# Finite Topological Spaces 

Hiroshi Imura<br>Shinshu University<br>Nagano

Masayoshi Eguchi<br>Shinshu University<br>Nagano


#### Abstract

Summary. By borrowing the concept of neighborhood from the theory of topological space in continuous cases and extending it to a discrete case such as a space of lattice points we have defined such concepts as boundaries, closures, interiors, isolated points, and connected points as in the case of continuity. We have proved various properties which are satisfied by these concepts.


MML Identifier: FIN_TOPO.

The articles [15], [8], [2], [5], [16], [6], [14], [19], [10], [12], [17], [9], [11], [3], [4], [13], [7], [18], and [1] provide the notation and terminology for this paper. The scheme Set_of_Elements deals with a non-empty set $\mathcal{A}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, and a unary predicate $\mathcal{P}$, and states that:
$\{\mathcal{F}(x): \mathcal{P}[x]\}$, where $x$ ranges over elements of $\mathcal{A}$, is a subset of $\mathcal{A}$ for all values of the parameters.

One can prove the following propositions:
(1) Let $A$ be a set. Let $f$ be a finite sequence of elements of $2^{A}$. Then if for every natural number $i$ such that $1 \leq i$ and $i<\operatorname{len} f$ holds $\pi_{i} f \subseteq \pi_{i+1} f$, then for all natural numbers $i, j$ such that $i \leq j$ and $1 \leq i$ and $j \leq \operatorname{len} f$ holds $\pi_{i} f \subseteq \pi_{j} f$.
(2) Let $A$ be a set. Let $f$ be a finite sequence of elements of $2^{A}$. Suppose for every natural number $i$ such that $1 \leq i$ and $i<\operatorname{len} f$ holds $\pi_{i} f \subseteq \pi_{i+1} f$. Then for all natural numbers $i, j$ such that $i<j$ and $1 \leq i$ and $j \leq \operatorname{len} f$ and $\pi_{j} f \subseteq \pi_{i} f$ and for every natural number $k$ such that $i \leq k$ and $k \leq j$ holds $\pi_{j} f=\pi_{k} f$.
(3) For every set $F$ such that $F$ is finite and $F \neq \emptyset$ and for all sets $B, C$ such that $B \in F$ and $C \in F$ holds $B \subseteq C$ or $C \subseteq B$ there exists a set $m$ such that $m \in F$ and for every set $C$ such that $C \in F$ holds $C \subseteq m$.
(4) For all sets $x, A$ holds $x \subseteq A$ if and only if $x \in 2^{A}$.
(5) For every function $f$ if for every natural number $i$ holds $f(i) \subseteq f(i+1)$, and for all natural numbers $i, j$ such that $i \leq j$ holds $f(i) \subseteq f(j)$.
The scheme MaxFinSeqEx deals with a non-empty set $\mathcal{A}$, a subset $\mathcal{B}$ of $\mathcal{A}$, a subset $\mathcal{C}$ of $\mathcal{A}$, and a unary functor $\mathcal{F}$ yielding a subset of $\mathcal{A}$ and states that:
there exists a finite sequence $f$ of elements of $2^{\mathcal{A}}$ such that len $f>0$ and $\pi_{1} f=\mathcal{C}$ and for every natural number $i$ such that $i>0$ and $i<\operatorname{len} f$ holds $\pi_{i+1} f=\mathcal{F}\left(\pi_{i} f\right)$ and $\mathcal{F}\left(\pi_{\operatorname{len} f} f\right)=\pi_{\operatorname{len} f} f$ and for all natural numbers $i, j$ such that $i>0$ and $i<j$ and $j \leq \operatorname{len} f$ holds $\pi_{i} f \subseteq \mathcal{B}$ and $\pi_{i} f \subseteq \pi_{j} f$ and $\pi_{i} f \neq \pi_{j} f$ provided the parameters meet the following requirements:

- $\mathcal{B}$ is finite,
- $\mathcal{C} \subseteq \mathcal{B}$,
- for every subset $A$ of $\mathcal{A}$ such that $A \subseteq \mathcal{B}$ holds $A \subseteq \mathcal{F}(A)$ and $\mathcal{F}(A) \subseteq \mathcal{B}$.
We consider finite topology spaces which are extension of a 1 -sorted structure and are systems

〈a carrier, a neighbour-map〉,
where the carrier is a non-empty set and the neighbour-map is a function from the carrier into $2^{\text {the carrier }}$.

In the sequel $F_{1}$ denotes a finite topology space. We now define two new modes. Let $F_{1}$ be a 1 -sorted structure. An element of $F_{1}$ is an element of the carrier of $F_{1}$.

A subset of $F_{1}$ is a subset of the carrier of $F_{1}$.
In the sequel $x, y$ are elements of $F_{1}$. Let $F_{1}$ be a finite topology space, and let $x$ be an element of $F_{1}$. The functor $U(x)$ yields a subset of $F_{1}$ and is defined as follows:
(Def.1) $\quad U(x)=\left(\right.$ the neighbour-map of $\left.F_{1}\right)(x)$.
One can prove the following proposition
(6) For every $F_{1}$ being a finite topology space and for every element $x$ of $F_{1}$ holds $U(x)=\left(\right.$ the neighbour-map of $\left.F_{1}\right)(x)$.
We now define three new constructions. Let $x$ be arbitrary, and let $y$ be a subset of $\{x\}$. Then $x \longmapsto y$ is a function from $\{x\}$ into $2^{\{x\}}$. The strict finite topology space $\mathrm{FT}_{\{0\}}$ is defined as follows:

$$
\begin{equation*}
\mathrm{FT}_{\{0\}}=\left\langle\{0 \text { qua any }\}, 0 \longmapsto \Omega_{\{0 \text { qua } \text { any }\}}\right\rangle . \tag{Def.2}
\end{equation*}
$$

A finite topology space is filled if:
(Def.3) for every element $x$ of it holds $x \in U(x)$.
A 1-sorted structure is finite if:
(Def.4) the carrier of it is finite.
One can prove the following two propositions:
(7) $\quad \mathrm{FT}_{\{0\}}$ is filled.
(8) $\mathrm{FT}_{\{0\}}$ is finite.

Let us observe that there exists a finite filled strict finite topology space.
Let $T$ be a 1 -sorted structure, and let $F$ be a set. We say that $F$ is a cover of $T$ if and only if:
(Def.5) the carrier of $T \subseteq \bigcup F$.
Next we state the proposition
(9) For every $F_{1}$ being a filled finite topology space holds $\{U(x)\}$, where $x$ ranges over elements of $F_{1}$, is a cover of $F_{1}$.
In the sequel $A$ is a subset of $F_{1}$. Let us consider $F_{1}$, and let $A$ be a subset of $F_{1}$. The functor $A^{\delta}$ yielding a subset of $F_{1}$ is defined as follows:
(Def.6) $\quad A^{\delta}=\left\{x: U(x) \cap A \neq \emptyset \wedge U(x) \cap A^{\mathrm{c}} \neq \emptyset\right\}$.
The following proposition is true
(10) $\quad x \in A^{\delta}$ if and only if $U(x) \cap A \neq \emptyset$ and $U(x) \cap A^{\mathrm{c}} \neq \emptyset$.

We now define two new functors. Let us consider $F_{1}$, and let $A$ be a subset of $F_{1}$. The functor $A^{\delta_{i}}$ yielding a subset of $F_{1}$ is defined as follows:
(Def.7) $\quad A^{\delta_{i}}=A \cap A^{\delta}$.
The functor $A^{\delta_{o}}$ yields a subset of $F_{1}$ and is defined as follows:
(Def.8) $\quad A^{\delta_{o}}=A^{\mathrm{c}} \cap A^{\delta}$.
Next we state the proposition
(11) $A^{\delta}=A^{\delta_{i}} \cup A^{\delta_{o}}$.

We now define several new constructions. Let us consider $F_{1}$, and let $A$ be a subset of $F_{1}$. The functor $A^{i}$ yielding a subset of $F_{1}$ is defined by:
(Def.9) $\quad A^{i}=\{x: U(x) \subseteq A\}$.
The functor $A^{b}$ yielding a subset of $F_{1}$ is defined as follows:
(Def.10) $\quad A^{b}=\{x: U(x) \cap A \neq \emptyset\}$.
The functor $A^{s}$ yielding a subset of $F_{1}$ is defined by:
(Def.11) $\quad A^{s}=\{x: x \in A \wedge(U(x) \backslash\{x\}) \cap A=\emptyset\}$.
Let us consider $F_{1}$, and let $A$ be a subset of $F_{1}$. The functor $A^{n}$ yielding a subset of $F_{1}$ is defined as follows:
(Def.12) $\quad A^{n}=A \backslash A^{s}$.
The functor $A^{f}$ yields a subset of $F_{1}$ and is defined as follows:
(Def.13) $\quad A^{f}=\left\{x: \bigvee_{y}[y \in A \wedge x \in U(y)]\right\}$.
A finite topology space is symmetric if:
(Def.14) for all elements $x, y$ of the carrier of it such that $y \in U(x)$ holds $x \in U(y)$.
The following propositions are true:
(12) $\quad x \in A^{i}$ if and only if $U(x) \subseteq A$.
(13) $x \in A^{b}$ if and only if $U(x) \cap A \neq \emptyset$.
(14) $x \in A^{s}$ if and only if $x \in A$ and $(U(x) \backslash\{x\}) \cap A=\emptyset$.
(15) $\quad x \in A^{n}$ if and only if $x \in A$ and $(U(x) \backslash\{x\}) \cap A \neq \emptyset$.

$$
\begin{equation*}
x \in A^{f} \text { if and only if there exists } y \text { such that } y \in A \text { and } x \in U(y) . \tag{16}
\end{equation*}
$$

In the sequel $F$ will be a subset of $F_{1}$. We now define five new constructions. Let us consider $F_{1}$. A subset of $F_{1}$ is open if:

$$
\begin{equation*}
\text { it }=i \mathrm{it}^{i} . \tag{Def.15}
\end{equation*}
$$

A subset of $F_{1}$ is closed if:
(Def.16) $\quad$ it $=i t^{b}$.
A subset of $F_{1}$ is connected if:
(Def.17) for all subsets $B, C$ of $F_{1}$ such that it $=B \cup C$ and $B \neq \emptyset$ and $C \neq \emptyset$ and $B \cap C=\emptyset$ holds $B^{b} \cap C \neq \emptyset$.
Let us consider $F_{1}$, and let $A$ be a subset of $F_{1}$. The functor $A^{f_{b}}$ yields a subset of $F_{1}$ and is defined as follows:
(Def.18) $\quad A^{f_{b}}=\bigcap\{F: A \subseteq F \wedge F$ is closed $\}$.
The functor $A^{f_{i}}$ yielding a subset of $F_{1}$ is defined by:
(Def.19) $\quad A^{f_{i}}=\bigcup\{F: A \subseteq F \wedge F$ is open $\}$.
Next we state a number of propositions:
(18) For every $F_{1}$ being a filled finite topology space and for every subset $A$ of $F_{1}$ holds $A \subseteq A^{b}$.
(19) For every $F_{1}$ being a finite topology space and for all subsets $A, B$ of $F_{1}$ such that $A \subseteq B$ holds $A^{b} \subseteq B^{b}$.
(20) Let $F_{1}$ be a filled finite finite topology space. Let $A$ be a subset of $F_{1}$. Then $A$ is connected if and only if for every element $x$ of $F_{1}$ such that $x \in A$ there exists a finite sequence $S$ of elements of $2^{\text {the carrier of } F_{1}}$ such that len $S>0$ and $\pi_{1} S=\{x\}$ and for every natural number $i$ such that $i>0$ and $i<\operatorname{len} S$ holds $\pi_{i+1} S=\left(\pi_{i} S\right)^{b} \cap A$ and $A \subseteq \pi_{\text {len } S} S$.
(21) For every non-empty set $E$ and for every subset $A$ of $E$ and for every element $x$ of $E$ holds $x \in A^{\mathrm{c}}$ if and only if $x \notin A$.
(22) $\quad\left(\left(A^{\mathrm{c}}\right)^{i}\right)^{\mathrm{c}}=A^{b}$.
(23) $\quad\left(\left(A^{\mathrm{c}}\right)^{b}\right)^{\mathrm{c}}=A^{i}$.
(24) $A^{\delta}=A^{b} \cap\left(A^{c}\right)^{b}$.
(25) $\left(A^{c}\right)^{\delta}=A^{\delta}$.
(26) If $x \in A^{s}$, then $x \notin(A \backslash\{x\})^{b}$.
(27) If $A^{s} \neq \emptyset$ and $\operatorname{card} A>1$, then $A$ is connected.
(28) For every $F_{1}$ being a filled finite topology space and for every subset $A$ of $F_{1}$ holds $A^{i} \subseteq A$.
(29) For every set $E$ and for all subsets $A, B$ of $E$ holds $A=B$ if and only if $A^{\mathrm{c}}=B^{\mathrm{c}}$.
(30) If $A$ is open, then $A^{\mathrm{c}}$ is closed.
(31) If $A$ is closed, then $A^{\mathrm{c}}$ is open.

## References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669676, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[10] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[11] Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[12] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[13] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[14] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[16] Andrzej Trybulec and Agata Darmochwat. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[17] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[18] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

