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Summary. We continue the work on mathematical modeling of
hardware and software started in [17]. The main objective of this paper
is the definition of a program. We start with the concept of partial
product, i.e. the set of all partial functions f from I to Uie] Aj;, fulfilling
the condition f.i € A; for i € domf. The computation and the result of
a computation are defined in usual way. A finite partial state is called
autonomic if the result of a computation starting with it does not depend
on the remaining memory and an AMI is called programmable if it has
a non empty autonomic partial finite state. We prove the consistency of
the following set of properties of an AMI: data-oriented, halting, steady-
programmed, realistic and programmable. For this purpose we define
a trivial AMI. It has only the instruction counter and one instruction
location. The only instruction of it is the halt instruction. A preprogram
is a finite partial state that halts. We conclude with the definition of
a program of a partial function F' mapping the set of the finite partial
states into itself. It is a finite partial state s such that for every finite
partial state s € domF the result of any computation starting with s+ s’
includes F.s'.

MML Identifier: AMI_2.

The papers [24], [22], [28], [6], [7], [23], [14], [1], [19], [26], [25], [10], [3], [5], [15],
[29], [21], [2], [20], (8], [18], [4], [9], [12], [13], [27], [11], [16], and [17] provide the
notation and terminology for this paper.

1. PRELIMINARIES

For simplicity we follow the rules: A, B, C will denote sets, f, g, h will denote
functions, x, y, z will be arbitrary, and ¢, j, k£ will denote natural numbers.
The scheme UnigSet concerns a set A, a set BB, and a unary predicate P, and
states that:

A=B
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provided the following requirements are met:
e for every z holds = € A if and only if P[z],
e for every z holds x € B if and only if P[z].
The following propositions are true:
(1) A misses B\ C if and only if B misses A\ C.
(2)  For every function f holds 71 (dom f x rng f) ° f = dom f.
(3) If f~gand (x,y)e€ fand (z, 2) € g, then y = 2.
(4)  If for every x such that = € A holds x is a function and for all functions
f, g such that f € A and g € A holds f =~ g, then |J A is a function.
(5) IfdomfC AUB,then fI] A+ f| B=Ff.
(6) dom f C dom(f +-¢) and domg C dom(f +- g).
(7)  For arbitrary x1, x2, y1, y2 holds [z1 — y1, 29 — yo| = (z1——y1) +-
(zo——1y2).

(8) For all z, y holds x——y = {{(z, y)}.

(9)  For arbitrary a, b, ¢ holds [a — b,a — ] = a——c.
(10)  For every function f holds dom f is finite if and only if f is finite.
(11) Ifz € I f, then x is a function.

2. PARTIAL PRODUCTS

Let f be a function. The functor [ f yields a non-empty set of functions and
is defined by:

(Def.1) € [T fif and only if there exists g such that x = g and dom g C dom f
and for every x such that x € dom g holds g(x) € f(z).
Next we state a number of propositions:

(12) x €T fif and only if there exists g such that x = g and dom g C dom f
and for every x such that x € dom g holds g(x) € f(z).

(13) Ifdomg C dom f and for every x such that z € dom g holds g(z) € f(x),
then g € [T f.

(14) If g € IT f, then domg C dom f and for every x such that z € domg

holds g(x) € f(x).

(15) Dellf.

(16) TIIf<IT /-

(17)  Ifx € IT f, then z is a partial function from dom f to (Jrng f.

(18) Ifge[lfand he]] f, theng+-he]]f.

(19) If[If #0, then g € [T f if and only if there exists h such that h € [] f

and g < h.

(20) IT f C dom f>Urng /.

(21) I fCg, then [[ fC] g

(22) II'D= {0}
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(23) ASB=][[(A+~— B).

(24)  For all non-empty sets A, B and for every function f from A into B
holds [T f =TT (f I {z: f(x) # 0}), where = ranges over elements of A.

(25) If x € dom f and y € f(x), then z——y € [] f.

(26) [T f = {0} if and only if for every = such that x € dom f holds f(z) = 0.

(27) If A CI f and for all functions hj, hy such that hy € A and he € A
holds hy &~ ho, then JA € [] f.

(28) Ifgmhandgel] fand h €[] f, thengUhe][] f.

(29) IfgChand he]] f,thengel]] f.

(30) Ifgell f,thenglAe]l f.

(31) Ifgell f,thengl Al (fTA).

(32) Ifh eIl (f + g), then there exist functions f’, ¢’ such that f' € [T f

and ¢ € [[gand h = f' +-¢'.

(33)  For all functions f’, ¢’ such that domg misses dom f’\ domg’ and
f eIl fand ¢ €[ g holds f' + ¢ € [T (f + g).

(34)  For all functions f’, ¢’ such that dom f’ misses domg \ domg’ and
frell fand g €[] gholds f'+-¢" € [T(f+ 9).

(35) Ifgell fand he]] f,theng+-he]] f.

(36)  For arbitrary xi, xe, y1, y2 such that 1 € dom f and y; € f(x1) and
x9 € dom f and yo € f(x2) holds [z1 — y1, 20— yo| € [T f.

3. COMPUTATIONS

In the sequel N is a non-empty set with non-empty elements.

We now define five new constructions. Let us consider N, and let S be a
von Neumann definite AMI over IV, and let s be a state of S. The functor
Curlnstr(s) yields an instruction of S and is defined as follows:

(Def.2)  Curlnstr(s) = s(ICs).

Let us consider NV, and let S be a von Neumann definite AMI over N, and let
s be a state of S. The functor Following(s) yielding a state of S is defined by:

(Def.3)  Following(s) = Exec(Curlnstr(s), s).

Let us consider NV, and let S be a von Neumann definite AMI over N, and let
s be a state of S. The functor Computation(s) yielding a function from N into
[ (the object kind of S) quaa non-empty set is defined by:

(Def.4)  (Computation(s))(0) = squaan element of [](the object kind of S)
qua a non-empty set and for every i and for every element x of [](the
object kind of S) qua a non-empty set such that = (Computation(s))(7)
holds (Computation(s))(i + 1) = Following(z).

Let us consider N, and let S be a von Neumann definite AMI over N. A state
of S is halting if:
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(Def.5)  there exists k such that Curlnstr((Computation(it))(k)) = haltg.

Let us consider N, and let S be an AMI over N, and let f be a function from N
into [] (the object kind of S) qua a non-empty set, and let us consider k. Then
f(k) is a state of S. Let us consider N. An AMI over N is realistic if:

(Def.6)  the instructions of it # the instruction locations of it.

One can prove the following proposition

(37)  For every S being a von Neumann definite AMI over N such that S is
realistic holds for no instruction-location [ of S holds ICg = I.

In the sequel S denotes a von Neumann definite AMI over N and s denotes
a state of S. One can prove the following propositions:

(38)  (Computation(s))(0) = s.

(39) (Computation(s))(k + 1) = Following((Computation(s))(k)).

(40)  For every k holds
(Computation(s))(i + k) = (Computation((Computation(s))(z)))(k).

(41)  If4 < j, then for every N and for every S being a halting von Neumann
definite AMI over N and for every state s of S such that
CurlInstr((Computation(s))(i)) = haltg
holds (Computation(s))(j) = (Computation(s))(7).

Let us consider N, and let S be a halting von Neumann definite AMI over

N, and let s be a state of S satisfying the condition: s is halting. The functor
Result(s) yields a state of S and is defined as follows:

(Def.7)  there exists k such that Result(s) = (Computation(s))(k) and
Curlnstr(Result(s)) = haltg.

Next we state the proposition

(42)  For every N and for every S being a steady-programmed von Neumann
definite AMI over IV and for every state s of S and for every instruction-
location ¢ of S holds s(i) = (Following(s))(7).

Let us consider N, and let S be a definite AMI over N, and let s be a state
of S, and let [ be an instruction-location of S. Then s(I) is an instruction of S.

Next we state several propositions:

(43)  For every N and for every S being a steady-programmed von Neumann
definite AMI over N and for every state s of S and for every instruction-
location i of S and for every k holds s(i) = (Computation(s))(k)(7).

(44)  For every N and for every S being a steady-programmed von Neumann
definite AMI over N and for every state s of S holds (Computation(s))(k+
1) = EXGC(S(IC(Computation(s))(k’))7 (ComPUtation(S))(k))'

(45)  For every N and for every S being a steady-programmed von Neumann
halting definite AMI over N and for every state s of S and for every k
such that S(IC(Computation(s))(k)) = halts
holds Result(s) = (Computation(s))(k).
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(46)  For every N and for every S being a steady-programmed von Neumann
halting definite AMI over N and for every state s of S such that there
exists k such that s(IC(computation(s))(k)) = halts and for every i holds
Result(s) = Result((Computation(s))(7)).

(47)  For every S being an AMI over N and for every object o of S holds
ObjectKind(0) is non-empty.

4. FINITE PARTIAL STATES

We now define five new constructions. Let us consider N, and let S be an AMI
over N. The functor FinPartSt(S) yielding a subset of [] (the object kind of
S) is defined by:
(Def.8)  FinPartSt(S) = {p : p is finite}, where p ranges over elements of [] (the
object kind of S).
Let us consider N, and let S be an AMI over N. An element of [] (the object
kind of S) is called a finite partial state of S if:
(Det.9) it is finite.
Let us consider NV, and let S be a von Neumann definite AMI over N. A finite
partial state of S is autonomic if:
(Def.10)  for all states sy, so of S such that it C sy and it C s9 and for every 4
holds (Computation(s;))(i) | domit = (Computation(sg))(i) | domit.
A finite partial state of S is halting if:
(Def.11)  for every state s of S such that it C s holds s is halting.
Let us consider N. A von Neumann definite AMI over N is programmable if:

(Def.12)  there exists a finite partial state of it which is non-empty and autonomic.

We now state two propositions:

(48)  For every S being a von Neumann definite AMI over N and for all non-
empty sets A, B and for all objects I, 3 of S such that ObjectKind(l;) =
A and ObjectKind(l3) = B and for every element a of A and for every
element b of B holds [l; — a,lz — b] is a finite partial state of S.

(49)  For every S being a von Neumann definite AMI over N and for every
non-empty set A and for every object 11 of S such that ObjectKind(l1) = A
and for every element a of A holds l1——a is a finite partial state of S.

Let us consider N, and let S be a von Neumann definite AMI over N, and
let 3 be an object of S, and let a be an element of ObjectKind(/1). Then
li1——a is a finite partial state of S. Let us consider N, and let S be a von
Neumann definite AMI over N, and let [1, I3 be objects of S, and let a be an
element of ObjectKind(l;), and let b be an element of ObjectKind(l2). Then
[l1 — a,ly — b] is a finite partial state of S.
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5. TRIviaAL AMI

Let us consider N. The functor AMI; yields a strict AMI over N and is defined
by the conditions (Def.13).
(Def.13) (i) The objects of AMI; = {0,1},
(ii)  the instruction counter of AMI; = 0,
(iii)  the instruction locations of AMI; = {1},
(iv)  the instruction codes of AMI; = {0},
(v)  the halt instruction of AMI; = 0,
(vi)  the instructions of AMI; = {(0, €)},
(vii)  the object kind of AMI; = [0 — {1},1 — {{(0, €)}],
(viii)  the execution of AMI; = {(0, )} — idH[O»—»{l},lM{(O, )y

Next we state several propositions:
50 AMI; is von Neumann.
AMI, is data-oriented.
AMI; is halting.
For all states s1, so of AMI; holds s1 = s9.
AMLI, is steady-programmed.
AMLI, is definite.
56 AMI, is realistic.

Let us consider N. Then AMI; is a von Neumann definite strict AMI over
N.

One can prove the following proposition
(57)  AMI, is programmable.

Let us consider N. Note that there exists a von Neumann definite strict
AMI over N which is data-oriented halting steady-programmed realistic and
programmable.

(@)
[\S)

ot
=

AN N N N N N
(@) (@3]
t w

— — Y ' ~— —

One can prove the following two propositions:

(58)  For every S being an AMI over N and for every state s of S and for
every finite partial state p of S holds s [ domp is a finite partial state of
S.

(59)  For every S being an AMI over N holds ) is a finite partial state of S.

Let us consider NV, and let S be a von Neumann definite AMI over N. Observe
that there exists a non-empty autonomic finite partial state of S.

Let us consider NV, and let S be an AMI over N, and let f, g be finite partial
states of S. Then f +- ¢ is a finite partial state of S.
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6. AUTONOMIC FINITE PARTIAL STATES

We now state four propositions:

(60)  For every S being a realistic von Neumann definite AMI over N and for
every instruction-location /3 of S and for every element [ of ObjectKind(ICg)
such that [ = [3 and for every element h of ObjectKind(l/3) such that
h = haltg and for every state s of S such that
[ICs +— l,l3 — h] C s holds Curlnstr(s) = haltg.

(61)  For every S being a realistic von Neumann definite AMI over N and for
every instruction-location /3 of S and for every element [ of ObjectKind(ICg)
such that [ = I3 and for every element h of ObjectKind(l3) such that
h = haltg holds [ICg —— [,l3 — h] is halting.

(62) Let S be a realistic halting von Neumann definite AMI over N. Then for
every instruction-location /3 of S and for every element [ of ObjectKind(ICg)
such that [ = I3 and for every element h of ObjectKind(l3) such that
h = haltg and for every state s of S such that
[ICg +——I,l3 —— h] C s and for every ¢ holds (Computation(s))(i) = s.

(63) For every S being a realistic halting von Neumann definite AMI over
N and for every instruction-location I3 of S and for every element [ of
ObjectKind(ICg) such that [ = [3 and for every element h of ObjectKind(l3)
such that h = haltg holds [ICg — [,l3 — h] is autonomic.

We now define two new constructions. Let us consider N, and let S be a
realistic halting von Neumann definite AMI over N. One can check that there
exists a finite partial state of S which is autonomic and halting.

Let us consider N, and let S be a realistic halting von Neumann definite
AMI over N. A pre-program of S is an autonomic halting finite partial state of
S.

Let us consider N, and let S be a realistic halting von Neumann definite
AMI over N, and let s be a finite partial state of S. Let us assume that s is a
pre-program of S. The functor Result(s) yields a finite partial state of S and is
defined as follows:

(Def.14)  for every state s’ of S such that s C s’ holds Result(s) = Result(s’) |
dom s.

7. PRE-PROGRAMS AND PROGRAMS

Let us consider N, and let S be a realistic halting von Neumann definite AMI
over N, and let p be a finite partial state of S, and let F' be a function. We say
that p computes F' if and only if:
(Def.15)  for an arbitrary x such that x € dom F' there exists a finite partial state
s of S such that x = s and p +- s is a pre-program of S and F(s) C
Result(p +- s).
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The following three propositions are true:

(64) For every S being a realistic halting von Neumann definite AMI over
N and for every finite partial state p of S holds p computes O.

(65)  For every S being a realistic halting von Neumann definite AMI over
N and for every finite partial state p of S holds p is a pre-program of S
if and only if p computes P——Result(p).

(66)  For every S being a realistic halting von Neumann definite AMI over
N and for every finite partial state p of S holds p is a pre-program of S
if and only if p computes Q——0.

Let us consider IV, and let S be a realistic halting von Neumann definite AMI
over N. A partial function from FinPartSt(S) to FinPartSt(S) is computable
if:

(Def.16)  there exists a finite partial state p of S such that p computes it.

Next we state three propositions:

(67) For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every partial function F' from FinPartSt(.5)
to FinPartSt(S) such that F' = O holds F' is computable.

(68) For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every partial function F' from FinPartSt(S)
to FinPartSt(S) such that F' = )——{ holds F is computable.

(69) For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every pre-program p of S and for every
partial function F' from FinPartSt(S) to FinPartSt(S) such that F' =
()=—Result(p) holds F' is computable.

Let us consider N, and let S be a realistic halting von Neumann definite
AMI over N, and let F' be a partial function from FinPartSt(S) to FinPartSt(.S)
satisfying the condition: F'is computable. A finite partial state of S is called a
program of F' if:

(Def.17) it computes F.

The following propositions are true:

(70)  For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every partial function F' from FinPartSt(S)
to FinPartSt(S) such that F = O every finite partial state of S is a
program of F.

(71)  For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every partial function F' from FinPartSt(S)
to FinPartSt(S) such that F' = ()=—{ every pre-program of S is a program
of F.

(72)  For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every pre-program p of S and for every
partial function F' from FinPartSt(S) to FinPartSt(S) such that F' =
()=—Result(p) holds p is a program of F.
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