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Summary. By borrowing the concept of neighborhood from the
theory of topological space in continuous cases and extending it to a dis-
crete case such as a space of lattice points we have defined such concepts
as boundaries, closures, interiors, isolated points, and connected points
as in the case of continuity. We have proved various properties which are
satisfied by these concepts.

MML Identifier: FIN TOPO.

The articles [15], [8], [2], [5], [16], [6], [14], [19], [10], [12], [17], [9], [11], [3],
[4], [13], [7], [18], and [1] provide the notation and terminology for this paper.
The scheme Set of Elements deals with a non-empty set A, a unary functor F
yielding an element of A, and a unary predicate P, and states that:

{F(x) : P[x]}, where x ranges over elements of A, is a subset of A
for all values of the parameters.

One can prove the following propositions:

(1) Let A be a set. Let f be a finite sequence of elements of 2A. Then if for
every natural number i such that 1 ≤ i and i < len f holds πif ⊆ πi+1f ,
then for all natural numbers i, j such that i ≤ j and 1 ≤ i and j ≤ len f
holds πif ⊆ πjf .

(2) Let A be a set. Let f be a finite sequence of elements of 2A. Suppose for
every natural number i such that 1 ≤ i and i < len f holds πif ⊆ πi+1f .
Then for all natural numbers i, j such that i < j and 1 ≤ i and j ≤ len f
and πjf ⊆ πif and for every natural number k such that i ≤ k and k ≤ j
holds πjf = πkf .

(3) For every set F such that F is finite and F 6= ∅ and for all sets B, C
such that B ∈ F and C ∈ F holds B ⊆ C or C ⊆ B there exists a set m
such that m ∈ F and for every set C such that C ∈ F holds C ⊆ m.

(4) For all sets x, A holds x ⊆ A if and only if x ∈ 2A.
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(5) For every function f if for every natural number i holds f(i) ⊆ f(i+1),
and for all natural numbers i, j such that i ≤ j holds f(i) ⊆ f(j).

The scheme MaxFinSeqEx deals with a non-empty set A, a subset B of A, a
subset C of A, and a unary functor F yielding a subset of A and states that:

there exists a finite sequence f of elements of 2A such that len f > 0 and
π1f = C and for every natural number i such that i > 0 and i < len f holds
πi+1f = F(πif) and F(πlen ff) = πlen ff and for all natural numbers i, j such
that i > 0 and i < j and j ≤ len f holds πif ⊆ B and πif ⊆ πjf and πif 6= πjf

provided the parameters meet the following requirements:

• B is finite,

• C ⊆ B,

• for every subset A of A such that A ⊆ B holds A ⊆ F(A) and
F(A) ⊆ B.

We consider finite topology spaces which are extension of a 1-sorted structure
and are systems

〈a carrier, a neighbour-map〉,
where the carrier is a non-empty set and the neighbour-map is a function from
the carrier into 2the carrier.

In the sequel F1 denotes a finite topology space. We now define two new
modes. Let F1 be a 1-sorted structure. An element of F1 is an element of the
carrier of F1.

A subset of F1 is a subset of the carrier of F1.

In the sequel x, y are elements of F1. Let F1 be a finite topology space, and
let x be an element of F1. The functor U(x) yields a subset of F1 and is defined
as follows:

(Def.1) U(x) = (the neighbour-map of F1)(x).

One can prove the following proposition

(6) For every F1 being a finite topology space and for every element x of
F1 holds U(x) = (the neighbour-map of F1)(x).

We now define three new constructions. Let x be arbitrary, and let y be a
subset of {x}. Then x7−→. y is a function from {x} into 2{x}. The strict finite
topology space FT{0} is defined as follows:

(Def.2) FT{0} = 〈{0 qua any}, 07−→. Ω{0qua any}〉.

A finite topology space is filled if:

(Def.3) for every element x of it holds x ∈ U(x).

A 1-sorted structure is finite if:

(Def.4) the carrier of it is finite.

One can prove the following two propositions:

(7) FT{0} is filled.

(8) FT{0} is finite.



finite topological spaces 191

Let us observe that there exists a finite filled strict finite topology space.
Let T be a 1-sorted structure, and let F be a set. We say that F is a cover

of T if and only if:

(Def.5) the carrier of T ⊆
⋃

F .

Next we state the proposition

(9) For every F1 being a filled finite topology space holds {U(x)}, where x
ranges over elements of F1, is a cover of F1.

In the sequel A is a subset of F1. Let us consider F1, and let A be a subset
of F1. The functor Aδ yielding a subset of F1 is defined as follows:

(Def.6) Aδ = {x : U(x) ∩ A 6= ∅ ∧ U(x) ∩ Ac 6= ∅}.

The following proposition is true

(10) x ∈ Aδ if and only if U(x) ∩ A 6= ∅ and U(x) ∩ Ac 6= ∅.

We now define two new functors. Let us consider F1, and let A be a subset
of F1. The functor Aδi yielding a subset of F1 is defined as follows:

(Def.7) Aδi = A ∩ Aδ.

The functor Aδo yields a subset of F1 and is defined as follows:

(Def.8) Aδo = Ac ∩ Aδ.

Next we state the proposition

(11) Aδ = Aδi ∪ Aδo .

We now define several new constructions. Let us consider F1, and let A be a
subset of F1. The functor Ai yielding a subset of F1 is defined by:

(Def.9) Ai = {x : U(x) ⊆ A}.

The functor Ab yielding a subset of F1 is defined as follows:

(Def.10) Ab = {x : U(x) ∩ A 6= ∅}.

The functor As yielding a subset of F1 is defined by:

(Def.11) As = {x : x ∈ A ∧ (U(x) \ {x}) ∩ A = ∅}.

Let us consider F1, and let A be a subset of F1. The functor An yielding a
subset of F1 is defined as follows:

(Def.12) An = A \ As.

The functor Af yields a subset of F1 and is defined as follows:

(Def.13) Af = {x :
∨

y[y ∈ A ∧ x ∈ U(y)]}.

A finite topology space is symmetric if:

(Def.14) for all elements x, y of the carrier of it such that y ∈ U(x) holds
x ∈ U(y).

The following propositions are true:

(12) x ∈ Ai if and only if U(x) ⊆ A.

(13) x ∈ Ab if and only if U(x) ∩ A 6= ∅.

(14) x ∈ As if and only if x ∈ A and (U(x) \ {x}) ∩ A = ∅.

(15) x ∈ An if and only if x ∈ A and (U(x) \ {x}) ∩ A 6= ∅.
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(16) x ∈ Af if and only if there exists y such that y ∈ A and x ∈ U(y).

(17) F1 is symmetric if and only if for every A holds Ab = Af .

In the sequel F will be a subset of F1. We now define five new constructions.
Let us consider F1. A subset of F1 is open if:

(Def.15) it = iti.

A subset of F1 is closed if:

(Def.16) it = itb.

A subset of F1 is connected if:

(Def.17) for all subsets B, C of F1 such that it = B ∪ C and B 6= ∅ and C 6= ∅
and B ∩ C = ∅ holds Bb ∩ C 6= ∅.

Let us consider F1, and let A be a subset of F1. The functor Afb yields a subset
of F1 and is defined as follows:

(Def.18) Afb =
⋂
{F : A ⊆ F ∧ F is closed}.

The functor Afi yielding a subset of F1 is defined by:

(Def.19) Afi =
⋃
{F : A ⊆ F ∧ F is open}.

Next we state a number of propositions:

(18) For every F1 being a filled finite topology space and for every subset A
of F1 holds A ⊆ Ab.

(19) For every F1 being a finite topology space and for all subsets A, B of
F1 such that A ⊆ B holds Ab ⊆ Bb.

(20) Let F1 be a filled finite finite topology space. Let A be a subset of F1.
Then A is connected if and only if for every element x of F1 such that
x ∈ A there exists a finite sequence S of elements of 2the carrier of F1 such
that len S > 0 and π1S = {x} and for every natural number i such that
i > 0 and i < len S holds πi+1S = (πiS)b ∩ A and A ⊆ πlenSS.

(21) For every non-empty set E and for every subset A of E and for every
element x of E holds x ∈ Ac if and only if x /∈ A.

(22) ((Ac)i)c = Ab.

(23) ((Ac)b)c = Ai.

(24) Aδ = Ab ∩ (Ac)b.

(25) (Ac)δ = Aδ.

(26) If x ∈ As, then x /∈ (A \ {x})b.

(27) If As 6= ∅ and card A > 1, then A is connected.

(28) For every F1 being a filled finite topology space and for every subset A
of F1 holds Ai ⊆ A.

(29) For every set E and for all subsets A, B of E holds A = B if and only
if Ac = Bc.

(30) If A is open, then Ac is closed.

(31) If A is closed, then Ac is open.
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