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Summary. This article is concerned with a generalization of con-
cepts introduced in [10], i.e., there are introduced the sum and the product
of finite number of elements of any field. Moreover, the product of vectors
which yields a vector is introduced. According to [10], some operations
on i-tuples of elements of field are introduced: addition, subtraction, and
complement. Some properties on the sum and the product of finite num-
ber of elements of a field are present.

MML Identifier: FVSUM 1.

The articles [17], [2], [18], [7], [8], [3], [4], [14], [13], [15], [19], [16], [6], [5], [9],
[1], [20], [22], [21], [11], and [12] provide the notation and terminology for this
paper.

1. Auxiliary theorems

For simplicity we adopt the following convention: i, j, k will denote natural
numbers, K will denote a field, a, a′, a1, a2, a3 will denote elements of the
carrier of K, p, p1, p2, q will denote finite sequences of elements of the carrier
of K, and R, R1, R2, R3 will denote elements of (the carrier of K)i. We now
state a number of propositions:

(1) −0K = 0K .

(2) The addition of K is commutative.

(3) The addition of K is associative.

(4) The multiplication of K is commutative.

(5) The multiplication of K is associative.

(6) 1K is a unity w.r.t. the multiplication of K.
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(7) 1the multiplication of K = 1K .

(8) 0K is a unity w.r.t. the addition of K.

(9) 1the addition of K = 0K .

(10) The addition of K has a unity.

(11) The multiplication of K has a unity.

(12) The multiplication of K is distributive w.r.t. the addition of K.

We now define two new functors. Let us consider K, and let a be an element
of the carrier of K. The functor ·a yields a unary operation on the carrier of K

and is defined by:

(Def.1) ·a = (the multiplication of K)◦(a, id(the carrier of K)).

Let us consider K. The functor −K yields a binary operation on the carrier of
K and is defined as follows:

(Def.2) −K = (the addition of K) ◦ (id(the carrier of K), the reverse-map of K).

We now state several propositions:

(13) −K = (the addition of K) ◦ (id(the carrier of K), the reverse-map of K).

(14) −K(a1, a2) = a1 − a2.

(15) ·a is distributive w.r.t. the addition of K.

(16) The reverse-map of K is an inverse operation w.r.t. the addition of K.

(17) The addition of K has an inverse operation.

(18) The inverse operation w.r.t. the addition of K = the reverse-map of K.

(19) The reverse-map of K is distributive w.r.t. the addition of K.

Let us consider K, p1, p2. The functor p1 + p2 yielding a finite sequence of
elements of the carrier of K is defined as follows:

(Def.3) p1 + p2 = (the addition of K)◦(p1, p2).

Next we state two propositions:

(20) p1 + p2 = (the addition of K)◦(p1, p2).

(21) If i ∈ Seg len(p1 +p2) and a1 = p1(i) and a2 = p2(i), then (p1 +p2)(i) =
a1 + a2.

Let us consider i, and let us consider K, and let R1, R2 be elements of (the
carrier of K)i. Then R1 + R2 is an element of (the carrier of K)i.

Next we state several propositions:

(22) If j ∈ Seg i and a1 = R1(j) and a2 = R2(j), then (R1+R2)(j) = a1+a2.

(23) ε(the carrier of K) + p = ε(the carrier of K) and
p + ε(the carrier of K) = ε(the carrier of K).

(24) 〈a1〉 + 〈a2〉 = 〈a1 + a2〉.

(25) (i 7−→ a1) + (i 7−→ a2) = i 7−→ a1 + a2.

(26) R1 + R2 = R2 + R1.

(27) R1 + (R2 + R3) = (R1 + R2) + R3.

(28) R + (i 7−→ 0K) = R and R = (i 7−→ 0K) + R.
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Let us consider K, p. The functor −p yields a finite sequence of elements of
the carrier of K and is defined as follows:

(Def.4) −p = (the reverse-map of K) · p.

The following two propositions are true:

(29) −p = (the reverse-map of K) · p.

(30) If i ∈ Seg len(−p) and a = p(i), then (−p)(i) = −a.

Let us consider i, K, R. Then −R is an element of (the carrier of K)i.

One can prove the following propositions:

(31) If j ∈ Seg i and a = R(j), then (−R)(j) = −a.

(32) −ε(the carrier of K) = ε(the carrier of K).

(33) −〈a〉 = 〈−a〉.

(34) −(i 7−→ a) = i 7−→ −a.

(35) R + −R = i 7−→ 0K and −R + R = i 7−→ 0K .

(36) If R1 + R2 = i 7−→ 0K , then R1 = −R2 and R2 = −R1.

(37) −−R = R.

(38) If −R1 = −R2, then R1 = R2.

(39) If R1 + R = R2 + R or R1 + R = R + R2, then R1 = R2.

(40) −(R1 + R2) = −R1 + −R2.

Let us consider K, p1, p2. The functor p1 − p2 yielding a finite sequence of
elements of the carrier of K is defined as follows:

(Def.5) p1 − p2 = (−K)◦(p1, p2).

Next we state two propositions:

(41) p1 − p2 = (−K)◦(p1, p2).

(42) If i ∈ Seg len(p1−p2) and a1 = p1(i) and a2 = p2(i), then (p1−p2)(i) =
a1 − a2.

Let us consider i, K, R1, R2. Then R1 − R2 is an element of (the carrier of
K)i.

The following propositions are true:

(43) If j ∈ Seg i and a1 = R1(j) and a2 = R2(j), then (R1−R2)(j) = a1−a2.

(44) ε(the carrier of K) − p = ε(the carrier of K) and
p − ε(the carrier of K) = ε(the carrier of K).

(45) 〈a1〉 − 〈a2〉 = 〈a1 − a2〉.

(46) (i 7−→ a1) − (i 7−→ a2) = i 7−→ a1 − a2.

(47) R1 − R2 = R1 + −R2.

(48) R − (i 7−→ 0K) = R.

(49) (i 7−→ 0K) − R = −R.

(50) R1 −−R2 = R1 + R2.

(51) −(R1 − R2) = R2 − R1.

(52) −(R1 − R2) = −R1 + R2.
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(53) R − R = i 7−→ 0K .

(54) If R1 − R2 = i 7−→ 0K , then R1 = R2.

(55) R1 − R2 − R3 = R1 − (R2 + R3).

(56) R1 + (R2 − R3) = (R1 + R2) − R3.

(57) R1 − (R2 − R3) = (R1 − R2) + R3.

(58) R1 = (R1 + R) − R.

(59) R1 = (R1 − R) + R.

(60) For all elements a, b of the carrier of K holds ((the multiplication of
K)◦(a, id(the carrier of K)))(b) = a · b.

(61) For all elements a, b of the carrier of K holds ·a(b) = a · b.

Let us consider K, and let p be a finite sequence of elements of the carrier
of K, and let a be an element of the carrier of K. The functor a · p yielding a
finite sequence of elements of the carrier of K is defined as follows:

(Def.6) a · p = ·a ·p.

Next we state the proposition

(62) If i ∈ Seg len(a · p) and a′ = p(i), then (a · p)(i) = a · a′.

Let us consider i, K, R, a. Then a · R is an element of (the carrier of K)i.

The following propositions are true:

(63) If j ∈ Seg i and a′ = R(j), then (a · R)(j) = a · a′.

(64) a · ε(the carrier of K) = ε(the carrier of K).

(65) a · 〈a1〉 = 〈a · a1〉.

(66) a1 · (i 7−→ a2) = i 7−→ a1 · a2.

(67) (a1 · a2) · R = a1 · (a2 · R).

(68) (a1 + a2) · R = a1 · R + a2 · R.

(69) a · (R1 + R2) = a · R1 + a · R2.

(70) 1K · R = R.

(71) 0K · R = i 7−→ 0K .

(72) (−1K) · R = −R.

Let us consider K, p1, p2. The functor p1 • p2 yields a finite sequence of
elements of the carrier of K and is defined as follows:

(Def.7) p1 • p2 = (the multiplication of K)◦(p1, p2).

One can prove the following proposition

(73) If i ∈ Seg len(p1 • p2) and a1 = p1(i) and a2 = p2(i), then (p1 • p2)(i) =
a1 · a2.

Let us consider i, K, R1, R2. Then R1 • R2 is an element of (the carrier of
K)i.

We now state a number of propositions:

(74) If j ∈ Seg i and a1 = R1(j) and a2 = R2(j), then (R1 •R2)(j) = a1 · a2.



sum and product of finite sequences of . . . 209

(75) ε(the carrier of K) • p = ε(the carrier of K) and
p • ε(the carrier of K) = ε(the carrier of K).

(76) 〈a1〉 • 〈a2〉 = 〈a1 · a2〉.

(77) R1 • R2 = R2 • R1.

(78) p • q = q • p.

(79) R1 • (R2 • R3) = (R1 • R2) • R3.

(80) (i 7−→ a) • R = a · R and R • (i 7−→ a) = a · R.

(81) (i 7−→ a1) • (i 7−→ a2) = i 7−→ a1 · a2.

(82) a · (R1 • R2) = a · R1 • R2.

(83) a · (R1 • R2) = a · R1 • R2 and a · (R1 • R2) = R1 • a · R2.

(84) a · R = (i 7−→ a) • R.

Let us consider K, and let p be a finite sequence of elements of the carrier of
K. The functor

∑
p yielding an element of the carrier of K is defined as follows:

(Def.8)
∑

p = the addition of K 
 p.

The following propositions are true:

(85)
∑

(ε(the carrier of K)) = 0K .

(86)
∑
〈a〉 = a.

(87)
∑

(p � 〈a〉) =
∑

p + a.

(88)
∑

(p1 � p2) =
∑

p1 +
∑

p2.

(89)
∑

(〈a〉 � p) = a +
∑

p.

(90)
∑
〈a1, a2〉 = a1 + a2.

(91)
∑
〈a1, a2, a3〉 = a1 + a2 + a3.

(92)
∑

(a · p) = a ·
∑

p.

(93) For every element R of (the carrier of K)0 holds
∑

R = 0K .

(94)
∑

(−p) = −
∑

p.

(95)
∑

(R1 + R2) =
∑

R1 +
∑

R2.

(96)
∑

(R1 − R2) =
∑

R1 −
∑

R2.

Let us consider K, and let p be a finite sequence of elements of the carrier of
K. The functor

∏
p yielding an element of the carrier of K is defined by:

(Def.9)
∏

p = the multiplication of K 
 p.

The following propositions are true:

(97)
∏

p = the multiplication of K 
 p.

(98)
∏

(ε(the carrier of K)) = 1K .

(99)
∏
〈a〉 = a.

(100)
∏

(p � 〈a〉) =
∏

p · a.

(101)
∏

(p1 � p2) =
∏

p1 ·
∏

p2.

(102)
∏

(〈a〉 � p) = a ·
∏

p.

(103)
∏
〈a1, a2〉 = a1 · a2.

(104)
∏
〈a1, a2, a3〉 = a1 · a2 · a3.
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(105) For every element R of (the carrier of K)0 holds
∏

R = 1K .

(106)
∏

(i 7−→ 1K) = 1K .

(107) There exists k such that k ∈ Seg len p and p(k) = 0K if and only if
∏

p = 0K .

(108)
∏

(i + j 7−→ a) =
∏

(i 7−→ a) ·
∏

(j 7−→ a).

(109)
∏

(i · j 7−→ a) =
∏

(j 7−→
∏

(i 7−→ a)).

(110)
∏

(i 7−→ a1 · a2) =
∏

(i 7−→ a1) ·
∏

(i 7−→ a2).

(111)
∏

(R1 • R2) =
∏

R1 ·
∏

R2.

(112)
∏

(a · R) =
∏

(i 7−→ a) ·
∏

R.

Let us consider K, and let p, q be finite sequences of elements of the carrier
of K. The functor p · q yielding an element of the carrier of K is defined by:

(Def.10) p · q =
∑

(p • q).

One can prove the following propositions:

(113) For all elements a, b of the carrier of K holds 〈a〉 · 〈b〉 = a · b.

(114) For all elements a1, a2, b1, b2 of the carrier of K holds 〈a1, a2〉 · 〈b1,

b2〉 = a1 · b1 + a2 · b2.

(115) For all finite sequences p, q of elements of the carrier of K holds p · q =
q · p.
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References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
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