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Université Catholique de Louvain

Cartesian Categories

Czes law Byliński
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Summary. We define and prove some simple facts on Cartesian
categories and its duals co-Cartesian categories. The Cartesian category
is defined as a category with the fixed terminal object, the fixed projec-
tions, and the binary products. Category C has finite products if and
only if C has a terminal object and for every pair a, b of objects of C the
product a×b exists. We say that a category C has a finite product if every
finite family of objects of C has a product. Our work is based on ideas of
[13], where the algebraic properties of the proof theory are investigated.
The terminal object of a Cartesian category C is denoted by 1C . The
binary product of a and b is written as a×b. The projections of the prod-
uct are written as pr1(a, b) and as pr2(a, b). We define the products f × g
of arrows f : a → a′ and g : b → b′ as < f · pr1, g · pr2 >: a × b → a′ × b′

Co-Cartesian category is defined dually to the Cartesian category.
Dual to a terminal object is an initial object, and to products are co-
products. The initial object of a Cartesian category C is written as 0C .
Binary coproduct of a and b is written as a+b. Injections of the coproduct
are written as in1(a, b) and as in2(a, b).

MML Identifier: CAT 4.

The terminology and notation used in this paper are introduced in the following
papers: [16], [15], [11], [4], [5], [14], [9], [12], [2], [1], [3], [7], [6], [8], and [10].

1. Preliminaries

In the sequel o, m, r will be arbitrary. We now define two new constructions.
Let us consider o, m, r. [〈o,m〉 7→ r] is a function from [: {o}, {m} :] into {r}.

Let C be a category, and let a, b be objects of C. Let us observe that a and
b are isomorphic if:

(Def.1) hom(a, b) 6= ∅ and hom(b, a) 6= ∅ and there exists a morphism f from a

to b and there exists a morphism f ′ from b to a such that f · f ′ = idb and
f ′ · f = ida.
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2. Cartesian Categories

Let C be a category. We say that C has finite product if and only if:

(Def.2) for every set I and for every function F from I into the objects of C such
that I is finite there exists an object a of C and there exists a projections
family F ′ from a onto I such that codκ F ′(κ) = F and a is a product
w.r.t. F ′.

We now state the proposition

(1) Let C be a category. Then C has finite product if and only if there
exists an object of C which is a terminal object and for every objects a, b

of C there exists an object c of C and there exist morphisms p1, p2 of C

such that dom p1 = c and dom p2 = c and cod p1 = a and cod p2 = b and
c is a product w.r.t. p1 and p2.

We now define several new constructions. We consider Cartesian category
structures which are extension of category structures and are systems

〈objects, morphisms, a dom-map, a cod-map, a composition, an id-map, a
terminal, a product, a 1st-projection, a 2nd-projection〉,
where the objects, the morphisms constitute non-empty sets, the dom-map, the
cod-map are functions from the morphisms into the objects, the composition is
a partial function from [: the morphisms, the morphisms :] to the morphisms, the
id-map is a function from the objects into the morphisms, the terminal is an
element of the objects, the product is a function from [: the objects, the objects :]
into the objects, and the 1st-projection, the 2nd-projection are functions from
[: the objects, the objects :] into the morphisms. Let C be a Cartesian category
structure. The functor 1C yielding an object of C is defined by:

(Def.3) 1C = the terminal of C.

Let a, b be objects of C. The functor a× b yielding an object of C is defined as
follows:

(Def.4) a × b = (the product of C)(〈〈a, b〉〉).

The functor π1(a × b) yielding a morphism of C is defined as follows:

(Def.5) π1(a × b) = (the 1st-projection of C)(〈〈a, b〉〉).

The functor π2(a × b) yields a morphism of C and is defined as follows:

(Def.6) π2(a × b) = (the 2nd-projection of C)(〈〈a, b〉〉).

Let us consider o, m. The functor ˙�
c(o,m) yielding a strict Cartesian category

structure is defined by:

(Def.7) ˙�
c(o,m) = 〈{o}, {m}, {m} 7−→ o, {m} 7−→ o, 〈m,m〉 7−→ m, {o} 7−→ m,

Extract(o), [〈o, o〉 7→ o], [〈o, o〉 7→ m], [〈o, o〉 7→ m]〉.

We now state the proposition

(2) The category structure of ˙�
c(o,m) = ˙�

(o,m).

Let us note that there exists a Cartesian category structure which is strict
and category-like.
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Let o, m be arbitrary. Then ˙�
c(o,m) is a strict category-like Cartesian

category structure.

The following propositions are true:

(3) For every object a of ˙�
c(o,m) holds a = o.

(4) For all objects a, b of ˙�
c(o,m) holds a = b.

(5) For every morphism f of ˙�
c(o,m) holds f = m.

(6) For all morphisms f , g of ˙�
c(o,m) holds f = g.

(7) For all objects a, b of ˙�
c(o,m) and for every morphism f of ˙�

c(o,m)
holds f ∈ hom(a, b).

(8) For all objects a, b of ˙�
c(o,m) every morphism of ˙�

c(o,m) is a mor-
phism from a to b.

(9) For all objects a, b of ˙�
c(o,m) holds hom(a, b) 6= ∅.

(10) Every object of ˙�
c(o,m) is a terminal object.

(11) For every object c of ˙�
c(o,m) and for all morphisms p1, p2 of ˙�

c(o,m)
holds c is a product w.r.t. p1 and p2.

A category-like Cartesian category structure is Cartesian if:

(Def.8) the terminal of it is a terminal object and for all objects a, b of it holds
cod (the 1st-projection of it)(〈〈a, b〉〉) = a and cod (the 2nd-projection of
it)(〈〈a, b〉〉) = b and (the product of it)(〈〈a, b〉〉) is a product w.r.t. (the
1st-projection of it)(〈〈a, b〉〉) and (the 2nd-projection of it)(〈〈a, b〉〉).

We now state the proposition

(12) For arbitrary o, m holds ˙�
c(o,m) is Cartesian.

One can verify that there exists a strict Cartesian category-like Cartesian
category structure.

A Cartesian category is a category-like Cartesian category structure.

We adopt the following convention: C denotes a Cartesian category and a,
b, c, d, e, s denote objects of C. We now state three propositions:

(13) 1C is a terminal object.

(14) For all morphisms f1, f2 from a to 1C holds f1 = f2.

(15) hom(a,1C) 6= ∅.

Let us consider C, a. !a is a morphism from a to 1C .

Next we state several propositions:

(16) !a = ||
1C

a.

(17) dom(!a) = a and cod(!a) = 1C .

(18) hom(a,1C) = {!a}.

(19) domπ1(a × b) = a × b and cod π1(a × b) = a.

(20) domπ2(a × b) = a × b and cod π2(a × b) = b.

Let us consider C, a, b. Then π1(a× b) is a morphism from a× b to a. Then
π2(a × b) is a morphism from a × b to b.

The following four propositions are true:
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(21) hom(a × b, a) 6= ∅ and hom(a × b, b) 6= ∅.

(22) a × b is a product w.r.t. π1(a × b) and π2(a × b).

(23) C has finite product.

(24) If hom(a, b) 6= ∅ and hom(b, a) 6= ∅, then π1(a × b) is retraction and
π2(a × b) is retraction.

Let us consider C, a, b, c, and let f be a morphism from c to a, and let g be
a morphism from c to b. Let us assume that hom(c, a) 6= ∅ and hom(c, b) 6= ∅.
The functor 〈f, g〉 yields a morphism from c to a × b and is defined by:

(Def.9) π1(a × b) · 〈f, g〉 = f and π2(a × b) · 〈f, g〉 = g.

The following propositions are true:

(25) If hom(c, a) 6= ∅ and hom(c, b) 6= ∅, then hom(c, a × b) 6= ∅.

(26) 〈π1(a × b), π2(a × b)〉 = id(a×b).

(27) For every morphism f from c to a and for every morphism g from c

to b and for every morphism h from d to c such that hom(c, a) 6= ∅ and
hom(c, b) 6= ∅ and hom(d, c) 6= ∅ holds 〈f · h, g · h〉 = 〈f, g〉 · h.

(28) For all morphisms f , k from c to a and for all morphisms g, h from c

to b such that hom(c, a) 6= ∅ and hom(c, b) 6= ∅ and 〈f, g〉 = 〈k, h〉 holds
f = k and g = h.

(29) For every morphism f from c to a and for every morphism g from c to
b such that hom(c, a) 6= ∅ and hom(c, b) 6= ∅ and also f is monic or g is
monic holds 〈f, g〉 is monic.

(30) hom(a, a × 1C) 6= ∅ and hom(a,1C × a) 6= ∅.

We now define four new functors. Let us consider C, a. The functor λ(a)
yielding a morphism from 1C × a to a is defined by:

(Def.10) λ(a) = π2(1C × a).

The functor λ−1(a) yielding a morphism from a to 1C × a is defined as follows:

(Def.11) λ−1(a) = 〈!a, ida〉.

The functor ρ(a) yields a morphism from a× 1C to a and is defined as follows:

(Def.12) ρ(a) = π1(a × 1C).

The functor ρ−1(a) yielding a morphism from a to a× 1C is defined as follows:

(Def.13) ρ−1(a) = 〈ida, !a〉.

The following propositions are true:

(31) λ(a) · λ−1(a) = ida and λ−1(a) · λ(a) = id(1C×a) and ρ(a) · ρ−1(a) = ida

and ρ−1(a) · ρ(a) = id(a×1C ).

(32) a and a × 1C are isomorphic and a and 1C × a are isomorphic.

Let us consider C, a, b. The functor Switch(a) yielding a morphism from
a × b to b × a is defined as follows:

(Def.14) Switch(a) = 〈π2(a × b), π1(a × b)〉.

One can prove the following three propositions:

(33) hom(a × b, b × a) 6= ∅.
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(34) Switch(a) · Switch(b) = id(b×a).

(35) a × b and b × a are isomorphic.

Let us consider C, a. The functor ∆(a) yielding a morphism from a to a× a

is defined by:

(Def.15) ∆(a) = 〈ida, ida〉.

We now state two propositions:

(36) hom(a, a × a) 6= ∅.

(37) For every morphism f from a to b such that hom(a, b) 6= ∅ holds 〈f, f〉 =
∆(b) · f .

We now define two new functors. Let us consider C, a, b, c. The functor
α((a, b), c) yielding a morphism from a × b × c to a × (b × c) is defined by:

(Def.16) α((a, b), c) = 〈π1(a×b) ·π1((a×b)×c), 〈π2(a×b) ·π1((a×b)×c), π2((a×
b) × c)〉〉.

The functor α(a, (b, c)) yields a morphism from a × (b × c) to a × b × c and is
defined as follows:

(Def.17) α(a, (b, c)) = 〈〈π1(a×(b×c)), π1(b×c) ·π2(a×(b×c))〉, π2(b×c) ·π2(a×
(b × c))〉.

The following three propositions are true:

(38) hom(a × b × c, a × (b × c)) 6= ∅ and hom(a × (b × c), a × b × c) 6= ∅.

(39) α((a, b), c) · α(a, (b, c)) = id(a×(b×c)) and
α(a, (b, c)) · α((a, b), c) = id(a×b×c).

(40) (a × b) × c and a × (b × c) are isomorphic.

Let us consider C, a, b, c, d, and let f be a morphism from a to b, and let g

be a morphism from c to d. The functor f × g yields a morphism from a× c to
b × d and is defined by:

(Def.18) f × g = 〈f · π1(a × c), g · π2(a × c)〉.

One can prove the following propositions:

(41) If hom(a, c) 6= ∅ and hom(b, d) 6= ∅, then hom(a × b, c × d) 6= ∅.

(42) ida × idb = id(a×b).

(43) Let f be a morphism from a to b. Let h be a morphism from c to d.
Then for every morphism g from e to a and for every morphism k from
e to c such that hom(a, b) 6= ∅ and hom(c, d) 6= ∅ and hom(e, a) 6= ∅ and
hom(e, c) 6= ∅ holds (f × h) · 〈g, k〉 = 〈f · g, h · k〉.

(44) For every morphism f from c to a and for every morphism g from c to
b such that hom(c, a) 6= ∅ and hom(c, b) 6= ∅ holds 〈f, g〉 = (f × g) ·∆(c).

(45) Let f be a morphism from a to b. Let h be a morphism from c to d.
Then for every morphism g from e to a and for every morphism k from
s to c such that hom(a, b) 6= ∅ and hom(c, d) 6= ∅ and hom(e, a) 6= ∅ and
hom(s, c) 6= ∅ holds (f × h) · (g × k) = (f · g) × (h · k).
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3. Co-Cartesian Categories

Let C be a category. We say that C has finite coproduct if and only if:

(Def.19) for every set I and for every function F from I into the objects of C such
that I is finite there exists an object a of C and there exists a injections
family F ′ into a on I such that domκ F ′(κ) = F and a is a coproduct
w.r.t. F ′.

Next we state the proposition

(46) Let C be a category. Then C has finite coproduct if and only if there
exists an object of C which is an initial object and for every objects a, b

of C there exists an object c of C and there exist morphisms i1, i2 of C

such that dom i1 = a and dom i2 = b and cod i1 = c and cod i2 = c and c

is a coproduct w.r.t. i1 and i2.

We now define several new constructions. We consider cocartesian category
structures which are extension of category structures and are systems

〈objects, morphisms, a dom-map, a cod-map, a composition, an id-map, a
initial, a coproduct, a 1st-coprojection, a 2nd-coprojection〉,
where the objects, the morphisms constitute non-empty sets, the dom-map, the
cod-map are functions from the morphisms into the objects, the composition is
a partial function from [: the morphisms, the morphisms :] to the morphisms, the
id-map is a function from the objects into the morphisms, the initial is an ele-
ment of the objects, the coproduct is a function from [: the objects, the objects :]
into the objects, and the 1st-coprojection, the 2nd-coprojection are functions
from [: the objects, the objects :] into the morphisms. Let C be a cocartesian
category structure. The functor 0C yields an object of C and is defined as
follows:

(Def.20) 0C = the initial of C.

Let a, b be objects of C. The functor a + b yields an object of C and is defined
as follows:

(Def.21) a + b = (the coproduct of C)(〈〈a, b〉〉).

The functor in1(a + b) yields a morphism of C and is defined as follows:

(Def.22) in1(a + b) = (the 1st-coprojection of C)(〈〈a, b〉〉).

The functor in2(a + b) yields a morphism of C and is defined by:

(Def.23) in2(a + b) = (the 2nd-coprojection of C)(〈〈a, b〉〉).

Let us consider o, m. The functor ˙� op
c (o,m) yielding a strict cocartesian category

structure is defined by:

(Def.24) ˙� op
c (o,m) = 〈{o}, {m}, {m} 7−→ o, {m} 7−→ o, 〈m,m〉 7−→ m, {o} 7−→

m,Extract(o), [〈o, o〉 7→ o], [〈o, o〉 7→ m], [〈o, o〉 7→ m]〉.

One can prove the following proposition

(47) The category structure of ˙� op
c (o,m) = ˙�

(o,m).
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Let us note that there exists a strict category-like cocartesian category struc-
ture.

Let o, m be arbitrary. Then ˙� op
c (o,m) is a strict category-like cocartesian

category structure.

One can prove the following propositions:

(48) For every object a of ˙� op
c (o,m) holds a = o.

(49) For all objects a, b of ˙� op
c (o,m) holds a = b.

(50) For every morphism f of ˙� op
c (o,m) holds f = m.

(51) For all morphisms f , g of ˙� op
c (o,m) holds f = g.

(52) For all objects a, b of ˙� op
c (o,m) and for every morphism f of ˙� op

c (o,m)
holds f ∈ hom(a, b).

(53) For all objects a, b of ˙� op
c (o,m) every morphism of ˙� op

c (o,m) is a
morphism from a to b.

(54) For all objects a, b of ˙� op
c (o,m) holds hom(a, b) 6= ∅.

(55) Every object of ˙� op
c (o,m) is an initial object.

(56) For every object c of ˙� op
c (o,m) and for all morphisms i1, i2 of ˙� op

c (o,m)
holds c is a coproduct w.r.t. i1 and i2.

A category-like cocartesian category structure is cocartesian if:

(Def.25) the initial of it is an initial object and for all objects a, b of it holds
dom (the 1st-coprojection of it)(〈〈a, b〉〉) = a and dom (the 2nd-coprojection
of it)(〈〈a, b〉〉) = b and (the coproduct of it)(〈〈a, b〉〉) is a coproduct w.r.t.
(the 1st-coprojection of it)(〈〈a, b〉〉) and (the 2nd-coprojection of it)(〈〈a, b〉〉).

One can prove the following proposition

(57) For arbitrary o, m holds ˙� op
c (o,m) is cocartesian.

One can check that there exists a category-like cocartesian category structure
which is strict and cocartesian.

A cocartesian category is a category-like cocartesian category structure.

We adopt the following rules: C is a cocartesian category and a, b, c, d, e, s

are objects of C. Next we state two propositions:

(58) 0C is an initial object.

(59) For all morphisms f1, f2 from 0C to a holds f1 = f2.

Let us consider C, a. !a is a morphism from 0C to a.

We now state a number of propositions:

(60) hom(0C , a) 6= ∅.

(61) !a = ||0C a.

(62) dom(!a) = 0C and cod(!a) = a.

(63) hom(0C , a) = {!a}.

(64) dom in1(a + b) = a and cod in1(a + b) = a + b.

(65) dom in2(a + b) = b and cod in2(a + b) = a + b.

(66) hom(a, a + b) 6= ∅ and hom(b, a + b) 6= ∅.
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(67) a + b is a coproduct w.r.t. in1(a + b) and in2(a + b).

(68) C has finite coproduct.

(69) If hom(a, b) 6= ∅ and hom(b, a) 6= ∅, then in1(a + b) is coretraction and
in2(a + b) is coretraction.

Let us consider C, a, b. Then in1(a+ b) is a morphism from a to a+ b. Then
in2(a+ b) is a morphism from b to a+ b. Let us consider C, a, b, c, and let f be
a morphism from a to c, and let g be a morphism from b to c. Let us assume
that hom(a, c) 6= ∅ and hom(b, c) 6= ∅. The functor 〈f, g〉 yielding a morphism
from a + b to c is defined as follows:

(Def.26) 〈f, g〉 · in1(a + b) = f and 〈f, g〉 · in2(a + b) = g.

Next we state several propositions:

(70) If hom(a, c) 6= ∅ and hom(b, c) 6= ∅, then hom(a + b, c) 6= ∅.

(71) 〈in1(a + b), in2(a + b)〉 = id(a+b).

(72) For every morphism f from a to c and for every morphism g from b

to c and for every morphism h from c to d such that hom(a, c) 6= ∅ and
hom(b, c) 6= ∅ and hom(c, d) 6= ∅ holds 〈h · f, h · g〉 = h · 〈f, g〉.

(73) For all morphisms f , k from a to c and for all morphisms g, h from b

to c such that hom(a, c) 6= ∅ and hom(b, c) 6= ∅ and 〈f, g〉 = 〈k, h〉 holds
f = k and g = h.

(74) For every morphism f from a to c and for every morphism g from b to
c such that hom(a, c) 6= ∅ and hom(b, c) 6= ∅ and also f is epi or g is epi
holds 〈f, g〉 is epi.

(75) a and a + 0C are isomorphic and a and 0C + a are isomorphic.

(76) a + b and b + a are isomorphic.

(77) (a + b) + c and a + (b + c) are isomorphic.

We now define two new functors. Let us consider C, a. The functor ∇a

yields a morphism from a + a to a and is defined by:

(Def.27) ∇a = 〈ida, ida〉.

Let us consider C, a, b, c, d, and let f be a morphism from a to c, and let g be
a morphism from b to d. The functor f + g yielding a morphism from a + b to
c + d is defined as follows:

(Def.28) f + g = 〈in1(c + d) · f, in2(c + d) · g〉.

The following propositions are true:

(78) If hom(a, c) 6= ∅ and hom(b, d) 6= ∅, then hom(a + b, c + d) 6= ∅.

(79) ida + idb = id(a+b).

(80) Let f be a morphism from a to c. Let h be a morphism from b to d.
Then for every morphism g from c to e and for every morphism k from
d to e such that hom(a, c) 6= ∅ and hom(b, d) 6= ∅ and hom(c, e) 6= ∅ and
hom(d, e) 6= ∅ holds 〈g, k〉 · (f + h) = 〈g · f, k · h〉.

(81) For every morphism f from a to c and for every morphism g from b to
c such that hom(a, c) 6= ∅ and hom(b, c) 6= ∅ holds ∇c · (f + g) = 〈f, g〉.
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(82) Let f be a morphism from a to c. Let h be a morphism from b to d.
Then for every morphism g from c to e and for every morphism k from
d to s such that hom(a, c) 6= ∅ and hom(b, d) 6= ∅ and hom(c, e) 6= ∅ and
hom(d, s) 6= ∅ holds (g + k) · (f + h) = g · f + k · h.
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