prod (i \longmapsto a) \cdot \prod R.$

Let us consider K, and let p, q be finite sequences of elements of the carrier of K. The functor $p \cdot q$ yielding an element of the carrier of K is defined by:

(Def.10)
$$p \cdot q = \sum (p \bullet q).$$

One can prove the following propositions:

- (113) For all elements a, b of the carrier of K holds $\langle a \rangle \cdot \langle b \rangle = a \cdot b$.
- (114) For all elements a_1 , a_2 , b_1 , b_2 of the carrier of K holds $\langle a_1, a_2 \rangle \cdot \langle b_1, b_2 \rangle = a_1 \cdot b_1 + a_2 \cdot b_2$.
- (115) For all finite sequences p, q of elements of the carrier of K holds $p \cdot q = q \cdot p$.

Acknowledgments

I would like to thank Czesław Byliński for his help.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643–649, 1990.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651–656, 1990.
- [10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
- [13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.

- [14] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1(2):329–334, 1990.
- [15] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [16] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369–376, 1990.
- [17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [18] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [19] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187–190, 1990.
- [20] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [21] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.
- [22] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.

Received December 29, 1992