Sum and Product of Finite Sequences of Elements of a Field

Katarzyna Zawadzka
Warsaw University
Białystok

Abstract

Summary. This article is concerned with a generalization of concepts introduced in [10], i.e., there are introduced the sum and the product of finite number of elements of any field. Moreover, the product of vectors which yields a vector is introduced. According to [10], some operations on i-tuples of elements of field are introduced: addition, subtraction, and complement. Some properties on the sum and the product of finite number of elements of a field are present.

MML Identifier: FVSUM_1.

The articles [17], [2], [18], [7], [8], [3], [4], [14], [13], [15], [19], [16], [6], [5], [9], [1], [20], [22], [21], [11], and [12] provide the notation and terminology for this paper.

1. Auxiliary theorems

For simplicity we adopt the following convention: i, j, k will denote natural numbers, K will denote a field, $a, a^{\prime}, a_{1}, a_{2}, a_{3}$ will denote elements of the carrier of K, p, p_{1}, p_{2}, q will denote finite sequences of elements of the carrier of K, and R, R_{1}, R_{2}, R_{3} will denote elements of (the carrier of K) ${ }^{i}$. We now state a number of propositions:
(1) $-0_{K}=0_{K}$.
(2) The addition of K is commutative.
(3) The addition of K is associative.
(4) The multiplication of K is commutative.
(5) The multiplication of K is associative.
(6) 1_{K} is a unity w.r.t. the multiplication of K.
(7) $\mathbf{1}_{\text {the multiplication of } K}=1_{K}$.
(8) 0_{K} is a unity w.r.t. the addition of K.
(9) $\mathbf{1}_{\text {the addition of } K}=0_{K}$.
(10) The addition of K has a unity.
(11) The multiplication of K has a unity.
(12) The multiplication of K is distributive w.r.t. the addition of K.

We now define two new functors. Let us consider K, and let a be an element of the carrier of K. The functor ${ }^{a}$ yields a unary operation on the carrier of K and is defined by:
(Def.1) $\quad \cdot^{a}=(\text { the multiplication of } K)^{\circ}\left(a, \mathrm{id}_{(\text {the carrier of } K)}\right)$.
Let us consider K. The functor $-K$ yields a binary operation on the carrier of K and is defined as follows:
(Def.2) $\quad-{ }_{K}=($ the addition of $K) \circ\left(\operatorname{id}_{(\text {the carrier of } K)}\right.$, the reverse-map of $\left.K\right)$.
We now state several propositions:
(13) $-{ }_{K}=($ the addition of $K) \circ\left(\mathrm{id}_{(\text {the }}\right.$ carrier of $\left.K\right)$, the reverse-map of $\left.K\right)$.
(14) $-_{K}\left(a_{1}, a_{2}\right)=a_{1}-a_{2}$.
(15).a is distributive w.r.t. the addition of K.
(16) The reverse-map of K is an inverse operation w.r.t. the addition of K.
(17) The addition of K has an inverse operation.
(18) The inverse operation w.r.t. the addition of $K=$ the reverse-map of K.
(19) The reverse-map of K is distributive w.r.t. the addition of K.

Let us consider K, p_{1}, p_{2}. The functor $p_{1}+p_{2}$ yielding a finite sequence of elements of the carrier of K is defined as follows:
(Def.3) $\quad p_{1}+p_{2}=(\text { the addition of } K)^{\circ}\left(p_{1}, p_{2}\right)$.
Next we state two propositions:
(21) If $i \in \operatorname{Seg} \operatorname{len}\left(p_{1}+p_{2}\right)$ and $a_{1}=p_{1}(i)$ and $a_{2}=p_{2}(i)$, then $\left(p_{1}+p_{2}\right)(i)=$ $a_{1}+a_{2}$.
Let us consider i, and let us consider K, and let R_{1}, R_{2} be elements of (the carrier of $K)^{i}$. Then $R_{1}+R_{2}$ is an element of (the carrier of $\left.K\right)^{i}$.

Next we state several propositions:
(22) If $j \in \operatorname{Seg} i$ and $a_{1}=R_{1}(j)$ and $a_{2}=R_{2}(j)$, then $\left(R_{1}+R_{2}\right)(j)=a_{1}+a_{2}$.
(23) $\varepsilon_{(\text {the carrier of } K)}+p=\varepsilon_{(\text {the carrier of } K)}$ and
$p+\varepsilon_{(\text {the carrier of } K)}=\varepsilon_{(\text {the carrier of } K)}$.

$$
\begin{array}{ll}
(24) & \left\langle a_{1}\right\rangle+\left\langle a_{2}\right\rangle=\left\langle a_{1}+a_{2}\right\rangle . \\
(25) & \left(i \longmapsto a_{1}\right)+\left(i \longmapsto a_{2}\right)=i \longmapsto a_{1}+a_{2} . \\
(26) & R_{1}+R_{2}=R_{2}+R_{1} . \\
(27) & R_{1}+\left(R_{2}+R_{3}\right)=\left(R_{1}+R_{2}\right)+R_{3} . \\
(28) & R+\left(i \longmapsto 0_{K}\right)=R \text { and } R=\left(i \longmapsto 0_{K}\right)+R .
\end{array}
$$

Let us consider K, p. The functor $-p$ yields a finite sequence of elements of the carrier of K and is defined as follows:
(Def.4) $\quad-p=($ the reverse-map of $K) \cdot p$.
The following two propositions are true:
(29) $\quad-p=($ the reverse-map of $K) \cdot p$.
(30) If $i \in \operatorname{Seg} \operatorname{len}(-p)$ and $a=p(i)$, then $(-p)(i)=-a$.

Let us consider i, K, R. Then $-R$ is an element of (the carrier of $K)^{i}$.
One can prove the following propositions:
(31) If $j \in \operatorname{Seg} i$ and $a=R(j)$, then $(-R)(j)=-a$.
(32) $-\varepsilon_{(\text {the carrier of } K)}=\varepsilon_{(\text {the carrier of } K)}$.
(33) $-\langle a\rangle=\langle-a\rangle$.
(34) $\quad-(i \longmapsto a)=i \longmapsto-a$.
(35) $\quad R+-R=i \longmapsto 0_{K}$ and $-R+R=i \longmapsto 0_{K}$.
(36) If $R_{1}+R_{2}=i \longmapsto 0_{K}$, then $R_{1}=-R_{2}$ and $R_{2}=-R_{1}$.
(37) $--R=R$.
(38) If $-R_{1}=-R_{2}$, then $R_{1}=R_{2}$.
(39) If $R_{1}+R=R_{2}+R$ or $R_{1}+R=R+R_{2}$, then $R_{1}=R_{2}$.
(40) $\quad-\left(R_{1}+R_{2}\right)=-R_{1}+-R_{2}$.

Let us consider K, p_{1}, p_{2}. The functor $p_{1}-p_{2}$ yielding a finite sequence of elements of the carrier of K is defined as follows:
(Def.5) $\quad p_{1}-p_{2}=\left(-_{K}\right)^{\circ}\left(p_{1}, p_{2}\right)$.
Next we state two propositions:
(41) $\quad p_{1}-p_{2}=(-K)^{\circ}\left(p_{1}, p_{2}\right)$.
(42) If $i \in \operatorname{Seg} \operatorname{len}\left(p_{1}-p_{2}\right)$ and $a_{1}=p_{1}(i)$ and $a_{2}=p_{2}(i)$, then $\left(p_{1}-p_{2}\right)(i)=$ $a_{1}-a_{2}$.
Let us consider i, K, R_{1}, R_{2}. Then $R_{1}-R_{2}$ is an element of (the carrier of $K)^{i}$.

The following propositions are true:
(43) If $j \in \operatorname{Seg} i$ and $a_{1}=R_{1}(j)$ and $a_{2}=R_{2}(j)$, then $\left(R_{1}-R_{2}\right)(j)=a_{1}-a_{2}$.
$\varepsilon_{(\text {the carrier of } K)}-p=\varepsilon_{(\text {the carrier of } K)}$ and
$p-\varepsilon_{(\text {the carrier of } K)}=\varepsilon_{\text {(the carrier of } K)}$.
(45) $\quad\left\langle a_{1}\right\rangle-\left\langle a_{2}\right\rangle=\left\langle a_{1}-a_{2}\right\rangle$.
(46) $\quad\left(i \longmapsto a_{1}\right)-\left(i \longmapsto a_{2}\right)=i \longmapsto a_{1}-a_{2}$.
(47) $\quad R_{1}-R_{2}=R_{1}+-R_{2}$.
(48) $\quad R-\left(i \longmapsto 0_{K}\right)=R$.
(49) $\quad\left(i \longmapsto 0_{K}\right)-R=-R$.
(50) $\quad R_{1}--R_{2}=R_{1}+R_{2}$.
(51) $\quad-\left(R_{1}-R_{2}\right)=R_{2}-R_{1}$.

$$
\begin{equation*}
-\left(R_{1}-R_{2}\right)=-R_{1}+R_{2} \tag{52}
\end{equation*}
$$

$$
\begin{array}{ll}
\text { (53) } & R-R=i \longmapsto 0_{K} . \\
\text { (54) } & \text { If } R_{1}-R_{2}=i \longmapsto 0_{K}, \text { then } R_{1}=R_{2} . \\
\text { (55) } & R_{1}-R_{2}-R_{3}=R_{1}-\left(R_{2}+R_{3}\right) . \\
\text { (56) } & R_{1}+\left(R_{2}-R_{3}\right)=\left(R_{1}+R_{2}\right)-R_{3} . \\
\text { (57) } & R_{1}-\left(R_{2}-R_{3}\right)=\left(R_{1}-R_{2}\right)+R_{3} . \\
\text { (58) } & R_{1}=\left(R_{1}+R\right)-R . \\
\text { (59) } & R_{1}=\left(R_{1}-R\right)+R .
\end{array}
$$

(60) For all elements a, b of the carrier of K holds ((the multiplication of $\left.K)^{\circ}\left(a, \operatorname{id}_{(\text {the carrier of } K)}\right)\right)(b)=a \cdot b$.
(61) For all elements a, b of the carrier of K holds $\cdot a(b)=a \cdot b$.

Let us consider K, and let p be a finite sequence of elements of the carrier of K, and let a be an element of the carrier of K. The functor $a \cdot p$ yielding a finite sequence of elements of the carrier of K is defined as follows:

$$
\text { (Def.6) } \quad a \cdot p=.^{a} \cdot p
$$

Next we state the proposition
(62) If $i \in \operatorname{Seg} \operatorname{len}(a \cdot p)$ and $a^{\prime}=p(i)$, then $(a \cdot p)(i)=a \cdot a^{\prime}$.

Let us consider i, K, R, a. Then $a \cdot R$ is an element of (the carrier of $K)^{i}$. The following propositions are true:
(63) If $j \in \operatorname{Seg} i$ and $a^{\prime}=R(j)$, then $(a \cdot R)(j)=a \cdot a^{\prime}$.
(64) $a \cdot \varepsilon_{(\text {the carrier of } K)}=\varepsilon_{(\text {the carrier of } K)}$.
(65) $a \cdot\left\langle a_{1}\right\rangle=\left\langle a \cdot a_{1}\right\rangle$.
(66) $\quad a_{1} \cdot\left(i \longmapsto a_{2}\right)=i \longmapsto a_{1} \cdot a_{2}$.
(67) $\left(a_{1} \cdot a_{2}\right) \cdot R=a_{1} \cdot\left(a_{2} \cdot R\right)$.
(68) $\left(a_{1}+a_{2}\right) \cdot R=a_{1} \cdot R+a_{2} \cdot R$.
(69) $a \cdot\left(R_{1}+R_{2}\right)=a \cdot R_{1}+a \cdot R_{2}$.
(70) $1_{K} \cdot R=R$.
(71) $0_{K} \cdot R=i \longmapsto 0_{K}$.
(72) $\left(-1_{K}\right) \cdot R=-R$.

Let us consider K, p_{1}, p_{2}. The functor $p_{1} \bullet p_{2}$ yields a finite sequence of elements of the carrier of K and is defined as follows:
(Def.7) $\quad p_{1} \bullet p_{2}=(\text { the multiplication of } K)^{\circ}\left(p_{1}, p_{2}\right)$.
One can prove the following proposition
(73) If $i \in \operatorname{Seg} \operatorname{len}\left(p_{1} \bullet p_{2}\right)$ and $a_{1}=p_{1}(i)$ and $a_{2}=p_{2}(i)$, then $\left(p_{1} \bullet p_{2}\right)(i)=$ $a_{1} \cdot a_{2}$.
Let us consider i, K, R_{1}, R_{2}. Then $R_{1} \bullet R_{2}$ is an element of (the carrier of $K)^{i}$.

We now state a number of propositions:
(74) If $j \in \operatorname{Seg} i$ and $a_{1}=R_{1}(j)$ and $a_{2}=R_{2}(j)$, then $\left(R_{1} \bullet R_{2}\right)(j)=a_{1} \cdot a_{2}$.

$$
\begin{array}{ll}
(75) & \varepsilon_{(\text {the carrier of } K)} \bullet p=\varepsilon_{(\text {the carrier of } K)} \text { and } \tag{75}\\
& p \bullet \varepsilon_{(\text {the carrier of } K)}=\varepsilon_{(\text {the carrier of } K)} . \\
(76) & \left\langle a_{1}\right\rangle \bullet\left\langle a_{2}\right\rangle=\left\langle a_{1} \cdot a_{2}\right\rangle . \\
(77) & R_{1} \bullet R_{2}=R_{2} \bullet R_{1} . \\
(78) & p \bullet q=q \bullet p . \\
(79) & R_{1} \bullet\left(R_{2} \bullet R_{3}\right)=\left(R_{1} \bullet R_{2}\right) \bullet R_{3} . \\
(80) & (i \longmapsto a) \bullet R=a \cdot R \text { and } R \bullet(i \longmapsto a)=a \cdot R . \\
(81) & \left(i \longmapsto a_{1}\right) \bullet\left(i \longmapsto a_{2}\right)=i \longmapsto a_{1} \cdot a_{2} . \\
(82) & a \cdot\left(R_{1} \bullet R_{2}\right)=a \cdot R_{1} \bullet R_{2} . \\
(83) & a \cdot\left(R_{1} \bullet R_{2}\right)=a \cdot R_{1} \bullet R_{2} \text { and } a \cdot\left(R_{1} \bullet R_{2}\right)=R_{1} \bullet a \cdot R_{2} . \\
(84) & a \cdot R=(i \longmapsto a) \bullet R .
\end{array}
$$

Let us consider K, and let p be a finite sequence of elements of the carrier of K. The functor $\sum p$ yielding an element of the carrier of K is defined as follows:
(Def.8) $\quad \sum p=$ the addition of $K \circledast p$.
The following propositions are true:
(85) $\quad \sum\left(\varepsilon_{(\text {the carrier of } K)}\right)=0_{K}$.
(86) $\quad \sum\langle a\rangle=a$.
(87) $\quad \sum\left(p^{\wedge}\langle a\rangle\right)=\sum p+a$.
(88) $\quad \sum\left(p_{1}{ }^{\wedge} p_{2}\right)=\sum p_{1}+\sum p_{2}$.
(89) $\quad \sum\left(\langle a\rangle^{\wedge} p\right)=a+\sum p$.
(90) $\sum\left\langle a_{1}, a_{2}\right\rangle=a_{1}+a_{2}$.
(91) $\sum\left\langle a_{1}, a_{2}, a_{3}\right\rangle=a_{1}+a_{2}+a_{3}$.
(92) $\quad \sum(a \cdot p)=a \cdot \sum p$.
(93) For every element R of (the carrier of $K)^{0}$ holds $\sum R=0_{K}$.
(94) $\quad \sum(-p)=-\sum p$.
(95) $\quad \sum\left(R_{1}+R_{2}\right)=\sum R_{1}+\sum R_{2}$.
(96) $\quad \sum\left(R_{1}-R_{2}\right)=\sum R_{1}-\sum R_{2}$.

Let us consider K, and let p be a finite sequence of elements of the carrier of K. The functor Πp yielding an element of the carrier of K is defined by:
(Def.9) $\quad \Pi p=$ the multiplication of $K \circledast p$.
The following propositions are true:
(97) $\quad \Pi p=$ the multiplication of $K \circledast p$.
(98) $\quad \prod\left(\varepsilon_{(\text {the carrier of } K)}\right)=1_{K}$.
(99) $\Pi\langle a\rangle=a$.
(100) $\quad \Pi\left(p^{\wedge}\langle a\rangle\right)=\Pi p \cdot a$.
(101) $\quad \Pi\left(p_{1}{ }^{\wedge} p_{2}\right)=\Pi p_{1} \cdot \Pi p_{2}$.
(102) $\quad \Pi\left(\langle a\rangle^{\wedge} p\right)=a \cdot \Pi p$.
(103) $\Pi\left\langle a_{1}, a_{2}\right\rangle=a_{1} \cdot a_{2}$.
(104) $\Pi\left\langle a_{1}, a_{2}, a_{3}\right\rangle=a_{1} \cdot a_{2} \cdot a_{3}$.
(105) For every element R of (the carrier of $K)^{0}$ holds $\Pi R=1_{K}$.

$$
\begin{equation*}
\Pi\left(i \longmapsto 1_{K}\right)=1_{K} . \tag{106}
\end{equation*}
$$

There exists k such that $k \in \operatorname{Seg} \operatorname{len} p$ and $p(k)=0_{K}$ if and only if $\Pi p=0_{K}$.

$$
\begin{align*}
& \Pi(i+j \longmapsto a)=\Pi(i \longmapsto a) \cdot \Pi(j \longmapsto a) . \tag{108}\\
& \Pi(i \cdot j \longmapsto a)=\Pi(j \longmapsto \Pi(i \longmapsto a)) . \tag{109}\\
& \Pi\left(i \longmapsto a_{1} \cdot a_{2}\right)=\Pi\left(i \longmapsto a_{1}\right) \cdot \Pi\left(i \longmapsto a_{2}\right) . \tag{110}\\
& \Pi\left(R_{1} \bullet R_{2}\right)=\prod R_{1} \cdot \Pi R_{2} . \tag{111}\\
& \Pi(a \cdot R)=\prod(i \longmapsto a) \cdot \Pi R .
\end{align*}
$$

Let us consider K, and let p, q be finite sequences of elements of the carrier of K. The functor $p \cdot q$ yielding an element of the carrier of K is defined by:
(Def.10) $\quad p \cdot q=\sum(p \bullet q)$.
One can prove the following propositions:
(113) For all elements a, b of the carrier of K holds $\langle a\rangle \cdot\langle b\rangle=a \cdot b$.
(114) For all elements $a_{1}, a_{2}, b_{1}, b_{2}$ of the carrier of K holds $\left\langle a_{1}, a_{2}\right\rangle \cdot\left\langle b_{1}\right.$, $\left.b_{2}\right\rangle=a_{1} \cdot b_{1}+a_{2} \cdot b_{2}$.
(115) For all finite sequences p, q of elements of the carrier of K holds $p \cdot q=$ $q \cdot p$.

Acknowledgments

I would like to thank Czesław Byliński for his help.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651-656, 1990.
[10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[12] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
[13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[14] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[15] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[16] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[18] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[19] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[20] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[21] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.
[22] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.

Received December 29, 1992

