On a Mathematical Model of Programs

Yatsuka Nakamura
Shinshu University
Nagano
Andrzej Trybulec
Warsaw University
Białystok

Abstract

Summary. We continue the work on mathematical modeling of hardware and software started in [17]. The main objective of this paper is the definition of a program. We start with the concept of partial product, i.e. the set of all partial functions f from I to $\bigcup_{i \in I} A_{i}$, fulfilling the condition $f . i \in A_{i}$ for $i \in \operatorname{domf}$. The computation and the result of a computation are defined in usual way. A finite partial state is called autonomic if the result of a computation starting with it does not depend on the remaining memory and an AMI is called programmable if it has a non empty autonomic partial finite state. We prove the consistency of the following set of properties of an AMI: data-oriented, halting, steadyprogrammed, realistic and programmable. For this purpose we define a trivial AMI. It has only the instruction counter and one instruction location. The only instruction of it is the halt instruction. A preprogram is a finite partial state that halts. We conclude with the definition of a program of a partial function F mapping the set of the finite partial states into itself. It is a finite partial state s such that for every finite partial state $s^{\prime} \in \operatorname{dom} F$ the result of any computation starting with $s+s^{\prime}$ includes $F . s^{\prime}$.

MML Identifier: AMI_2.

The papers [24], [22], [28], [6], [7], [23], [14], [1], [19], [26], [25], [10], [3], [5], [15], [29], [21], [2], [20], [8], [18], [4], [9], [12], [13], [27], [11], [16], and [17] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity we follow the rules: A, B, C will denote sets, f, g, h will denote functions, x, y, z will be arbitrary, and i, j, k will denote natural numbers. The scheme UniqSet concerns a set \mathcal{A}, a set \mathcal{B}, and a unary predicate \mathcal{P}, and states that:

$$
\mathcal{A}=\mathcal{B}
$$

provided the following requirements are met:

- for every x holds $x \in \mathcal{A}$ if and only if $\mathcal{P}[x]$,
- for every x holds $x \in \mathcal{B}$ if and only if $\mathcal{P}[x]$.

The following propositions are true:
(1) A misses $B \backslash C$ if and only if B misses $A \backslash C$.
(2) For every function f holds $\pi_{1}(\operatorname{dom} f \times \operatorname{rng} f)^{\circ} f=\operatorname{dom} f$.
(3) If $f \approx g$ and $\langle x, y\rangle \in f$ and $\langle x, z\rangle \in g$, then $y=z$.
(4) If for every x such that $x \in A$ holds x is a function and for all functions f, g such that $f \in A$ and $g \in A$ holds $f \approx g$, then $\bigcup A$ is a function.
(5) If $\operatorname{dom} f \subseteq A \cup B$, then $f \upharpoonright A+f \upharpoonright B=f$.
(6) $\operatorname{dom} f \subseteq \operatorname{dom}(f+\cdot g)$ and $\operatorname{dom} g \subseteq \operatorname{dom}(f+\cdot g)$.
(7) For arbitrary $x_{1}, x_{2}, y_{1}, y_{2}$ holds $\left[x_{1} \longmapsto y_{1}, x_{2} \longmapsto y_{2}\right]=\left(x_{1} \longmapsto y_{1}\right)+$. $\left(x_{2} \longmapsto y_{2}\right)$.
(8) For all x, y holds $x \longmapsto y=\{\langle x, y\rangle\}$.
(9) For arbitrary a, b, c holds $[a \longmapsto b, a \longmapsto c]=a \longmapsto c$.
(10) For every function f holds $\operatorname{dom} f$ is finite if and only if f is finite.
(11) If $x \in \prod f$, then x is a function.

2. Partial products

Let f be a function. The functor $\prod^{\prime} f$ yields a non-empty set of functions and is defined by:
(Def.1) $\quad x \in \Pi^{\prime} f$ if and only if there exists g such that $x=g$ and $\operatorname{dom} g \subseteq \operatorname{dom} f$ and for every x such that $x \in \operatorname{dom} g$ holds $g(x) \in f(x)$.
Next we state a number of propositions:
(12) $\quad x \in \prod f$ if and only if there exists g such that $x=g$ and $\operatorname{dom} g \subseteq \operatorname{dom} f$ and for every x such that $x \in \operatorname{dom} g$ holds $g(x) \in f(x)$.
(13) If dom $g \subseteq \operatorname{dom} f$ and for every x such that $x \in \operatorname{dom} g$ holds $g(x) \in f(x)$, then $g \in \Pi f$.
(14) If $g \in \prod^{\prime} f$, then $\operatorname{dom} g \subseteq \operatorname{dom} f$ and for every x such that $x \in \operatorname{dom} g$ holds $g(x) \in f(x)$.
(15) $\square \in \prod f$.
(16) $\Pi f \subseteq \Pi^{\prime} f$.
(17) If $x \in \Pi f$, then x is a partial function $\operatorname{from} \operatorname{dom} f$ to $\bigcup \operatorname{rng} f$.
(18) If $g \in \Pi f$ and $h \in \prod^{\cdot} f$, then $g+\cdot h \in \Pi f$.
(19) If $\Pi f \neq \emptyset$, then $g \in \Pi f$ if and only if there exists h such that $h \in \Pi f$ and $g \leq h$.
(20) $\quad \Pi f \subseteq \operatorname{dom} f \rightarrow \bigcup \operatorname{rng} f$.
(21) If $f \subseteq g$, then $\Pi f \subseteq \Pi^{\circ} g$.

$$
\begin{equation*}
\Pi \square=\{\square\} . \tag{22}
\end{equation*}
$$

$A \dot{\rightarrow} B=\Pi \cdot(A \longmapsto B)$.
For all non-empty sets A, B and for every function f from A into B holds $\Pi f=\prod(f \upharpoonright\{x: f(x) \neq \emptyset\})$, where x ranges over elements of A.
(25) If $x \in \operatorname{dom} f$ and $y \in f(x)$, then $x \longmapsto y \in \prod$.
(26) $\quad \Pi f=\{\square\}$ if and only if for every x such that $x \in \operatorname{dom} f$ holds $f(x)=\emptyset$.

If $A \subseteq \prod f$ and for all functions h_{1}, h_{2} such that $h_{1} \in A$ and $h_{2} \in A$ holds $h_{1} \approx h_{2}$, then $\cup A \in \Pi f$.
(28) If $g \approx h$ and $g \in \prod f$ and $h \in \Pi f$, then $g \cup h \in \Pi f$.
(29) If $g \subseteq h$ and $h \in \Pi f$, then $g \in \Pi f$.
(30) If $g \in \prod^{\cdot} f$, then $g \upharpoonright A \in \prod^{\cdot} f$.
(31) If $g \in \Pi \cdot f$, then $g \upharpoonright A \in \prod^{\cdot}(f \upharpoonright A)$.
(32) If $h \in \Pi \cdot(f+\cdot g)$, then there exist functions f^{\prime}, g^{\prime} such that $f^{\prime} \in \Pi \cdot f$ and $g^{\prime} \in \Pi \cdot g$ and $h=f^{\prime}+\cdot g^{\prime}$.
(34) For all functions f^{\prime}, g^{\prime} such that $\operatorname{dom} f^{\prime}$ misses $\operatorname{dom} g \backslash \operatorname{dom} g^{\prime}$ and $f^{\prime} \in \Pi^{\cdot} f$ and $g^{\prime} \in \Pi^{\prime} g$ holds $f^{\prime}+\cdot g^{\prime} \in \Pi^{\prime}(f+\cdot g)$.
(35) If $g \in \Pi f$ and $h \in \Pi f$, then $g+\cdot h \in \Pi f$.
(36) For arbitrary $x_{1}, x_{2}, y_{1}, y_{2}$ such that $x_{1} \in \operatorname{dom} f$ and $y_{1} \in f\left(x_{1}\right)$ and $x_{2} \in \operatorname{dom} f$ and $y_{2} \in f\left(x_{2}\right)$ holds $\left[x_{1} \longmapsto y_{1}, x_{2} \longmapsto y_{2}\right] \in \Pi f$.

3. Computations

In the sequel N is a non-empty set with non-empty elements.
We now define five new constructions. Let us consider N, and let S be a von Neumann definite AMI over N, and let s be a state of S. The functor CurInstr (s) yields an instruction of S and is defined as follows:
(Def.2) CurInstr $(s)=s\left(\mathbf{I} \mathbf{C}_{s}\right)$.
Let us consider N, and let S be a von Neumann definite AMI over N, and let s be a state of S. The functor Following (s) yielding a state of S is defined by:
(Def.3) Following $(s)=\operatorname{Exec}(\operatorname{CurInstr}(s), s)$.
Let us consider N, and let S be a von Neumann definite AMI over N, and let s be a state of S. The functor Computation (s) yielding a function from \mathbb{N} into Π (the object kind of S) qua a non-empty set is defined by:
(Def.4) (Computation $(s))(0)=s$ qua an element of Π (the object kind of S) qua a non-empty set and for every i and for every element x of Π (the object kind of S) qua a non-empty set such that $x=(\operatorname{Computation}(s))(i)$ holds $($ Computation $(s))(i+1)=\operatorname{Following}(x)$.
Let us consider N, and let S be a von Neumann definite AMI over N. A state of S is halting if:
(Def.5) there exists k such that CurInstr((Computation(it)) $(k))=$ halt $_{S}$.
Let us consider N, and let S be an AMI over N, and let f be a function from \mathbb{N} into Π (the object kind of S) qua a non-empty set, and let us consider k. Then $f(k)$ is a state of S. Let us consider N. An AMI over N is realistic if:
(Def.6) the instructions of it \neq the instruction locations of it.
One can prove the following proposition
(37) For every S being a von Neumann definite AMI over N such that S is realistic holds for no instruction-location l of S holds $\mathbf{I C}_{S}=l$.
In the sequel S denotes a von Neumann definite AMI over N and s denotes a state of S. One can prove the following propositions:
$(\operatorname{Computation}(s))(0)=s$.
$(\operatorname{Computation}(s))(k+1)=$ Following $((\operatorname{Computation}(s))(k))$.
(40) For every k holds
$(\operatorname{Computation}(s))(i+k)=(\operatorname{Computation}((\operatorname{Computation}(s))(i)))(k)$.
(41) If $i \leq j$, then for every N and for every S being a halting von Neumann definite AMI over N and for every state s of S such that $\operatorname{CurInstr}((\operatorname{Computation}(s))(i))=$ halt $_{S}$ holds $(\operatorname{Computation}(s))(j)=(\operatorname{Computation}(s))(i)$.
Let us consider N, and let S be a halting von Neumann definite AMI over N, and let s be a state of S satisfying the condition: s is halting. The functor Result(s) yields a state of S and is defined as follows:
(Def.7) there exists k such that $\operatorname{Result}(s)=(\operatorname{Computation}(s))(k)$ and $\operatorname{CurInstr}(\operatorname{Result}(s))=\operatorname{halt}_{S}$.

Next we state the proposition
(42) For every N and for every S being a steady-programmed von Neumann definite AMI over N and for every state s of S and for every instructionlocation i of S holds $s(i)=($ Following $(s))(i)$.
Let us consider N, and let S be a definite AMI over N, and let s be a state of S, and let l be an instruction-location of S. Then $s(l)$ is an instruction of S.

Next we state several propositions:
(43) For every N and for every S being a steady-programmed von Neumann definite AMI over N and for every state s of S and for every instructionlocation i of S and for every k holds $s(i)=($ Computation $(s))(k)(i)$.
(44) For every N and for every S being a steady-programmed von Neumann definite AMI over N and for every state s of S holds (Computation $(s))(k+$ $1)=\operatorname{Exec}\left(s\left(\mathbf{I C}_{(\text {Computation }(s))(k)}\right),(\operatorname{Computation}(s))(k)\right)$.
For every N and for every S being a steady-programmed von Neumann halting definite AMI over N and for every state s of S and for every k such that $s\left(\mathbf{I C}_{(\text {Computation }(s))(k)}\right)=$ halt $_{S}$ holds $\operatorname{Result}(s)=(\operatorname{Computation}(s))(k)$.
(46)

For every N and for every S being a steady-programmed von Neumann halting definite AMI over N and for every state s of S such that there exists k such that $s\left(\mathbf{I C}_{(\text {Computation }(s))(k)}\right)=\operatorname{halt}_{S}$ and for every i holds $\operatorname{Result}(s)=\operatorname{Result}((\operatorname{Computation}(s))(i))$.
(47) For every S being an AMI over N and for every object o of S holds ObjectKind (o) is non-empty.

4. Finite partial states

We now define five new constructions. Let us consider N, and let S be an AMI over N. The functor $\operatorname{FinPartSt}(S)$ yielding a subset of Π^{\prime} (the object kind of $S)$ is defined by:
(Def.8) $\quad \operatorname{FinPartSt}(S)=\{p: p$ is finite $\}$, where p ranges over elements of Π^{\prime} (the object kind of S).
Let us consider N, and let S be an AMI over N. An element of Π^{\prime} (the object kind of S) is called a finite partial state of S if:
(Def.9) it is finite.
Let us consider N, and let S be a von Neumann definite AMI over N. A finite partial state of S is autonomic if:
(Def.10) for all states s_{1}, s_{2} of S such that it $\subseteq s_{1}$ and it $\subseteq s_{2}$ and for every i holds $\left(\operatorname{Computation}\left(s_{1}\right)\right)(i) \upharpoonright$ dom it $=\left(\operatorname{Computation}\left(s_{2}\right)\right)(i) \upharpoonright$ domit.
A finite partial state of S is halting if:
(Def.11) for every state s of S such that it $\subseteq s$ holds s is halting.
Let us consider N. A von Neumann definite AMI over N is programmable if:
(Def.12) there exists a finite partial state of it which is non-empty and autonomic.
We now state two propositions:
(48) For every S being a von Neumann definite AMI over N and for all nonempty sets A, B and for all objects l_{1}, l_{2} of S such that $\operatorname{ObjectKind}\left(l_{1}\right)=$ A and $\operatorname{ObjectKind}\left(l_{2}\right)=B$ and for every element a of A and for every element b of B holds $\left[l_{1} \longmapsto a, l_{2} \longmapsto b\right]$ is a finite partial state of S.
(49) For every S being a von Neumann definite AMI over N and for every non-empty set A and for every object l_{1} of S such that $\operatorname{ObjectKind}\left(l_{1}\right)=A$ and for every element a of A holds $l_{1} \longmapsto a$ is a finite partial state of S.
Let us consider N, and let S be a von Neumann definite AMI over N, and let l_{1} be an object of S, and let a be an element of $\operatorname{ObjectKind}\left(l_{1}\right)$. Then $l_{1} \longmapsto a$ is a finite partial state of S. Let us consider N, and let S be a von Neumann definite AMI over N, and let l_{1}, l_{2} be objects of S, and let a be an element of $\operatorname{ObjectKind}\left(l_{1}\right)$, and let b be an element of $\operatorname{ObjectKind}\left(l_{2}\right)$. Then $\left[l_{1} \longmapsto a, l_{2} \longmapsto b\right]$ is a finite partial state of S.

5. Trivial AMI

Let us consider N. The functor $\mathbf{A M I}_{\mathrm{t}}$ yields a strict AMI over N and is defined by the conditions (Def.13).
(Def.13) (i) The objects of $\mathbf{A M I}_{\mathrm{t}}=\{0,1\}$,
(ii) the instruction counter of $\mathbf{A M I}_{t}=0$,
(iii) the instruction locations of $\mathbf{A M I}_{\mathrm{t}}=\{1\}$,
(iv) the instruction codes of $\mathbf{A M I}_{\mathrm{t}}=\{0\}$,
(v) the halt instruction of $\mathbf{A M I}_{\mathrm{t}}=0$,
(vi) the instructions of $\mathbf{A M I}_{\mathrm{t}}=\{\langle 0, \varepsilon\rangle\}$,
(vii) the object kind of $\mathbf{A M I}_{\mathrm{t}}=[0 \longmapsto\{1\}, 1 \longmapsto\{\langle 0, \varepsilon\rangle\}]$,
(viii) the execution of $\mathbf{A M I}_{\mathrm{t}}=\{\langle 0, \varepsilon\rangle\} \longmapsto \mathrm{id} \prod[0 \longmapsto\{1\}, 1 \longmapsto\{\langle 0, \varepsilon\rangle\}]$.

Next we state several propositions:
(50) $\mathbf{A M I}_{\mathrm{t}}$ is von Neumann.
$\mathbf{A M I}_{\mathrm{t}}$ is data-oriented.
(52) $\mathbf{A M I}_{\mathrm{t}}$ is halting.
(53) For all states s_{1}, s_{2} of $\mathbf{A M I}_{\mathrm{t}}$ holds $s_{1}=s_{2}$.
(54) $\quad \mathbf{A M I}_{\mathrm{t}}$ is steady-programmed.
(55) $\mathbf{A M I}_{\mathrm{t}}$ is definite.
(56) $\quad \mathbf{A M I}_{\mathrm{t}}$ is realistic.

Let us consider N. Then $\mathbf{A M I}_{\mathrm{t}}$ is a von Neumann definite strict AMI over N.

One can prove the following proposition
(57) $\quad \mathbf{A M I}_{\mathrm{t}}$ is programmable.

Let us consider N. Note that there exists a von Neumann definite strict AMI over N which is data-oriented halting steady-programmed realistic and programmable.

One can prove the following two propositions:
(58) For every S being an AMI over N and for every state s of S and for every finite partial state p of S holds $s \upharpoonright \operatorname{dom} p$ is a finite partial state of S.
(59) For every S being an AMI over N holds \emptyset is a finite partial state of S.

Let us consider N, and let S be a von Neumann definite AMI over N. Observe that there exists a non-empty autonomic finite partial state of S.

Let us consider N, and let S be an AMI over N, and let f, g be finite partial states of S. Then $f+g$ is a finite partial state of S.

6. Autonomic finite partial states

We now state four propositions:
(60) For every S being a realistic von Neumann definite AMI over N and for every instruction-location l_{3} of S and for every element l of $\left.\operatorname{ObjectKind}(\mathbf{I C})_{S}\right)$ such that $l=l_{3}$ and for every element h of $\operatorname{Object} \operatorname{Kind}\left(l_{3}\right)$ such that $h=\operatorname{halt}_{S}$ and for every state s of S such that $\left[\mathbf{I C}_{S} \longmapsto l, l_{3} \longmapsto h\right] \subseteq s$ holds CurInstr $(s)=$ halt $_{S}$.
(61) For every S being a realistic von Neumann definite AMI over N and for every instruction-location l_{3} of S and for every element l of $\operatorname{ObjectKind}\left(\mathbf{I C}_{S}\right)$ such that $l=l_{3}$ and for every element h of $\operatorname{Object} \operatorname{Kind}\left(l_{3}\right)$ such that $h=$ halt $_{S}$ holds $\left[\mathbf{I} \mathbf{C}_{S} \longmapsto l, l_{3} \longmapsto h\right]$ is halting.
(62) Let S be a realistic halting von Neumann definite AMI over N. Then for every instruction-location l_{3} of S and for every element l of ObjectKind($\left.\mathbf{I C}_{S}\right)$ such that $l=l_{3}$ and for every element h of $\operatorname{Object} \operatorname{Kind}\left(l_{3}\right)$ such that $h=$ halt $_{S}$ and for every state s of S such that $\left[\mathbf{I C}_{S} \longmapsto l, l_{3} \longmapsto h\right] \subseteq s$ and for every i holds (Computation $\left.(s)\right)(i)=s$.
(63) For every S being a realistic halting von Neumann definite AMI over N and for every instruction-location l_{3} of S and for every element l of $\operatorname{ObjectKind}\left(\mathbf{I} \mathbf{C}_{S}\right)$ such that $l=l_{3}$ and for every element h of $\operatorname{ObjectKind}\left(l_{3}\right)$ such that $h=$ halt $_{S}$ holds $\left[\mathbf{I C}_{S} \longmapsto l, l_{3} \longmapsto h\right]$ is autonomic.
We now define two new constructions. Let us consider N, and let S be a realistic halting von Neumann definite AMI over N. One can check that there exists a finite partial state of S which is autonomic and halting.

Let us consider N, and let S be a realistic halting von Neumann definite AMI over N. A pre-program of S is an autonomic halting finite partial state of S.

Let us consider N, and let S be a realistic halting von Neumann definite AMI over N, and let s be a finite partial state of S. Let us assume that s is a pre-program of S. The functor $\operatorname{Result}(s)$ yields a finite partial state of S and is defined as follows:
(Def.14) for every state s^{\prime} of S such that $s \subseteq s^{\prime}$ holds $\operatorname{Result}(s)=\operatorname{Result}\left(s^{\prime}\right) \upharpoonright$ $\operatorname{dom} s$.

7. Pre-programs and programs

Let us consider N, and let S be a realistic halting von Neumann definite AMI over N, and let p be a finite partial state of S, and let F be a function. We say that p computes F if and only if:
(Def.15) for an arbitrary x such that $x \in \operatorname{dom} F$ there exists a finite partial state s of S such that $x=s$ and $p+\cdot s$ is a pre-program of S and $F(s) \subseteq$ $\operatorname{Result}(p+\cdot s)$.

The following three propositions are true:
(64) For every S being a realistic halting von Neumann definite AMI over N and for every finite partial state p of S holds p computes \square.
(65) For every S being a realistic halting von Neumann definite AMI over N and for every finite partial state p of S holds p is a pre-program of S if and only if p computes $\emptyset \longmapsto \operatorname{Result}(p)$.
(66) For every S being a realistic halting von Neumann definite AMI over N and for every finite partial state p of S holds p is a pre-program of S if and only if p computes $\emptyset \longmapsto \emptyset$.
Let us consider N, and let S be a realistic halting von Neumann definite AMI over N. A partial function from $\operatorname{FinPartSt}(S)$ to $\operatorname{FinPartSt}(S)$ is computable if:
(Def.16) there exists a finite partial state p of S such that p computes it.
Next we state three propositions:
(67) For every N and for every S being a realistic halting von Neumann definite AMI over N and for every partial function F from $\operatorname{FinPartSt}(S)$ to FinPartSt (S) such that $F=\square$ holds F is computable.
(68) For every N and for every S being a realistic halting von Neumann definite AMI over N and for every partial function F from FinPartSt (S) to $\operatorname{FinPartSt}(S)$ such that $F=\emptyset \longmapsto \emptyset$ holds F is computable.
(69) For every N and for every S being a realistic halting von Neumann definite AMI over N and for every pre-program p of S and for every partial function F from $\operatorname{FinPartSt}(S)$ to $\operatorname{FinPartSt}(S)$ such that $F=$ $\emptyset \longmapsto \operatorname{Result}(p)$ holds F is computable.
Let us consider N, and let S be a realistic halting von Neumann definite AMI over N, and let F be a partial function from $\operatorname{FinPartSt}(S)$ to $\operatorname{FinPartSt}(S)$ satisfying the condition: F is computable. A finite partial state of S is called a program of F if:
(Def.17) it computes F.
The following propositions are true:
(70) For every N and for every S being a realistic halting von Neumann definite AMI over N and for every partial function F from FinPartSt (S) to $\operatorname{FinPartSt}(S)$ such that $F=\square$ every finite partial state of S is a program of F.
(71) For every N and for every S being a realistic halting von Neumann definite AMI over N and for every partial function F from FinPartSt (S) to FinPartSt (S) such that $F=\emptyset \bullet \emptyset$ every pre-program of S is a program of F.
(72) For every N and for every S being a realistic halting von Neumann definite AMI over N and for every pre-program p of S and for every partial function F from $\operatorname{FinPartSt}(S)$ to $\operatorname{FinPartSt}(S)$ such that $F=$ $\emptyset \mapsto \operatorname{Result}(p)$ holds p is a program of F.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[5] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669676, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Graphs of functions. Formalized Mathematics, 1(1):169-173, 1990.
[9] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[11] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics, 2(5):701-709, 1991.
[12] Czesław Byliński. Subcategories and products of categories. Formalized Mathematics, 1(4):725-732, 1990.
[13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[15] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[16] Michał Muzalewski. Rings and modules - part II. Formalized Mathematics, 2(4):579585, 1991.
[17] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151-160, 1992.
[18] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555-561, 1990.
[19] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[20] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991.
[21] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[22] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[23] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[24] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[25] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[26] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[27] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received December 29, 1992

