Cartesian Categories

Czesław Byliński Warsaw University Białystok

Summary. We define and prove some simple facts on Cartesian categories and its duals co-Cartesian categories. The Cartesian category is defined as a category with the fixed terminal object, the fixed projections, and the binary products. Category C has finite products if and only if C has a terminal object and for every pair a, b of objects of C the product $a \times b$ exists. We say that a category C has a finite product if every finite family of objects of C has a product. Our work is based on ideas of [13], where the algebraic properties of the proof theory are investigated. The terminal object of a Cartesian category C is denoted by $\mathbf{1}_C$. The binary product of a and b is written as $a \times b$. The projections of the product are written as $pr_1(a, b)$ and as $pr_2(a, b)$. We define the products $f \times g$ of arrows $f: a \to a'$ and $g: b \to b'$ as $< f \cdot pr_1, g \cdot pr_2 >: a \times b \to a' \times b'$

Co-Cartesian category is defined dually to the Cartesian category. Dual to a terminal object is an initial object, and to products are coproducts. The initial object of a Cartesian category C is written as $\mathbf{0}_C$. Binary coproduct of a and b is written as a+b. Injections of the coproduct are written as $in_1(a, b)$ and as $in_2(a, b)$.

MML Identifier: CAT_4.

The terminology and notation used in this paper are introduced in the following papers: [16], [15], [11], [4], [5], [14], [9], [12], [2], [1], [3], [7], [6], [8], and [10].

1. Preliminaries

In the sequel o, m, r will be arbitrary. We now define two new constructions. Let us consider o, m, r. $[\langle o, m \rangle \mapsto r]$ is a function from $[\{o\}, \{m\}\}]$ into $\{r\}$.

Let C be a category, and let a, b be objects of C. Let us observe that a and b are isomorphic if:

(Def.1) $\operatorname{hom}(a,b) \neq \emptyset$ and $\operatorname{hom}(b,a) \neq \emptyset$ and there exists a morphism f from a to b and there exists a morphism f' from b to a such that $f \cdot f' = \operatorname{id}_b$ and $f' \cdot f = \operatorname{id}_a$.

161

C 1992 Fondation Philippe le Hodey ISSN 0777-4028

2. CARTESIAN CATEGORIES

Let C be a category. We say that C has finite product if and only if:

(Def.2) for every set I and for every function F from I into the objects of C such that I is finite there exists an object a of C and there exists a projections family F' from a onto I such that $\operatorname{cod}_{\kappa} F'(\kappa) = F$ and a is a product w.r.t. F'.

We now state the proposition

(1) Let C be a category. Then C has finite product if and only if there exists an object of C which is a terminal object and for every objects a, b of C there exists an object c of C and there exist morphisms p_1, p_2 of C such that dom $p_1 = c$ and dom $p_2 = c$ and cod $p_1 = a$ and cod $p_2 = b$ and c is a product w.r.t. p_1 and p_2 .

We now define several new constructions. We consider Cartesian category structures which are extension of category structures and are systems

 $\langle objects, morphisms, a dom-map, a cod-map, a composition, an id-map, a terminal, a product, a 1st-projection, a 2nd-projection \rangle$,

where the objects, the morphisms constitute non-empty sets, the dom-map, the cod-map are functions from the morphisms into the objects, the composition is a partial function from [the morphisms, the morphisms] to the morphisms, the id-map is a function from the objects into the morphisms, the terminal is an element of the objects, the product is a function from [the objects, the objects] into the objects, and the 1st-projection, the 2nd-projection are functions from [the objects, the objects] into the morphisms. Let C be a Cartesian category structure. The functor $\mathbf{1}_C$ yielding an object of C is defined by:

(Def.3) $\mathbf{1}_C$ = the terminal of C.

Let a, b be objects of C. The functor $a \times b$ yielding an object of C is defined as follows:

(Def.4) $a \times b = (\text{the product of } C)(\langle a, b \rangle).$

The functor $\pi_1(a \times b)$ yielding a morphism of C is defined as follows:

(Def.5) $\pi_1(a \times b) = (\text{the 1st-projection of } C)(\langle a, b \rangle).$

The functor $\pi_2(a \times b)$ yields a morphism of C and is defined as follows:

(Def.6) $\pi_2(a \times b) = (\text{the 2nd-projection of } C)(\langle a, b \rangle).$

Let us consider o, m. The functor $\dot{\heartsuit}_{c}(o, m)$ yielding a strict Cartesian category structure is defined by:

 $\begin{array}{ll} (\mathrm{Def.7}) & \dot{\odot}_{\mathrm{c}}(o,m) = \langle \{o\}, \{m\}, \{m\} \longmapsto o, \{m\} \longmapsto o, \langle m, m \rangle \longmapsto m, \{o\} \longmapsto m, \\ & \mathrm{Extract}(o), [\langle o, o \rangle \mapsto o], [\langle o, o \rangle \mapsto m], [\langle o, o \rangle \mapsto m] \rangle. \end{array}$

We now state the proposition

(2) The category structure of $\dot{\heartsuit}_{c}(o,m) = \dot{\circlearrowright}(o,m)$.

Let us note that there exists a Cartesian category structure which is strict and category-like. Let o, m be arbitrary. Then $\dot{\odot}_{c}(o,m)$ is a strict category-like Cartesian category structure.

The following propositions are true:

- (3) For every object a of $\dot{\bigcirc}_{c}(o,m)$ holds a = o.
- (4) For all objects a, b of $\dot{\bigcirc}_{c}(o, m)$ holds a = b.
- (5) For every morphism f of $\dot{\circlearrowright}_{c}(o,m)$ holds f = m.
- (6) For all morphisms f, g of $\dot{\heartsuit}_{c}(o, m)$ holds f = g.
- (7) For all objects a, b of $\dot{\bigcirc}_{c}(o, m)$ and for every morphism f of $\dot{\bigcirc}_{c}(o, m)$ holds $f \in \hom(a, b)$.
- (8) For all objects a, b of $\dot{\bigcirc}_{c}(o, m)$ every morphism of $\dot{\bigcirc}_{c}(o, m)$ is a morphism from a to b.
- (9) For all objects a, b of $\dot{\bigcirc}_{c}(o, m)$ holds $\hom(a, b) \neq \emptyset$.
- (10) Every object of $\dot{\bigcirc}_{c}(o,m)$ is a terminal object.
- (11) For every object c of $\dot{\bigcirc}_{c}(o,m)$ and for all morphisms p_1, p_2 of $\dot{\bigcirc}_{c}(o,m)$ holds c is a product w.r.t. p_1 and p_2 .

A category-like Cartesian category structure is Cartesian if:

(Def.8) the terminal of it is a terminal object and for all objects a, b of it holds cod (the 1st-projection of it)($\langle a, b \rangle$) = a and cod (the 2nd-projection of it)($\langle a, b \rangle$) = b and (the product of it)($\langle a, b \rangle$) is a product w.r.t. (the 1st-projection of it)($\langle a, b \rangle$) and (the 2nd-projection of it)($\langle a, b \rangle$).

We now state the proposition

(12) For arbitrary o, m holds $\dot{\bigcirc}_{c}(o, m)$ is Cartesian.

One can verify that there exists a strict Cartesian category-like Cartesian category structure.

A Cartesian category is a category-like Cartesian category structure.

We adopt the following convention: C denotes a Cartesian category and a, b, c, d, e, s denote objects of C. We now state three propositions:

- (13) $\mathbf{1}_C$ is a terminal object.
- (14) For all morphisms f_1 , f_2 from a to $\mathbf{1}_C$ holds $f_1 = f_2$.
- (15) $\hom(a, \mathbf{1}_C) \neq \emptyset.$

Let us consider C, a. $!_a$ is a morphism from a to $\mathbf{1}_C$.

Next we state several propositions:

(16)
$$!_a = |_{\mathbf{1}_C} a.$$

- (17) $\operatorname{dom}(!_a) = a \text{ and } \operatorname{cod}(!_a) = \mathbf{1}_C.$
- (18) $\hom(a, \mathbf{1}_C) = \{!_a\}.$
- (19) dom $\pi_1(a \times b) = a \times b$ and cod $\pi_1(a \times b) = a$.

(20) dom $\pi_2(a \times b) = a \times b$ and cod $\pi_2(a \times b) = b$.

Let us consider C, a, b. Then $\pi_1(a \times b)$ is a morphism from $a \times b$ to a. Then $\pi_2(a \times b)$ is a morphism from $a \times b$ to b.

The following four propositions are true:

- (21) $\operatorname{hom}(a \times b, a) \neq \emptyset$ and $\operatorname{hom}(a \times b, b) \neq \emptyset$.
- (22) $a \times b$ is a product w.r.t. $\pi_1(a \times b)$ and $\pi_2(a \times b)$.
- (23) C has finite product.
- (24) If $hom(a, b) \neq \emptyset$ and $hom(b, a) \neq \emptyset$, then $\pi_1(a \times b)$ is retraction and $\pi_2(a \times b)$ is retraction.

Let us consider C, a, b, c, and let f be a morphism from c to a, and let g be a morphism from c to b. Let us assume that $\hom(c, a) \neq \emptyset$ and $\hom(c, b) \neq \emptyset$. The functor $\langle f, g \rangle$ yields a morphism from c to $a \times b$ and is defined by:

(Def.9) $\pi_1(a \times b) \cdot \langle f, g \rangle = f \text{ and } \pi_2(a \times b) \cdot \langle f, g \rangle = g.$

The following propositions are true:

- (25) If $hom(c, a) \neq \emptyset$ and $hom(c, b) \neq \emptyset$, then $hom(c, a \times b) \neq \emptyset$.
- (26) $\langle \pi_1(a \times b), \pi_2(a \times b) \rangle = \mathrm{id}_{(a \times b)}.$
- (27) For every morphism f from c to a and for every morphism g from c to b and for every morphism h from d to c such that $\hom(c, a) \neq \emptyset$ and $\hom(c, b) \neq \emptyset$ and $\hom(d, c) \neq \emptyset$ holds $\langle f \cdot h, g \cdot h \rangle = \langle f, g \rangle \cdot h$.
- (28) For all morphisms f, k from c to a and for all morphisms g, h from c to b such that $hom(c, a) \neq \emptyset$ and $hom(c, b) \neq \emptyset$ and $\langle f, g \rangle = \langle k, h \rangle$ holds f = k and g = h.
- (29) For every morphism f from c to a and for every morphism g from c to b such that $hom(c, a) \neq \emptyset$ and $hom(c, b) \neq \emptyset$ and also f is monic or g is monic holds $\langle f, g \rangle$ is monic.
- (30) $\operatorname{hom}(a, a \times \mathbf{1}_C) \neq \emptyset$ and $\operatorname{hom}(a, \mathbf{1}_C \times a) \neq \emptyset$.

We now define four new functors. Let us consider C, a. The functor $\lambda(a)$ yielding a morphism from $\mathbf{1}_C \times a$ to a is defined by:

(Def.10) $\lambda(a) = \pi_2(\mathbf{1}_C \times a).$

The functor $\lambda^{-1}(a)$ yielding a morphism from a to $\mathbf{1}_C \times a$ is defined as follows: (Def.11) $\lambda^{-1}(a) = \langle !_a, \mathrm{id}_a \rangle.$

The functor $\rho(a)$ yields a morphism from $a \times \mathbf{1}_C$ to a and is defined as follows: (Def.12) $\rho(a) = \pi_1(a \times \mathbf{1}_C)$.

The functor $\rho^{-1}(a)$ yielding a morphism from a to $a \times \mathbf{1}_C$ is defined as follows: (Def.13) $\rho^{-1}(a) = \langle \mathrm{id}_a, !_a \rangle.$

The following propositions are true:

- (31) $\lambda(a) \cdot \lambda^{-1}(a) = \operatorname{id}_a \text{ and } \lambda^{-1}(a) \cdot \lambda(a) = \operatorname{id}_{(\mathbf{1}_C \times a)} \text{ and } \rho(a) \cdot \rho^{-1}(a) = \operatorname{id}_a \operatorname{and} \rho^{-1}(a) \cdot \rho(a) = \operatorname{id}_{(a \times \mathbf{1}_C)}.$
- (32) $a \text{ and } a \times \mathbf{1}_C$ are isomorphic and $a \text{ and } \mathbf{1}_C \times a$ are isomorphic.

Let us consider C, a, b. The functor Switch(a) yielding a morphism from $a \times b$ to $b \times a$ is defined as follows:

(Def.14) Switch(a) = $\langle \pi_2(a \times b), \pi_1(a \times b) \rangle$.

One can prove the following three propositions:

(33) $\hom(a \times b, b \times a) \neq \emptyset.$

- (34) Switch(a) · Switch(b) = $\mathrm{id}_{(b \times a)}$.
- (35) $a \times b$ and $b \times a$ are isomorphic.

Let us consider C, a. The functor $\Delta(a)$ yielding a morphism from a to $a \times a$ is defined by:

(Def.15) $\Delta(a) = \langle \mathrm{id}_a, \mathrm{id}_a \rangle.$

We now state two propositions:

- (36) $\hom(a, a \times a) \neq \emptyset.$
- (37) For every morphism f from a to b such that $hom(a, b) \neq \emptyset$ holds $\langle f, f \rangle = \Delta(b) \cdot f$.

We now define two new functors. Let us consider C, a, b, c. The functor $\alpha((a, b), c)$ yielding a morphism from $a \times b \times c$ to $a \times (b \times c)$ is defined by:

 $(\text{Def.16}) \quad \alpha((a,b),c) = \langle \pi_1(a \times b) \cdot \pi_1((a \times b) \times c), \langle \pi_2(a \times b) \cdot \pi_1((a \times b) \times c), \pi_2((a \times b) \times c)) \rangle \rangle.$

The functor $\alpha(a, (b, c))$ yields a morphism from $a \times (b \times c)$ to $a \times b \times c$ and is defined as follows:

$$(\text{Def.17}) \quad \alpha(a, (b, c)) = \langle \langle \pi_1(a \times (b \times c)), \pi_1(b \times c) \cdot \pi_2(a \times (b \times c)) \rangle, \pi_2(b \times c) \cdot \pi_2(a \times (b \times c)) \rangle.$$

The following three propositions are true:

- (38) $\operatorname{hom}(a \times b \times c, a \times (b \times c)) \neq \emptyset$ and $\operatorname{hom}(a \times (b \times c), a \times b \times c) \neq \emptyset$.
- (39) $\alpha((a,b),c) \cdot \alpha(a,(b,c)) = \mathrm{id}_{(a \times (b \times c))} \text{ and } \\ \alpha(a,(b,c)) \cdot \alpha((a,b),c) = \mathrm{id}_{(a \times b \times c)}.$
- (40) $(a \times b) \times c$ and $a \times (b \times c)$ are isomorphic.

Let us consider C, a, b, c, d, and let f be a morphism from a to b, and let g be a morphism from c to d. The functor $f \times g$ yields a morphism from $a \times c$ to $b \times d$ and is defined by:

(Def.18) $f \times g = \langle f \cdot \pi_1(a \times c), g \cdot \pi_2(a \times c) \rangle.$

One can prove the following propositions:

- (41) If $hom(a, c) \neq \emptyset$ and $hom(b, d) \neq \emptyset$, then $hom(a \times b, c \times d) \neq \emptyset$.
- (42) $\operatorname{id}_a \times \operatorname{id}_b = \operatorname{id}_{(a \times b)}.$
- (43) Let f be a morphism from a to b. Let h be a morphism from c to d. Then for every morphism g from e to a and for every morphism k from e to c such that $hom(a, b) \neq \emptyset$ and $hom(c, d) \neq \emptyset$ and $hom(e, a) \neq \emptyset$ and $hom(e, c) \neq \emptyset$ holds $(f \times h) \cdot \langle g, k \rangle = \langle f \cdot g, h \cdot k \rangle$.
- (44) For every morphism f from c to a and for every morphism g from c to b such that $hom(c, a) \neq \emptyset$ and $hom(c, b) \neq \emptyset$ holds $\langle f, g \rangle = (f \times g) \cdot \Delta(c)$.
- (45) Let f be a morphism from a to b. Let h be a morphism from c to d. Then for every morphism g from e to a and for every morphism k from s to c such that $hom(a, b) \neq \emptyset$ and $hom(c, d) \neq \emptyset$ and $hom(e, a) \neq \emptyset$ and $hom(s, c) \neq \emptyset$ holds $(f \times h) \cdot (g \times k) = (f \cdot g) \times (h \cdot k)$.

3. CO-CARTESIAN CATEGORIES

Let C be a category. We say that C has finite coproduct if and only if:

(Def.19) for every set I and for every function F from I into the objects of C such that I is finite there exists an object a of C and there exists a injections family F' into a on I such that $\operatorname{dom}_{\kappa} F'(\kappa) = F$ and a is a coproduct w.r.t. F'.

Next we state the proposition

(46) Let C be a category. Then C has finite coproduct if and only if there exists an object of C which is an initial object and for every objects a, b of C there exists an object c of C and there exist morphisms i_1, i_2 of C such that dom $i_1 = a$ and dom $i_2 = b$ and cod $i_1 = c$ and cod $i_2 = c$ and c is a coproduct w.r.t. i_1 and i_2 .

We now define several new constructions. We consider cocartesian category structures which are extension of category structures and are systems

 $\langle objects, morphisms, a dom-map, a cod-map, a composition, an id-map, a initial, a coproduct, a 1st-coprojection, a 2nd-coprojection \rangle$,

where the objects, the morphisms constitute non-empty sets, the dom-map, the cod-map are functions from the morphisms into the objects, the composition is a partial function from [the morphisms, the morphisms] to the morphisms, the id-map is a function from the objects into the morphisms, the initial is an element of the objects, the coproduct is a function from [the objects, the objects] into the objects, and the 1st-coprojection, the 2nd-coprojection are functions from [the objects, the objects] into the morphisms. Let C be a cocartesian category structure. The functor $\mathbf{0}_C$ yields an object of C and is defined as follows:

(Def.20) $\mathbf{0}_C$ = the initial of C.

Let a, b be objects of C. The functor a + b yields an object of C and is defined as follows:

(Def.21) $a + b = (\text{the coproduct of } C)(\langle a, b \rangle).$

The functor $in_1(a + b)$ yields a morphism of C and is defined as follows:

(Def.22) $\operatorname{in}_1(a+b) = (\text{the 1st-coprojection of } C)(\langle a, b \rangle).$

The functor $in_2(a+b)$ yields a morphism of C and is defined by:

(Def.23) $in_2(a+b) = (the 2nd-coprojection of C)(\langle a, b \rangle).$

Let us consider o, m. The functor $\dot{\bigcirc}_{c}^{op}(o, m)$ yielding a strict cocartesian category structure is defined by:

One can prove the following proposition

(47) The category structure of $\dot{\heartsuit}_{c}^{op}(o,m) = \dot{\circlearrowright}(o,m)$.

Let us note that there exists a strict category-like cocartesian category structure.

Let o, m be arbitrary. Then $\dot{\odot}_{c}^{op}(o,m)$ is a strict category-like cocartesian category structure.

One can prove the following propositions:

- (48) For every object a of $\dot{\bigcirc}_{c}^{op}(o,m)$ holds a = o.
- (49) For all objects a, b of $\dot{\bigcirc}_{c}^{op}(o, m)$ holds a = b.
- (50) For every morphism f of $\dot{\heartsuit}_{c}^{op}(o,m)$ holds f = m.
- (51) For all morphisms f, g of $\dot{\circlearrowright}_{c}^{op}(o, m)$ holds f = g.
- (52) For all objects a, b of $\dot{\odot}_{c}^{op}(o, m)$ and for every morphism f of $\dot{\odot}_{c}^{op}(o, m)$ holds $f \in \hom(a, b)$.
- (53) For all objects a, b of $\dot{\heartsuit}_{c}^{op}(o, m)$ every morphism of $\dot{\circlearrowright}_{c}^{op}(o, m)$ is a morphism from a to b.
- (54) For all objects a, b of $\dot{\circlearrowright}_{c}^{op}(o, m)$ holds $\hom(a, b) \neq \emptyset$.
- (55) Every object of $\dot{\odot}_{c}^{op}(o,m)$ is an initial object.
- (56) For every object c of $\dot{\bigcirc}_{c}^{op}(o,m)$ and for all morphisms i_1, i_2 of $\dot{\bigcirc}_{c}^{op}(o,m)$ holds c is a coproduct w.r.t. i_1 and i_2 .

A category-like cocartesian category structure is cocartesian if:

(Def.25) the initial of it is an initial object and for all objects a, b of it holds dom (the 1st-coprojection of it)($\langle a, b \rangle$) = a and dom (the 2nd-coprojection of it)($\langle a, b \rangle$) = b and (the coproduct of it)($\langle a, b \rangle$) is a coproduct w.r.t. (the 1st-coprojection of it)($\langle a, b \rangle$) and (the 2nd-coprojection of it)($\langle a, b \rangle$).

One can prove the following proposition

(57) For arbitrary o, m holds $\dot{\heartsuit}_{c}^{op}(o, m)$ is cocartesian.

One can check that there exists a category-like cocartesian category structure which is strict and cocartesian.

A cocartesian category is a category-like cocartesian category structure.

We adopt the following rules: C is a cocartesian category and a, b, c, d, e, s are objects of C. Next we state two propositions:

(58) $\mathbf{0}_C$ is an initial object.

(59) For all morphisms f_1 , f_2 from $\mathbf{0}_C$ to a holds $f_1 = f_2$.

Let us consider C, a. $!^a$ is a morphism from $\mathbf{0}_C$ to a.

We now state a number of propositions:

(60)
$$\hom(\mathbf{0}_C, a) \neq \emptyset.$$

- $(61) \quad !^a = |^{\mathbf{0}_C} a.$
- (62) $dom(!^a) = \mathbf{0}_C and cod(!^a) = a.$
- (63) $\hom(\mathbf{0}_C, a) = \{!^a\}.$
- (64) dom $in_1(a+b) = a$ and $cod in_1(a+b) = a+b$.
- (65) dom $in_2(a+b) = b$ and $cod in_2(a+b) = a+b$.
- (66) $\operatorname{hom}(a, a+b) \neq \emptyset$ and $\operatorname{hom}(b, a+b) \neq \emptyset$.

- (67) a+b is a coproduct w.r.t. $in_1(a+b)$ and $in_2(a+b)$.
- (68) C has finite coproduct.
- (69) If $hom(a, b) \neq \emptyset$ and $hom(b, a) \neq \emptyset$, then $in_1(a + b)$ is coretraction and $in_2(a + b)$ is coretraction.

Let us consider C, a, b. Then $in_1(a+b)$ is a morphism from a to a+b. Then $in_2(a+b)$ is a morphism from b to a+b. Let us consider C, a, b, c, and let f be a morphism from a to c, and let g be a morphism from b to c. Let us assume that $hom(a, c) \neq \emptyset$ and $hom(b, c) \neq \emptyset$. The functor $\langle f, g \rangle$ yielding a morphism from a + b to c is defined as follows:

(Def.26) $\langle f, g \rangle \cdot \operatorname{in}_1(a+b) = f \text{ and } \langle f, g \rangle \cdot \operatorname{in}_2(a+b) = g.$

Next we state several propositions:

- (70) If $hom(a, c) \neq \emptyset$ and $hom(b, c) \neq \emptyset$, then $hom(a + b, c) \neq \emptyset$.
- (71) $\langle \operatorname{in}_1(a+b), \operatorname{in}_2(a+b) \rangle = \operatorname{id}_{(a+b)}.$
- (72) For every morphism f from a to c and for every morphism g from b to c and for every morphism h from c to d such that $hom(a, c) \neq \emptyset$ and $hom(b, c) \neq \emptyset$ and $hom(c, d) \neq \emptyset$ holds $\langle h \cdot f, h \cdot g \rangle = h \cdot \langle f, g \rangle$.
- (73) For all morphisms f, k from a to c and for all morphisms g, h from b to c such that $hom(a, c) \neq \emptyset$ and $hom(b, c) \neq \emptyset$ and $\langle f, g \rangle = \langle k, h \rangle$ holds f = k and g = h.
- (74) For every morphism f from a to c and for every morphism g from b to c such that $hom(a, c) \neq \emptyset$ and $hom(b, c) \neq \emptyset$ and also f is epi or g is epi holds $\langle f, g \rangle$ is epi.
- (75) $a \text{ and } a + \mathbf{0}_C$ are isomorphic and $a \text{ and } \mathbf{0}_C + a$ are isomorphic.
- (76) a+b and b+a are isomorphic.
- (77) (a+b)+c and a+(b+c) are isomorphic.

We now define two new functors. Let us consider C, a. The functor ∇_a yields a morphism from a + a to a and is defined by:

(Def.27) $\nabla_a = \langle \mathrm{id}_a, \mathrm{id}_a \rangle.$

Let us consider C, a, b, c, d, and let f be a morphism from a to c, and let g be a morphism from b to d. The functor f + g yielding a morphism from a + b to c + d is defined as follows:

(Def.28) $f + g = \langle \operatorname{in}_1(c+d) \cdot f, \operatorname{in}_2(c+d) \cdot g \rangle.$

The following propositions are true:

- (78) If $hom(a, c) \neq \emptyset$ and $hom(b, d) \neq \emptyset$, then $hom(a + b, c + d) \neq \emptyset$.
- (79) $\operatorname{id}_a + \operatorname{id}_b = \operatorname{id}_{(a+b)}.$
- (80) Let f be a morphism from a to c. Let h be a morphism from b to d. Then for every morphism g from c to e and for every morphism k from d to e such that $hom(a, c) \neq \emptyset$ and $hom(b, d) \neq \emptyset$ and $hom(c, e) \neq \emptyset$ and $hom(d, e) \neq \emptyset$ holds $\langle g, k \rangle \cdot (f + h) = \langle g \cdot f, k \cdot h \rangle$.
- (81) For every morphism f from a to c and for every morphism g from b to c such that $hom(a,c) \neq \emptyset$ and $hom(b,c) \neq \emptyset$ holds $\nabla_c \cdot (f+g) = \langle f,g \rangle$.

(82) Let f be a morphism from a to c. Let h be a morphism from b to d. Then for every morphism g from c to e and for every morphism k from d to s such that $hom(a,c) \neq \emptyset$ and $hom(b,d) \neq \emptyset$ and $hom(c,e) \neq \emptyset$ and $hom(d,s) \neq \emptyset$ holds $(g+k) \cdot (f+h) = g \cdot f + k \cdot h$.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245–254, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [6] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409–420, 1990.
- [7] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [8] Czesław Byliński. Opposite categories and contravariant functors. Formalized Mathematics, 2(3):419–424, 1991.
- [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [10] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics, 2(5):701-709, 1991.
- [11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [13] M. E. Szabo. Algebra of Proofs. North Holland, 1978.
- [14] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [15] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received October 27, 1992