
FORMALIZED MATHEMATICS

Volume 3, Number 2, 1992

Université Catholique de Louvain

On a Mathematical Model of Programs

Yatsuka Nakamura

Shinshu University

Nagano

Andrzej Trybulec

Warsaw University

Bia lystok

Summary. We continue the work on mathematical modeling of
hardware and software started in [17]. The main objective of this paper
is the definition of a program. We start with the concept of partial
product, i.e. the set of all partial functions f from I to

⋃
i∈I

Ai, fulfilling
the condition f.i ∈ Ai for i ∈ domf . The computation and the result of
a computation are defined in usual way. A finite partial state is called
autonomic if the result of a computation starting with it does not depend
on the remaining memory and an AMI is called programmable if it has
a non empty autonomic partial finite state. We prove the consistency of
the following set of properties of an AMI: data-oriented, halting, steady-
programmed, realistic and programmable. For this purpose we define
a trivial AMI. It has only the instruction counter and one instruction
location. The only instruction of it is the halt instruction. A preprogram
is a finite partial state that halts. We conclude with the definition of
a program of a partial function F mapping the set of the finite partial
states into itself. It is a finite partial state s such that for every finite
partial state s′ ∈ domF the result of any computation starting with s+s′

includes F.s′.

MML Identifier: AMI 2.

The papers [24], [22], [28], [6], [7], [23], [14], [1], [19], [26], [25], [10], [3], [5], [15],
[29], [21], [2], [20], [8], [18], [4], [9], [12], [13], [27], [11], [16], and [17] provide the
notation and terminology for this paper.

1. Preliminaries

For simplicity we follow the rules: A, B, C will denote sets, f , g, h will denote
functions, x, y, z will be arbitrary, and i, j, k will denote natural numbers.
The scheme UniqSet concerns a set A, a set B, and a unary predicate P, and
states that:

A = B

241
c© 1992 Fondation Philippe le Hodey

ISSN 0777–4028



242 yatsuka nakamura and andrzej trybulec

provided the following requirements are met:
• for every x holds x ∈ A if and only if P[x],
• for every x holds x ∈ B if and only if P[x].
The following propositions are true:

(1) A misses B \ C if and only if B misses A \ C.

(2) For every function f holds π1(dom f × rng f) ◦ f = dom f .

(3) If f ≈ g and 〈〈x, y〉〉 ∈ f and 〈〈x, z〉〉 ∈ g, then y = z.

(4) If for every x such that x ∈ A holds x is a function and for all functions
f , g such that f ∈ A and g ∈ A holds f ≈ g, then

⋃
A is a function.

(5) If dom f ⊆ A ∪ B, then f
�
A +· f

�
B = f .

(6) dom f ⊆ dom(f +· g) and dom g ⊆ dom(f +· g).

(7) For arbitrary x1, x2, y1, y2 holds [x1 7−→ y1, x2 7−→ y2] = (x1 7−→
. y1) +·

(x2 7−→
. y2).

(8) For all x, y holds x7−→. y = {〈〈x, y〉〉}.

(9) For arbitrary a, b, c holds [a 7−→ b, a 7−→ c] = a7−→. c.

(10) For every function f holds dom f is finite if and only if f is finite.

(11) If x ∈
∏

f , then x is a function.

2. Partial products

Let f be a function. The functor
∏· f yields a non-empty set of functions and

is defined by:

(Def.1) x ∈
∏· f if and only if there exists g such that x = g and dom g ⊆ dom f

and for every x such that x ∈ dom g holds g(x) ∈ f(x).

Next we state a number of propositions:

(12) x ∈
∏· f if and only if there exists g such that x = g and dom g ⊆ dom f

and for every x such that x ∈ dom g holds g(x) ∈ f(x).

(13) If dom g ⊆ dom f and for every x such that x ∈ dom g holds g(x) ∈ f(x),
then g ∈

∏· f .

(14) If g ∈
∏· f , then dom g ⊆ dom f and for every x such that x ∈ dom g

holds g(x) ∈ f(x).

(15) � ∈
∏· f .

(16)
∏

f ⊆
∏· f .

(17) If x ∈
∏· f , then x is a partial function from dom f to

⋃
rng f .

(18) If g ∈
∏

f and h ∈
∏· f , then g +· h ∈

∏
f .

(19) If
∏

f 6= ∅, then g ∈
∏· f if and only if there exists h such that h ∈

∏
f

and g ≤ h.

(20)
∏· f ⊆ dom f→̇

⋃
rng f .

(21) If f ⊆ g, then
∏· f ⊆

∏· g.

(22)
∏· � = { � }.



on a mathematical model of programs 243

(23) A→̇B =
∏·(A 7−→ B).

(24) For all non-empty sets A, B and for every function f from A into B

holds
∏· f =

∏·(f
�
{x : f(x) 6= ∅}), where x ranges over elements of A.

(25) If x ∈ dom f and y ∈ f(x), then x7−→. y ∈
∏· f .

(26)
∏· f = { � } if and only if for every x such that x ∈ dom f holds f(x) = ∅.

(27) If A ⊆
∏· f and for all functions h1, h2 such that h1 ∈ A and h2 ∈ A

holds h1 ≈ h2, then
⋃

A ∈
∏· f .

(28) If g ≈ h and g ∈
∏· f and h ∈

∏· f , then g ∪ h ∈
∏· f .

(29) If g ⊆ h and h ∈
∏· f , then g ∈

∏· f .

(30) If g ∈
∏· f , then g

�
A ∈

∏· f .

(31) If g ∈
∏· f , then g

�
A ∈

∏·(f
�
A).

(32) If h ∈
∏·(f +· g), then there exist functions f ′, g′ such that f ′ ∈

∏· f

and g′ ∈
∏· g and h = f ′ +· g′.

(33) For all functions f ′, g′ such that dom g misses dom f ′ \ dom g′ and
f ′ ∈

∏· f and g′ ∈
∏· g holds f ′ +· g′ ∈

∏·(f +· g).

(34) For all functions f ′, g′ such that dom f ′ misses dom g \ dom g′ and
f ′ ∈

∏· f and g′ ∈
∏· g holds f ′ +· g′ ∈

∏·(f +· g).

(35) If g ∈
∏· f and h ∈

∏· f , then g +· h ∈
∏· f .

(36) For arbitrary x1, x2, y1, y2 such that x1 ∈ dom f and y1 ∈ f(x1) and
x2 ∈ dom f and y2 ∈ f(x2) holds [x1 7−→ y1, x2 7−→ y2] ∈

∏· f .

3. Computations

In the sequel N is a non-empty set with non-empty elements.
We now define five new constructions. Let us consider N , and let S be a

von Neumann definite AMI over N , and let s be a state of S. The functor
CurInstr(s) yields an instruction of S and is defined as follows:

(Def.2) CurInstr(s) = s(ICs).

Let us consider N , and let S be a von Neumann definite AMI over N , and let
s be a state of S. The functor Following(s) yielding a state of S is defined by:

(Def.3) Following(s) = Exec(CurInstr(s), s).

Let us consider N , and let S be a von Neumann definite AMI over N , and let
s be a state of S. The functor Computation(s) yielding a function from � into
∏

(the object kind of S) qua a non-empty set is defined by:

(Def.4) (Computation(s))(0) = s qua an element of
∏

(the object kind of S)
qua a non-empty set and for every i and for every element x of

∏
(the

object kind of S) qua a non-empty set such that x = (Computation(s))(i)
holds (Computation(s))(i + 1) = Following(x).

Let us consider N , and let S be a von Neumann definite AMI over N . A state
of S is halting if:



244 yatsuka nakamura and andrzej trybulec

(Def.5) there exists k such that CurInstr((Computation(it))(k)) = haltS .

Let us consider N , and let S be an AMI over N , and let f be a function from �
into

∏
(the object kind of S) qua a non-empty set, and let us consider k. Then

f(k) is a state of S. Let us consider N . An AMI over N is realistic if:

(Def.6) the instructions of it 6= the instruction locations of it.

One can prove the following proposition

(37) For every S being a von Neumann definite AMI over N such that S is
realistic holds for no instruction-location l of S holds ICS = l.

In the sequel S denotes a von Neumann definite AMI over N and s denotes
a state of S. One can prove the following propositions:

(38) (Computation(s))(0) = s.

(39) (Computation(s))(k + 1) = Following((Computation(s))(k)).

(40) For every k holds

(Computation(s))(i + k) = (Computation((Computation(s))(i)))(k).

(41) If i ≤ j, then for every N and for every S being a halting von Neumann
definite AMI over N and for every state s of S such that

CurInstr((Computation(s))(i)) = haltS

holds (Computation(s))(j) = (Computation(s))(i).

Let us consider N , and let S be a halting von Neumann definite AMI over
N , and let s be a state of S satisfying the condition: s is halting. The functor
Result(s) yields a state of S and is defined as follows:

(Def.7) there exists k such that Result(s) = (Computation(s))(k) and

CurInstr(Result(s)) = haltS.

Next we state the proposition

(42) For every N and for every S being a steady-programmed von Neumann
definite AMI over N and for every state s of S and for every instruction-
location i of S holds s(i) = (Following(s))(i).

Let us consider N , and let S be a definite AMI over N , and let s be a state
of S, and let l be an instruction-location of S. Then s(l) is an instruction of S.

Next we state several propositions:

(43) For every N and for every S being a steady-programmed von Neumann
definite AMI over N and for every state s of S and for every instruction-
location i of S and for every k holds s(i) = (Computation(s))(k)(i).

(44) For every N and for every S being a steady-programmed von Neumann
definite AMI over N and for every state s of S holds (Computation(s))(k+
1) = Exec(s(IC(Computation(s))(k)), (Computation(s))(k)).

(45) For every N and for every S being a steady-programmed von Neumann
halting definite AMI over N and for every state s of S and for every k

such that s(IC(Computation(s))(k)) = haltS

holds Result(s) = (Computation(s))(k).



on a mathematical model of programs 245

(46) For every N and for every S being a steady-programmed von Neumann
halting definite AMI over N and for every state s of S such that there
exists k such that s(IC(Computation(s))(k)) = haltS and for every i holds
Result(s) = Result((Computation(s))(i)).

(47) For every S being an AMI over N and for every object o of S holds
ObjectKind(o) is non-empty.

4. Finite partial states

We now define five new constructions. Let us consider N , and let S be an AMI
over N . The functor FinPartSt(S) yielding a subset of

∏· (the object kind of
S) is defined by:

(Def.8) FinPartSt(S) = {p : p is finite}, where p ranges over elements of
∏· (the

object kind of S).

Let us consider N , and let S be an AMI over N . An element of
∏· (the object

kind of S) is called a finite partial state of S if:

(Def.9) it is finite.

Let us consider N , and let S be a von Neumann definite AMI over N . A finite
partial state of S is autonomic if:

(Def.10) for all states s1, s2 of S such that it ⊆ s1 and it ⊆ s2 and for every i

holds (Computation(s1))(i)
�
dom it = (Computation(s2))(i)

�
dom it.

A finite partial state of S is halting if:

(Def.11) for every state s of S such that it ⊆ s holds s is halting.

Let us consider N . A von Neumann definite AMI over N is programmable if:

(Def.12) there exists a finite partial state of it which is non-empty and autonomic.

We now state two propositions:

(48) For every S being a von Neumann definite AMI over N and for all non-
empty sets A, B and for all objects l1, l2 of S such that ObjectKind(l1) =
A and ObjectKind(l2) = B and for every element a of A and for every
element b of B holds [l1 7−→ a, l2 7−→ b] is a finite partial state of S.

(49) For every S being a von Neumann definite AMI over N and for every
non-empty set A and for every object l1 of S such that ObjectKind(l1) = A

and for every element a of A holds l1 7−→
. a is a finite partial state of S.

Let us consider N , and let S be a von Neumann definite AMI over N , and
let l1 be an object of S, and let a be an element of ObjectKind(l1). Then
l1 7−→

. a is a finite partial state of S. Let us consider N , and let S be a von
Neumann definite AMI over N , and let l1, l2 be objects of S, and let a be an
element of ObjectKind(l1), and let b be an element of ObjectKind(l2). Then
[l1 7−→ a, l2 7−→ b] is a finite partial state of S.



246 yatsuka nakamura and andrzej trybulec

5. Trivial AMI

Let us consider N . The functor AMIt yields a strict AMI over N and is defined
by the conditions (Def.13).

(Def.13) (i) The objects of AMIt = {0, 1},

(ii) the instruction counter of AMIt = 0,

(iii) the instruction locations of AMIt = {1},

(iv) the instruction codes of AMIt = {0},

(v) the halt instruction of AMIt = 0,

(vi) the instructions of AMIt = {〈〈0, ε〉〉},

(vii) the object kind of AMIt = [0 7−→ {1}, 1 7−→ {〈〈0, ε〉〉}],

(viii) the execution of AMIt = {〈〈0, ε〉〉} 7−→ id∏
[07−→{1},17−→{〈〈0, ε〉〉}].

Next we state several propositions:

(50) AMIt is von Neumann.

(51) AMIt is data-oriented.

(52) AMIt is halting.

(53) For all states s1, s2 of AMIt holds s1 = s2.

(54) AMIt is steady-programmed.

(55) AMIt is definite.

(56) AMIt is realistic.

Let us consider N . Then AMIt is a von Neumann definite strict AMI over
N .

One can prove the following proposition

(57) AMIt is programmable.

Let us consider N . Note that there exists a von Neumann definite strict
AMI over N which is data-oriented halting steady-programmed realistic and
programmable.

One can prove the following two propositions:

(58) For every S being an AMI over N and for every state s of S and for
every finite partial state p of S holds s

�
dom p is a finite partial state of

S.

(59) For every S being an AMI over N holds ∅ is a finite partial state of S.

Let us consider N , and let S be a von Neumann definite AMI over N . Observe
that there exists a non-empty autonomic finite partial state of S.

Let us consider N , and let S be an AMI over N , and let f , g be finite partial
states of S. Then f +· g is a finite partial state of S.



on a mathematical model of programs 247

6. Autonomic finite partial states

We now state four propositions:

(60) For every S being a realistic von Neumann definite AMI over N and for
every instruction-location l3 of S and for every element l of ObjectKind(ICS)
such that l = l3 and for every element h of ObjectKind(l3) such that
h = haltS and for every state s of S such that
[ICS 7−→ l, l3 7−→ h] ⊆ s holds CurInstr(s) = haltS.

(61) For every S being a realistic von Neumann definite AMI over N and for
every instruction-location l3 of S and for every element l of ObjectKind(ICS)
such that l = l3 and for every element h of ObjectKind(l3) such that
h = haltS holds [ICS 7−→ l, l3 7−→ h] is halting.

(62) Let S be a realistic halting von Neumann definite AMI over N . Then for
every instruction-location l3 of S and for every element l of ObjectKind(ICS)
such that l = l3 and for every element h of ObjectKind(l3) such that
h = haltS and for every state s of S such that
[ICS 7−→ l, l3 7−→ h] ⊆ s and for every i holds (Computation(s))(i) = s.

(63) For every S being a realistic halting von Neumann definite AMI over
N and for every instruction-location l3 of S and for every element l of
ObjectKind(ICS) such that l = l3 and for every element h of ObjectKind(l3)
such that h = haltS holds [ICS 7−→ l, l3 7−→ h] is autonomic.

We now define two new constructions. Let us consider N , and let S be a
realistic halting von Neumann definite AMI over N . One can check that there
exists a finite partial state of S which is autonomic and halting.

Let us consider N , and let S be a realistic halting von Neumann definite
AMI over N . A pre-program of S is an autonomic halting finite partial state of
S.

Let us consider N , and let S be a realistic halting von Neumann definite
AMI over N , and let s be a finite partial state of S. Let us assume that s is a
pre-program of S. The functor Result(s) yields a finite partial state of S and is
defined as follows:

(Def.14) for every state s′ of S such that s ⊆ s′ holds Result(s) = Result(s′)
�

dom s.

7. Pre-programs and programs

Let us consider N , and let S be a realistic halting von Neumann definite AMI
over N , and let p be a finite partial state of S, and let F be a function. We say
that p computes F if and only if:

(Def.15) for an arbitrary x such that x ∈ dom F there exists a finite partial state
s of S such that x = s and p +· s is a pre-program of S and F (s) ⊆
Result(p +· s).



248 yatsuka nakamura and andrzej trybulec

The following three propositions are true:

(64) For every S being a realistic halting von Neumann definite AMI over
N and for every finite partial state p of S holds p computes � .

(65) For every S being a realistic halting von Neumann definite AMI over
N and for every finite partial state p of S holds p is a pre-program of S

if and only if p computes ∅7−→. Result(p).

(66) For every S being a realistic halting von Neumann definite AMI over
N and for every finite partial state p of S holds p is a pre-program of S

if and only if p computes ∅7−→. ∅.

Let us consider N , and let S be a realistic halting von Neumann definite AMI
over N . A partial function from FinPartSt(S) to FinPartSt(S) is computable
if:

(Def.16) there exists a finite partial state p of S such that p computes it.

Next we state three propositions:

(67) For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every partial function F from FinPartSt(S)
to FinPartSt(S) such that F = � holds F is computable.

(68) For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every partial function F from FinPartSt(S)
to FinPartSt(S) such that F = ∅7−→. ∅ holds F is computable.

(69) For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every pre-program p of S and for every
partial function F from FinPartSt(S) to FinPartSt(S) such that F =
∅7−→. Result(p) holds F is computable.

Let us consider N , and let S be a realistic halting von Neumann definite
AMI over N , and let F be a partial function from FinPartSt(S) to FinPartSt(S)
satisfying the condition: F is computable. A finite partial state of S is called a
program of F if:

(Def.17) it computes F .

The following propositions are true:

(70) For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every partial function F from FinPartSt(S)
to FinPartSt(S) such that F = � every finite partial state of S is a
program of F .

(71) For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every partial function F from FinPartSt(S)
to FinPartSt(S) such that F = ∅7−→. ∅ every pre-program of S is a program
of F .

(72) For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every pre-program p of S and for every
partial function F from FinPartSt(S) to FinPartSt(S) such that F =
∅7−→. Result(p) holds p is a program of F .



on a mathematical model of programs 249

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[4] Czes law Byliński. Basic functions and operations on functions. Formalized Mathematics,

1(1):245–254, 1990.
[5] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–

676, 1990.
[6] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[7] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[8] Czes law Byliński. Graphs of functions. Formalized Mathematics, 1(1):169–173, 1990.
[9] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[10] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[11] Czes law Byliński. Products and coproducts in categories. Formalized Mathematics,

2(5):701–709, 1991.
[12] Czes law Byliński. Subcategories and products of categories. Formalized Mathematics,

1(4):725–732, 1990.
[13] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[15] Rafa l Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative

primes. Formalized Mathematics, 1(5):829–832, 1990.
[16] Micha l Muzalewski. Rings and modules - part II. Formalized Mathematics, 2(4):579–

585, 1991.
[17] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[18] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized

Mathematics, 1(3):555–561, 1990.
[19] Jan Popio lek. Some properties of functions modul and signum. Formalized Mathematics,

1(2):263–264, 1990.
[20] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Math-

ematics, 2(5):623–627, 1991.
[21] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[22] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[23] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,

1(3):495–500, 1990.
[24] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[25] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.
[26] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[27] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received December 29, 1992


