Cartesian Categories

Czesław Byliński
Warsaw University
Białystok

Abstract

Summary. We define and prove some simple facts on Cartesian categories and its duals co-Cartesian categories. The Cartesian category is defined as a category with the fixed terminal object, the fixed projections, and the binary products. Category C has finite products if and only if C has a terminal object and for every pair a, b of objects of C the product $a \times b$ exists. We say that a category C has a finite product if every finite family of objects of C has a product. Our work is based on ideas of [13], where the algebraic properties of the proof theory are investigated. The terminal object of a Cartesian category C is denoted by $\mathbf{1}_{C}$. The binary product of a and b is written as $a \times b$. The projections of the product are written as $p r_{1}(a, b)$ and as $p r_{2}(a, b)$. We define the products $f \times g$ of arrows $f: a \rightarrow a^{\prime}$ and $g: b \rightarrow b^{\prime}$ as $<f \cdot p r_{1}, g \cdot p r_{2}>: a \times b \rightarrow a^{\prime} \times b^{\prime}$

Co-Cartesian category is defined dually to the Cartesian category. Dual to a terminal object is an initial object, and to products are coproducts. The initial object of a Cartesian category C is written as $\mathbf{0}_{C}$. Binary coproduct of a and b is written as $a+b$. Injections of the coproduct are written as $i n_{1}(a, b)$ and as $i n_{2}(a, b)$.

MML Identifier: CAT_4.

The terminology and notation used in this paper are introduced in the following papers: [16], [15], [11], [4], [5], [14], [9], [12], [2], [1], [3], [7], [6], [8], and [10].

1. Preliminaries

In the sequel o, m, r will be arbitrary. We now define two new constructions. Let us consider $o, m, r .[\langle o, m\rangle \mapsto r]$ is a function from : $\{o\},\{m\}$: into $\{r\}$.

Let C be a category, and let a, b be objects of C. Let us observe that a and b are isomorphic if:
(Def.1) $\quad \operatorname{hom}(a, b) \neq \emptyset$ and $\operatorname{hom}(b, a) \neq \emptyset$ and there exists a morphism f from a to b and there exists a morphism f^{\prime} from b to a such that $f \cdot f^{\prime}=\mathrm{id}_{b}$ and $f^{\prime} \cdot f=\mathrm{id}_{a}$.

2. Cartesian Categories

Let C be a category. We say that C has finite product if and only if:
(Def.2) for every set I and for every function F from I into the objects of C such that I is finite there exists an object a of C and there exists a projections family F^{\prime} from a onto I such that $\operatorname{cod}_{\kappa} F^{\prime}(\kappa)=F$ and a is a product w.r.t. F^{\prime}.

We now state the proposition
(1) Let C be a category. Then C has finite product if and only if there exists an object of C which is a terminal object and for every objects a, b of C there exists an object c of C and there exist morphisms p_{1}, p_{2} of C such that $\operatorname{dom} p_{1}=c$ and $\operatorname{dom} p_{2}=c$ and $\operatorname{cod} p_{1}=a$ and $\operatorname{cod} p_{2}=b$ and c is a product w.r.t. p_{1} and p_{2}.
We now define several new constructions. We consider Cartesian category structures which are extension of category structures and are systems

〈objects, morphisms, a dom-map, a cod-map, a composition, an id-map, a terminal, a product, a 1st-projection, a 2nd-projection \rangle,
where the objects, the morphisms constitute non-empty sets, the dom-map, the cod-map are functions from the morphisms into the objects, the composition is a partial function from : the morphisms, the morphisms : to the morphisms, the id-map is a function from the objects into the morphisms, the terminal is an element of the objects, the product is a function from : the objects, the objects: into the objects, and the 1st-projection, the 2nd-projection are functions from [: the objects, the objects:] into the morphisms. Let C be a Cartesian category structure. The functor $\mathbf{1}_{C}$ yielding an object of C is defined by:
(Def.3) $\quad \mathbf{1}_{C}=$ the terminal of C.
Let a, b be objects of C. The functor $a \times b$ yielding an object of C is defined as follows:
(Def.4) $\quad a \times b=($ the product of $C)(\langle a, b\rangle)$.
The functor $\pi_{1}(a \times b)$ yielding a morphism of C is defined as follows:
(Def.5) $\quad \pi_{1}(a \times b)=($ the 1st-projection of $C)(\langle a, b\rangle)$.
The functor $\pi_{2}(a \times b)$ yields a morphism of C and is defined as follows:
(Def.6) $\quad \pi_{2}(a \times b)=($ the 2nd-projection of $C)(\langle a, b\rangle)$.
Let us consider o, m. The functor $\dot{\circlearrowright}_{\mathrm{c}}(o, m)$ yielding a strict Cartesian category structure is defined by:

$$
\begin{align*}
& \dot{\circlearrowright}_{\mathrm{c}}(o, m)=\langle\{o\},\{m\},\{m\} \longmapsto o,\{m\} \longmapsto o,\langle m, m\rangle \longmapsto m,\{o\} \longmapsto m, \tag{Def.7}\\
& \text { Extract }(o),[\langle o, o\rangle \longmapsto o],[\langle o, o\rangle \longmapsto m],[\langle o, o\rangle \longmapsto m]\rangle .
\end{align*}
$$

We now state the proposition
(2) The category structure of $\dot{\circlearrowright}_{\mathrm{c}}(o, m)=\dot{\circlearrowright}(o, m)$.

Let us note that there exists a Cartesian category structure which is strict and category-like.

Let o, m be arbitrary. Then $\dot{\circlearrowright}_{c}(o, m)$ is a strict category-like Cartesian category structure.

The following propositions are true:
(3) For every object a of $\dot{\circlearrowright}_{c}(o, m)$ holds $a=o$.
(4) For all objects a, b of $\dot{\mathrm{O}}_{\mathrm{c}}(o, m)$ holds $a=b$.
(5) For every morphism f of $\dot{\circlearrowright}_{\mathrm{c}}(o, m)$ holds $f=m$.
(6) For all morphisms f, g of $\dot{\mathcal{O}}_{\mathrm{c}}(o, m)$ holds $f=g$.
(7) For all objects a, b of $\dot{\mathrm{O}}_{\mathrm{c}}(o, m)$ and for every morphism f of $\dot{\dot{~}}_{\mathrm{c}}(o, m)$ holds $f \in \operatorname{hom}(a, b)$.
(8) For all objects a, b of $\dot{\circlearrowright}_{\mathrm{c}}(o, m)$ every morphism of $\dot{\circlearrowright}_{\mathrm{c}}(o, m)$ is a morphism from a to b.
(9) For all objects a, b of $\dot{\mathcal{O}}_{\mathrm{c}}(o, m)$ holds hom $(a, b) \neq \emptyset$.
(10) Every object of $\dot{\circlearrowright}_{\mathrm{c}}(o, m)$ is a terminal object.
(11) For every object c of $\dot{\circlearrowright}_{\mathrm{c}}(o, m)$ and for all morphisms p_{1}, p_{2} of $\dot{\circlearrowright}_{\mathrm{c}}(o, m)$ holds c is a product w.r.t. p_{1} and p_{2}.
A category-like Cartesian category structure is Cartesian if:
(Def.8) the terminal of it is a terminal object and for all objects a, b of it holds $\operatorname{cod}($ the 1st-projection of it) $(\langle a, b\rangle)=a$ and cod (the 2nd-projection of it) $(\langle a, b\rangle)=b$ and (the product of it) $(\langle a, b\rangle)$ is a product w.r.t. (the 1st-projection of it) ($\langle a, b\rangle)$ and (the 2nd-projection of it) $(\langle a, b\rangle)$.
We now state the proposition
(12) For arbitrary o, m holds $\dot{\circlearrowright}_{c}(o, m)$ is Cartesian.

One can verify that there exists a strict Cartesian category-like Cartesian category structure.

A Cartesian category is a category-like Cartesian category structure.
We adopt the following convention: C denotes a Cartesian category and a, b, c, d, e, s denote objects of C. We now state three propositions:
(13) $\mathbf{1}_{C}$ is a terminal object.
(14) For all morphisms f_{1}, f_{2} from a to $\mathbf{1}_{C}$ holds $f_{1}=f_{2}$.
(15) $\operatorname{hom}\left(a, \mathbf{1}_{C}\right) \neq \emptyset$.

Let us consider $C, a .!_{a}$ is a morphism from a to $\mathbf{1}_{C}$.
Next we state several propositions:
(17) $\operatorname{dom}(!a)=a$ and $\operatorname{cod}(!a)=\mathbf{1}_{C}$.
(18) $\operatorname{hom}\left(a, \mathbf{1}_{C}\right)=\{!a\}$.
(19) $\operatorname{dom} \pi_{1}(a \times b)=a \times b$ and $\operatorname{cod} \pi_{1}(a \times b)=a$.
(20) $\quad \operatorname{dom} \pi_{2}(a \times b)=a \times b$ and $\operatorname{cod} \pi_{2}(a \times b)=b$.

Let us consider C, a, b. Then $\pi_{1}(a \times b)$ is a morphism from $a \times b$ to a. Then $\pi_{2}(a \times b)$ is a morphism from $a \times b$ to b.

The following four propositions are true:
(24) If $\operatorname{hom}(a, b) \neq \emptyset$ and $\operatorname{hom}(b, a) \neq \emptyset$, then $\pi_{1}(a \times b)$ is retraction and $\pi_{2}(a \times b)$ is retraction.
Let us consider C, a, b, c, and let f be a morphism from c to a, and let g be a morphism from c to b. Let us assume that $\operatorname{hom}(c, a) \neq \emptyset$ and $\operatorname{hom}(c, b) \neq \emptyset$. The functor $\langle f, g\rangle$ yields a morphism from c to $a \times b$ and is defined by:
(Def.9) $\quad \pi_{1}(a \times b) \cdot\langle f, g\rangle=f$ and $\pi_{2}(a \times b) \cdot\langle f, g\rangle=g$.
The following propositions are true:
(25) If $\operatorname{hom}(c, a) \neq \emptyset$ and $\operatorname{hom}(c, b) \neq \emptyset$, then $\operatorname{hom}(c, a \times b) \neq \emptyset$.

$$
\begin{equation*}
\left\langle\pi_{1}(a \times b), \pi_{2}(a \times b)\right\rangle=\operatorname{id}_{(a \times b)} \tag{26}
\end{equation*}
$$

For every morphism f from c to a and for every morphism g from c to b and for every morphism h from d to c such that $\operatorname{hom}(c, a) \neq \emptyset$ and $\operatorname{hom}(c, b) \neq \emptyset$ and $\operatorname{hom}(d, c) \neq \emptyset$ holds $\langle f \cdot h, g \cdot h\rangle=\langle f, g\rangle \cdot h$.
(28) For all morphisms f, k from c to a and for all morphisms g, h from c to b such that $\operatorname{hom}(c, a) \neq \emptyset$ and $\operatorname{hom}(c, b) \neq \emptyset$ and $\langle f, g\rangle=\langle k, h\rangle$ holds $f=k$ and $g=h$.
(29) For every morphism f from c to a and for every morphism g from c to b such that $\operatorname{hom}(c, a) \neq \emptyset$ and $\operatorname{hom}(c, b) \neq \emptyset$ and also f is monic or g is monic holds $\langle f, g\rangle$ is monic.
(30) $\operatorname{hom}\left(a, a \times \mathbf{1}_{C}\right) \neq \emptyset$ and $\operatorname{hom}\left(a, \mathbf{1}_{C} \times a\right) \neq \emptyset$.

We now define four new functors. Let us consider C, a. The functor $\lambda(a)$ yielding a morphism from $\mathbf{1}_{C} \times a$ to a is defined by:
(Def.10) $\quad \lambda(a)=\pi_{2}\left(\mathbf{1}_{C} \times a\right)$.
The functor $\lambda^{-1}(a)$ yielding a morphism from a to $\mathbf{1}_{C} \times a$ is defined as follows: (Def.11) $\quad \lambda^{-1}(a)=\left\langle!a_{a}, \mathrm{id}_{a}\right\rangle$.

The functor $\rho(a)$ yields a morphism from $a \times \mathbf{1}_{C}$ to a and is defined as follows: (Def.12) $\quad \rho(a)=\pi_{1}\left(a \times \mathbf{1}_{C}\right)$.

The functor $\rho^{-1}(a)$ yielding a morphism from a to $a \times \mathbf{1}_{C}$ is defined as follows: (Def.13) $\quad \rho^{-1}(a)=\left\langle\mathrm{id}_{a},!_{a}\right\rangle$.

The following propositions are true:

$$
\begin{equation*}
\lambda(a) \cdot \lambda^{-1}(a)=\operatorname{id}_{a} \text { and } \lambda^{-1}(a) \cdot \lambda(a)=\operatorname{id}_{\left(\mathbf{1}_{C} \times a\right)} \text { and } \rho(a) \cdot \rho^{-1}(a)=\operatorname{id}_{a} \tag{31}
\end{equation*}
$$ and $\rho^{-1}(a) \cdot \rho(a)=\operatorname{id}_{\left(a \times \mathbf{1}_{C}\right)}$.

(32) $\quad a$ and $a \times \mathbf{1}_{C}$ are isomorphic and a and $\mathbf{1}_{C} \times a$ are isomorphic.

Let us consider C, a, b. The functor $\operatorname{Switch}(a)$ yielding a morphism from $a \times b$ to $b \times a$ is defined as follows:
(Def.14) $\quad \operatorname{Switch}(a)=\left\langle\pi_{2}(a \times b), \pi_{1}(a \times b)\right\rangle$.
One can prove the following three propositions:

$$
\begin{equation*}
\operatorname{hom}(a \times b, b \times a) \neq \emptyset \tag{33}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Switch}(a) \cdot \operatorname{Switch}(b)=\operatorname{id}_{(b \times a)} . \tag{34}
\end{equation*}
$$

Let us consider C, a. The functor $\Delta(a)$ yielding a morphism from a to $a \times a$ is defined by:
(Def.15) $\Delta(a)=\left\langle\operatorname{id}_{a}, \mathrm{id}_{a}\right\rangle$.
We now state two propositions:

$$
\begin{equation*}
\operatorname{hom}(a, a \times a) \neq \emptyset \tag{36}
\end{equation*}
$$

(37) For every morphism f from a to b such that hom $(a, b) \neq \emptyset$ holds $\langle f, f\rangle=$ $\Delta(b) \cdot f$.
We now define two new functors. Let us consider C, a, b, c. The functor $\alpha((a, b), c)$ yielding a morphism from $a \times b \times c$ to $a \times(b \times c)$ is defined by:
(Def.16) $\quad \alpha((a, b), c)=\left\langle\pi_{1}(a \times b) \cdot \pi_{1}((a \times b) \times c),\left\langle\pi_{2}(a \times b) \cdot \pi_{1}((a \times b) \times c), \pi_{2}((a \times\right.\right.$ b) $\times c)\rangle\rangle$.

The functor $\alpha(a,(b, c))$ yields a morphism from $a \times(b \times c)$ to $a \times b \times c$ and is defined as follows:
(Def.17) $\quad \alpha(a,(b, c))=\left\langle\left\langle\pi_{1}(a \times(b \times c)), \pi_{1}(b \times c) \cdot \pi_{2}(a \times(b \times c))\right\rangle, \pi_{2}(b \times c) \cdot \pi_{2}(a \times\right.$ $(b \times c))\rangle$.
The following three propositions are true:

$$
\begin{align*}
& \text { (38) } \quad \operatorname{hom}(a \times b \times c, a \times(b \times c)) \neq \emptyset \text { and } \operatorname{hom}(a \times(b \times c), a \times b \times c) \neq \emptyset \text {. } \tag{38}\\
& \text { (39) } \quad \alpha((a, b), c) \cdot \alpha(a,(b, c))=\operatorname{id}_{(a \times(b \times c))} \text { and } \\
& \alpha(a,(b, c)) \cdot \alpha((a, b), c)=\operatorname{id}_{(a \times b \times c)} \text {. } \\
& \text { (40) } \quad(a \times b) \times c \text { and } a \times(b \times c) \text { are isomorphic. }
\end{align*}
$$

Let us consider C, a, b, c, d, and let f be a morphism from a to b, and let g be a morphism from c to d. The functor $f \times g$ yields a morphism from $a \times c$ to $b \times d$ and is defined by:
(Def.18) $\quad f \times g=\left\langle f \cdot \pi_{1}(a \times c), g \cdot \pi_{2}(a \times c)\right\rangle$.
One can prove the following propositions:
(41) If $\operatorname{hom}(a, c) \neq \emptyset$ and $\operatorname{hom}(b, d) \neq \emptyset$, then $\operatorname{hom}(a \times b, c \times d) \neq \emptyset$.
(42) $\mathrm{id}_{a} \times \mathrm{id}_{b}=\mathrm{id}_{(a \times b)}$.
(43) Let f be a morphism from a to b. Let h be a morphism from c to d. Then for every morphism g from e to a and for every morphism k from e to c such that $\operatorname{hom}(a, b) \neq \emptyset$ and $\operatorname{hom}(c, d) \neq \emptyset$ and $\operatorname{hom}(e, a) \neq \emptyset$ and $\operatorname{hom}(e, c) \neq \emptyset$ holds $(f \times h) \cdot\langle g, k\rangle=\langle f \cdot g, h \cdot k\rangle$.
(44) For every morphism f from c to a and for every morphism g from c to b such that $\operatorname{hom}(c, a) \neq \emptyset$ and $\operatorname{hom}(c, b) \neq \emptyset$ holds $\langle f, g\rangle=(f \times g) \cdot \Delta(c)$.
(45) Let f be a morphism from a to b. Let h be a morphism from c to d. Then for every morphism g from e to a and for every morphism k from s to c such that $\operatorname{hom}(a, b) \neq \emptyset$ and $\operatorname{hom}(c, d) \neq \emptyset$ and $\operatorname{hom}(e, a) \neq \emptyset$ and $\operatorname{hom}(s, c) \neq \emptyset$ holds $(f \times h) \cdot(g \times k)=(f \cdot g) \times(h \cdot k)$.

3. Co-Cartesian Categories

Let C be a category. We say that C has finite coproduct if and only if:
(Def.19) for every set I and for every function F from I into the objects of C such that I is finite there exists an object a of C and there exists a injections family F^{\prime} into a on I such that $\operatorname{dom}_{\kappa} F^{\prime}(\kappa)=F$ and a is a coproduct w.r.t. F^{\prime}.

Next we state the proposition
(46) Let C be a category. Then C has finite coproduct if and only if there exists an object of C which is an initial object and for every objects a, b of C there exists an object c of C and there exist morphisms i_{1}, i_{2} of C such that $\operatorname{dom} i_{1}=a$ and $\operatorname{dom} i_{2}=b$ and $\operatorname{cod} i_{1}=c$ and $\operatorname{cod} i_{2}=c$ and c is a coproduct w.r.t. i_{1} and i_{2}.
We now define several new constructions. We consider cocartesian category structures which are extension of category structures and are systems

〈objects, morphisms, a dom-map, a cod-map, a composition, an id-map, a initial, a coproduct, a 1st-coprojection, a 2nd-coprojection>,
where the objects, the morphisms constitute non-empty sets, the dom-map, the cod-map are functions from the morphisms into the objects, the composition is a partial function from : the morphisms, the morphisms: to the morphisms, the id-map is a function from the objects into the morphisms, the initial is an element of the objects, the coproduct is a function from : the objects, the objects:] into the objects, and the 1st-coprojection, the 2nd-coprojection are functions from : the objects, the objects:] into the morphisms. Let C be a cocartesian category structure. The functor $\mathbf{0}_{C}$ yields an object of C and is defined as follows:
(Def.20) $\quad \mathbf{0}_{C}=$ the initial of C.
Let a, b be objects of C. The functor $a+b$ yields an object of C and is defined as follows:
(Def.21) $a+b=($ the coproduct of $C)(\langle a, b\rangle)$.
The functor $\mathrm{in}_{1}(a+b)$ yields a morphism of C and is defined as follows:
(Def.22) $\quad \mathrm{in}_{1}(a+b)=($ the 1st-coprojection of $C)(\langle a, b\rangle)$.
The functor $\mathrm{in}_{2}(a+b)$ yields a morphism of C and is defined by:
(Def.23) $\quad \mathrm{in}_{2}(a+b)=($ the 2nd-coprojection of $C)(\langle a, b\rangle)$.
Let us consider o, m. The functor $\dot{\circlearrowright}_{\mathrm{c}}^{\mathrm{op}}(o, m)$ yielding a strict cocartesian category structure is defined by:

$$
\begin{align*}
& \dot{\mathrm{O}}_{\mathrm{c}}^{\mathrm{op}}(o, m)=\langle\{o\},\{m\},\{m\} \longmapsto o,\{m\} \longmapsto o,\langle m, m\rangle \longmapsto m,\{o\} \longmapsto \tag{Def.24}\\
& m, \operatorname{Extract}(o),[\langle o, o\rangle \mapsto o],[\langle o, o\rangle \mapsto m],[\langle o, o\rangle \mapsto m]\rangle .
\end{align*}
$$

One can prove the following proposition
(47) The category structure of $\dot{\mathrm{O}}_{\mathrm{c}}^{\mathrm{op}}(o, m)=\dot{\circlearrowright}(o, m)$.

Let us note that there exists a strict category-like cocartesian category structure.

Let o, m be arbitrary. Then $\dot{\circlearrowright}_{\mathrm{c}}^{\mathrm{op}}(o, m)$ is a strict category-like cocartesian category structure.

One can prove the following propositions:
(48) For every object a of $\dot{\mathcal{~}}_{\mathrm{c}}^{\mathrm{op}}(o, m)$ holds $a=o$.
(49) For all objects a, b of $\dot{\mathcal{O}}_{\mathrm{c}}^{\mathrm{op}}(o, m)$ holds $a=b$.
(50) For every morphism f of $\dot{\mathcal{O}}_{\mathrm{c}}^{\mathrm{op}}(o, m)$ holds $f=m$.
(51) For all morphisms f, g of $\dot{\mathrm{O}}_{\mathrm{c}}^{\mathrm{op}}(o, m)$ holds $f=g$.
(52) For all objects a, b of $\dot{\circlearrowright}_{\mathrm{C}}^{\mathrm{op}}(o, m)$ and for every morphism f of $\dot{\circlearrowright}_{\mathrm{C}}^{\mathrm{op}}(o, m)$ holds $f \in \operatorname{hom}(a, b)$.
(53) For all objects a, b of $\dot{\mathcal{O}}_{\mathrm{c}}^{\mathrm{op}}(o, m)$ every morphism of $\dot{\mathcal{O}}_{\mathrm{c}}^{\mathrm{op}}(o, m)$ is a morphism from a to b.
(54) For all objects a, b of $\dot{\mathcal{O}}_{\mathrm{c}}^{\mathrm{op}}(o, m)$ holds $\operatorname{hom}(a, b) \neq \emptyset$.
(55) Every object of $\dot{\mathrm{O}}_{\mathrm{c}}^{\mathrm{op}}(o, m)$ is an initial object.
(56) For every object c of $\dot{\mathcal{O}}_{\mathrm{c}}^{\mathrm{op}}(o, m)$ and for all morphisms i_{1}, i_{2} of $\dot{\mathcal{O}}_{\mathrm{c}}^{\mathrm{op}}(o, m)$ holds c is a coproduct w.r.t. i_{1} and i_{2}.
A category-like cocartesian category structure is cocartesian if:
(Def.25) the initial of it is an initial object and for all objects a, b of it holds dom (the 1st-coprojection of it) $(\langle a, b\rangle)=a$ and dom (the 2nd-coprojection of it) $(\langle a, b\rangle)=b$ and (the coproduct of it) $(\langle a, b\rangle)$ is a coproduct w.r.t. (the 1st-coprojection of it) ($\langle a, b\rangle)$ and (the 2nd-coprojection of it) $(\langle a, b\rangle)$.
One can prove the following proposition
(57) For arbitrary o, m holds $\dot{O}_{\mathrm{c}}^{\mathrm{op}}(o, m)$ is cocartesian.

One can check that there exists a category-like cocartesian category structure which is strict and cocartesian.

A cocartesian category is a category-like cocartesian category structure.
We adopt the following rules: C is a cocartesian category and a, b, c, d, e, s are objects of C. Next we state two propositions:
(58) $\mathbf{0}_{C}$ is an initial object.
(59) For all morphisms f_{1}, f_{2} from $\mathbf{0}_{C}$ to a holds $f_{1}=f_{2}$.

Let us consider $C, a .!^{a}$ is a morphism from $\mathbf{0}_{C}$ to a.
We now state a number of propositions:

$$
\begin{align*}
& \operatorname{hom}\left(\mathbf{0}_{C}, a\right) \neq \emptyset . \tag{60}\\
& !^{a}=\left.\right|^{\mathbf{0}_{C}} a . \\
& \operatorname{dom}\left(!^{a}\right)=\mathbf{0}_{C} \text { and } \operatorname{cod}\left(!^{a}\right)=a . \\
& \operatorname{hom}\left(\mathbf{0}_{C}, a\right)=\left\{!^{a}\right\} . \\
& \operatorname{domin} \\
& \operatorname{dom} \operatorname{in}_{2}(a+b)=a \text { and } \operatorname{cod} \operatorname{in}_{1}(a+b)=b \text { and } \operatorname{cod} \operatorname{in}_{2}(a+b)=a+b . \\
& \operatorname{hom}(a, a+b) \neq \emptyset \text { and } \operatorname{hom}(b, a+b) \neq \emptyset .
\end{align*}
$$

$a+b$ is a coproduct w.r.t. $\mathrm{in}_{1}(a+b)$ and $\mathrm{in}_{2}(a+b)$.
C has finite coproduct.
If $\operatorname{hom}(a, b) \neq \emptyset$ and $\operatorname{hom}(b, a) \neq \emptyset$, then $\operatorname{in}_{1}(a+b)$ is coretraction and $\mathrm{in}_{2}(a+b)$ is coretraction.
Let us consider C, a, b. Then $\operatorname{in}_{1}(a+b)$ is a morphism from a to $a+b$. Then $\operatorname{in}_{2}(a+b)$ is a morphism from b to $a+b$. Let us consider C, a, b, c, and let f be a morphism from a to c, and let g be a morphism from b to c. Let us assume that $\operatorname{hom}(a, c) \neq \emptyset$ and $\operatorname{hom}(b, c) \neq \emptyset$. The functor $\langle f, g\rangle$ yielding a morphism from $a+b$ to c is defined as follows:
(Def.26) $\langle f, g\rangle \cdot \operatorname{in}_{1}(a+b)=f$ and $\langle f, g\rangle \cdot \operatorname{in}_{2}(a+b)=g$.
Next we state several propositions:
(70) If $\operatorname{hom}(a, c) \neq \emptyset$ and $\operatorname{hom}(b, c) \neq \emptyset$, then $\operatorname{hom}(a+b, c) \neq \emptyset$.

$$
\begin{equation*}
\left\langle\mathrm{in}_{1}(a+b), \operatorname{in}_{2}(a+b)\right\rangle=\operatorname{id}_{(a+b)} . \tag{71}
\end{equation*}
$$

(72) For every morphism from a to c and for every morphism g from b to c and for every morphism h from c to d such that $\operatorname{hom}(a, c) \neq \emptyset$ and $\operatorname{hom}(b, c) \neq \emptyset$ and $\operatorname{hom}(c, d) \neq \emptyset$ holds $\langle h \cdot f, h \cdot g\rangle=h \cdot\langle f, g\rangle$.
(73) For all morphisms f, k from a to c and for all morphisms g, h from b to c such that $\operatorname{hom}(a, c) \neq \emptyset$ and $\operatorname{hom}(b, c) \neq \emptyset$ and $\langle f, g\rangle=\langle k, h\rangle$ holds $f=k$ and $g=h$.
(74) For every morphism f from a to c and for every morphism g from b to c such that $\operatorname{hom}(a, c) \neq \emptyset$ and $\operatorname{hom}(b, c) \neq \emptyset$ and also f is epi or g is epi holds $\langle f, g\rangle$ is epi.
(75) $\quad a$ and $a+\mathbf{0}_{C}$ are isomorphic and a and $\mathbf{0}_{C}+a$ are isomorphic.
$a+b$ and $b+a$ are isomorphic.
We now define two new functors. Let us consider C, a. The functor ∇_{a} yields a morphism from $a+a$ to a and is defined by:
(Def.27) $\quad \nabla_{a}=\left\langle\mathrm{id}_{a}, \mathrm{id}_{a}\right\rangle$.
Let us consider C, a, b, c, d, and let f be a morphism from a to c, and let g be a morphism from b to d. The functor $f+g$ yielding a morphism from $a+b$ to $c+d$ is defined as follows:
(Def.28) $\quad f+g=\left\langle\mathrm{in}_{1}(c+d) \cdot f, \mathrm{in}_{2}(c+d) \cdot g\right\rangle$.
The following propositions are true:
(78) If $\operatorname{hom}(a, c) \neq \emptyset$ and $\operatorname{hom}(b, d) \neq \emptyset$, then $\operatorname{hom}(a+b, c+d) \neq \emptyset$.

$$
\begin{equation*}
\mathrm{id}_{a}+\operatorname{id}_{b}=\operatorname{id}_{(a+b)} . \tag{79}
\end{equation*}
$$

Let f be a morphism from a to c. Let h be a morphism from b to d. Then for every morphism g from c to e and for every morphism k from d to e such that $\operatorname{hom}(a, c) \neq \emptyset$ and $\operatorname{hom}(b, d) \neq \emptyset$ and $\operatorname{hom}(c, e) \neq \emptyset$ and $\operatorname{hom}(d, e) \neq \emptyset$ holds $\langle g, k\rangle \cdot(f+h)=\langle g \cdot f, k \cdot h\rangle$.
(81) For every morphism f from a to c and for every morphism g from b to c such that $\operatorname{hom}(a, c) \neq \emptyset$ and $\operatorname{hom}(b, c) \neq \emptyset$ holds $\nabla_{c} \cdot(f+g)=\langle f, g\rangle$.
(82) Let f be a morphism from a to c. Let h be a morphism from b to d. Then for every morphism g from c to e and for every morphism k from d to s such that $\operatorname{hom}(a, c) \neq \emptyset$ and $\operatorname{hom}(b, d) \neq \emptyset$ and $\operatorname{hom}(c, e) \neq \emptyset$ and $\operatorname{hom}(d, s) \neq \emptyset$ holds $(g+k) \cdot(f+h)=g \cdot f+k \cdot h$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409-420, 1990.
[7] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[8] Czesław Byliński. Opposite categories and contravariant functors. Formalized Mathematics, 2(3):419-424, 1991.
[9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[10] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics, 2(5):701-709, 1991.
[11] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[13] M. E. Szabo. Algebra of Proofs. North Holland, 1978.
[14] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[15] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received October 27, 1992

