On a Mathematical Model of Programs

Yatsuka Nakamura Shinshu University Nagano Andrzej Trybulec Warsaw University Białystok

Summary. We continue the work on mathematical modeling of hardware and software started in [17]. The main objective of this paper is the definition of a program. We start with the concept of partial product, i.e. the set of all partial functions f from I to $\bigcup_{i \in I} A_i$, fulfilling the condition $f \in A_i$ for $i \in dom f$. The computation and the result of a computation are defined in usual way. A finite partial state is called autonomic if the result of a computation starting with it does not depend on the remaining memory and an AMI is called programmable if it has a non empty autonomic partial finite state. We prove the consistency of the following set of properties of an AMI: data-oriented, halting, steadyprogrammed, realistic and programmable. For this purpose we define a trivial AMI. It has only the instruction counter and one instruction location. The only instruction of it is the halt instruction. A preprogram is a finite partial state that halts. We conclude with the definition of a program of a partial function F mapping the set of the finite partial states into itself. It is a finite partial state s such that for every finite partial state $s' \in domF$ the result of any computation starting with s + s'includes F.s'.

MML Identifier: AMI_2.

The papers [24], [22], [28], [6], [7], [23], [14], [1], [19], [26], [25], [10], [3], [5], [15], [29], [21], [2], [20], [8], [18], [4], [9], [12], [13], [27], [11], [16], and [17] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity we follow the rules: A, B, C will denote sets, f, g, h will denote functions, x, y, z will be arbitrary, and i, j, k will denote natural numbers. The scheme UniqSet concerns a set A, a set B, and a unary predicate P, and states that:

 $\mathcal{A} = \mathcal{B}$

C 1992 Fondation Philippe le Hodey ISSN 0777-4028 provided the following requirements are met:

- for every x holds $x \in \mathcal{A}$ if and only if $\mathcal{P}[x]$,
- for every x holds $x \in \mathcal{B}$ if and only if $\mathcal{P}[x]$.

The following propositions are true:

- (1) A misses $B \setminus C$ if and only if B misses $A \setminus C$.
- (2) For every function f holds $\pi_1(\operatorname{dom} f \times \operatorname{rng} f) \circ f = \operatorname{dom} f$.
- (3) If $f \approx g$ and $\langle x, y \rangle \in f$ and $\langle x, z \rangle \in g$, then y = z.
- (4) If for every x such that $x \in A$ holds x is a function and for all functions f, g such that $f \in A$ and $g \in A$ holds $f \approx g$, then $\bigcup A$ is a function.
- (5) If dom $f \subseteq A \cup B$, then $f \upharpoonright A + f \upharpoonright B = f$.
- (6) dom $f \subseteq \text{dom}(f + g)$ and dom $g \subseteq \text{dom}(f + g)$.
- (7) For arbitrary x_1, x_2, y_1, y_2 holds $[x_1 \longmapsto y_1, x_2 \longmapsto y_2] = (x_1 \longmapsto y_1) + (x_2 \longmapsto y_2).$
- (8) For all x, y holds $x \mapsto y = \{ \langle x, y \rangle \}.$
- (9) For arbitrary a, b, c holds $[a \mapsto b, a \mapsto c] = a \mapsto c$.
- (10) For every function f holds dom f is finite if and only if f is finite.
- (11) If $x \in \prod f$, then x is a function.

2. Partial products

Let f be a function. The functor $\prod f$ yields a non-empty set of functions and is defined by:

(Def.1) $x \in \prod^{\cdot} f$ if and only if there exists g such that x = g and dom $g \subseteq \text{dom } f$ and for every x such that $x \in \text{dom } g$ holds $g(x) \in f(x)$.

Next we state a number of propositions:

- (12) $x \in \prod^{\cdot} f$ if and only if there exists g such that x = g and dom $g \subseteq \text{dom } f$ and for every x such that $x \in \text{dom } g$ holds $g(x) \in f(x)$.
- (13) If dom $g \subseteq \text{dom } f$ and for every x such that $x \in \text{dom } g$ holds $g(x) \in f(x)$, then $g \in \prod^{\cdot} f$.
- (14) If $g \in \prod^{\cdot} f$, then dom $g \subseteq \text{dom } f$ and for every x such that $x \in \text{dom } g$ holds $g(x) \in f(x)$.
- (15) $\Box \in \prod^{\cdot} f.$
- (16) $\prod f \subseteq \prod^{\cdot} f$.
- (17) If $x \in \prod^{\cdot} f$, then x is a partial function from dom f to $\bigcup \operatorname{rng} f$.
- (18) If $g \in \prod f$ and $h \in \prod f$, then $g + h \in \prod f$.
- (19) If $\prod f \neq \emptyset$, then $g \in \prod^{\cdot} f$ if and only if there exists h such that $h \in \prod f$ and $g \leq h$.
- (20) $\prod f \subseteq \operatorname{dom} f \to \bigcup \operatorname{rng} f.$
- (21) If $f \subseteq g$, then $\prod^{\cdot} f \subseteq \prod^{\cdot} g$.
- $(22) \qquad \prod^{\cdot} \Box = \{\Box\}.$

- (23) $A \rightarrow B = \prod^{\cdot} (A \longmapsto B).$
- (24) For all non-empty sets A, B and for every function f from A into B holds $\prod^{\cdot} f = \prod^{\cdot} (f \upharpoonright \{x : f(x) \neq \emptyset\})$, where x ranges over elements of A.
- (25) If $x \in \text{dom } f$ and $y \in f(x)$, then $x \mapsto y \in \prod^{\cdot} f$.
- (26) $\prod f = \{\Box\}$ if and only if for every x such that $x \in \text{dom } f$ holds $f(x) = \emptyset$.
- (27) If $A \subseteq \prod f$ and for all functions h_1 , h_2 such that $h_1 \in A$ and $h_2 \in A$ holds $h_1 \approx h_2$, then $\bigcup A \in \prod f$.
- (28) If $g \approx h$ and $g \in \prod^{\cdot} f$ and $h \in \prod^{\cdot} f$, then $g \cup h \in \prod^{\cdot} f$.
- (29) If $g \subseteq h$ and $h \in \prod^{\cdot} f$, then $g \in \prod^{\cdot} f$.
- (30) If $g \in \prod^{\cdot} f$, then $g \upharpoonright A \in \prod^{\cdot} f$.
- (31) If $g \in \prod^{\cdot} f$, then $g \upharpoonright A \in \prod^{\cdot} (f \upharpoonright A)$.
- (32) If $h \in \prod^{\cdot} (f + g)$, then there exist functions f', g' such that $f' \in \prod^{\cdot} f$ and $g' \in \prod^{\cdot} g$ and h = f' + g'.
- (33) For all functions f', g' such that dom g misses dom $f' \setminus \text{dom } g'$ and $f' \in \prod^{\cdot} f$ and $g' \in \prod^{\cdot} g$ holds $f' + g' \in \prod^{\cdot} (f + g)$.
- (34) For all functions f', g' such that dom f' misses dom $g \setminus \text{dom } g'$ and $f' \in \prod^{\cdot} f$ and $g' \in \prod^{\cdot} g$ holds $f' + g' \in \prod^{\cdot} (f + g)$.
- (35) If $g \in \prod^{\cdot} f$ and $h \in \prod^{\cdot} f$, then $g + h \in \prod^{\cdot} f$.
- (36) For arbitrary x_1, x_2, y_1, y_2 such that $x_1 \in \text{dom } f$ and $y_1 \in f(x_1)$ and $x_2 \in \text{dom } f$ and $y_2 \in f(x_2)$ holds $[x_1 \longmapsto y_1, x_2 \longmapsto y_2] \in \prod^{\cdot} f$.

3. Computations

In the sequel N is a non-empty set with non-empty elements.

We now define five new constructions. Let us consider N, and let S be a von Neumann definite AMI over N, and let s be a state of S. The functor CurInstr(s) yields an instruction of S and is defined as follows:

(Def.2)
$$\operatorname{CurInstr}(s) = s(\mathbf{IC}_s).$$

Let us consider N, and let S be a von Neumann definite AMI over N, and let s be a state of S. The functor Following(s) yielding a state of S is defined by:

(Def.3) Following(s) = Exec(CurInstr(s), s).

Let us consider N, and let S be a von Neumann definite AMI over N, and let s be a state of S. The functor Computation(s) yielding a function from \mathbb{N} into \prod (the object kind of S) **qua** a non-empty set is defined by:

(Def.4) (Computation(s))(0) = s qua an element of \prod (the object kind of S) qua a non-empty set and for every i and for every element x of \prod (the object kind of S) qua a non-empty set such that x = (Computation(s))(i)holds (Computation(s))(i + 1) = Following(x).

Let us consider N, and let S be a von Neumann definite AMI over N. A state of S is halting if:

(Def.5) there exists k such that $\operatorname{CurInstr}((\operatorname{Computation}(\operatorname{it}))(k)) = \operatorname{halt}_S$.

Let us consider N, and let S be an AMI over N, and let f be a function from \mathbb{N} into \prod (the object kind of S) **qua** a non-empty set, and let us consider k. Then f(k) is a state of S. Let us consider N. An AMI over N is realistic if:

(Def.6) the instructions of it \neq the instruction locations of it.

One can prove the following proposition

(37) For every S being a von Neumann definite AMI over N such that S is realistic holds for no instruction-location l of S holds $IC_S = l$.

In the sequel S denotes a von Neumann definite AMI over N and s denotes a state of S. One can prove the following propositions:

- (38) (Computation(s))(0) = s.
- (39) (Computation(s))(k+1) = Following((Computation(s))(k)).
- (40) For every k holds

(Computation(s))(i + k) = (Computation((Computation(s))(i)))(k).

(41) If $i \leq j$, then for every N and for every S being a halting von Neumann definite AMI over N and for every state s of S such that $\operatorname{CurInstr}((\operatorname{Computation}(s))(i)) = \operatorname{halt}_{S}$ holds $(\operatorname{Computation}(s))(j) = (\operatorname{Computation}(s))(i)$.

Let us consider N, and let S be a halting von Neumann definite AMI over N, and let s be a state of S satisfying the condition: s is halting. The functor Result(s) yields a state of S and is defined as follows:

(Def.7) there exists k such that Result(s) = (Computation(s))(k) and $\text{CurInstr}(\text{Result}(s)) = \text{halt}_S.$

Next we state the proposition

(42) For every N and for every S being a steady-programmed von Neumann definite AMI over N and for every state s of S and for every instruction-location i of S holds s(i) = (Following(s))(i).

Let us consider N, and let S be a definite AMI over N, and let s be a state of S, and let l be an instruction-location of S. Then s(l) is an instruction of S.

Next we state several propositions:

- (43) For every N and for every S being a steady-programmed von Neumann definite AMI over N and for every state s of S and for every instruction-location i of S and for every k holds s(i) = (Computation(s))(k)(i).
- (44) For every N and for every S being a steady-programmed von Neumann definite AMI over N and for every state s of S holds $(\text{Computation}(s))(k+1) = \text{Exec}(s(\mathbf{IC}_{(\text{Computation}(s))(k)}), (\text{Computation}(s))(k)).$
- (45) For every N and for every S being a steady-programmed von Neumann halting definite AMI over N and for every state s of S and for every k such that $s(\mathbf{IC}_{(\text{Computation}(s))(k)}) = \mathbf{halt}_S$ holds Result(s) = (Computation(s))(k).

- (46) For every N and for every S being a steady-programmed von Neumann halting definite AMI over N and for every state s of S such that there exists k such that $s(\mathbf{IC}_{(\text{Computation}(s))(k)}) = \mathbf{halt}_S$ and for every i holds Result(s) = Result((Computation(s))(i)).
- (47) For every S being an AMI over N and for every object o of S holds ObjectKind(o) is non-empty.

4. Finite partial states

We now define five new constructions. Let us consider N, and let S be an AMI over N. The functor FinPartSt(S) yielding a subset of \prod^{\cdot} (the object kind of S) is defined by:

(Def.8) FinPartSt(S) = {p : p is finite}, where p ranges over elements of \prod (the object kind of S).

Let us consider N, and let S be an AMI over N. An element of \prod (the object kind of S) is called a finite partial state of S if:

(Def.9) it is finite.

Let us consider N, and let S be a von Neumann definite AMI over N. A finite partial state of S is autonomic if:

(Def.10) for all states s_1 , s_2 of S such that it $\subseteq s_1$ and it $\subseteq s_2$ and for every i holds (Computation (s_1)) $(i) \upharpoonright \text{dom it} = (\text{Computation}(s_2))(i) \upharpoonright \text{dom it}.$

A finite partial state of S is halting if:

(Def.11) for every state s of S such that it \subseteq s holds s is halting.

Let us consider N. A von Neumann definite AMI over N is programmable if:

- (Def.12) there exists a finite partial state of it which is non-empty and autonomic. We now state two propositions:
 - (48) For every S being a von Neumann definite AMI over N and for all nonempty sets A, B and for all objects l_1 , l_2 of S such that ObjectKind $(l_1) = A$ and ObjectKind $(l_2) = B$ and for every element a of A and for every element b of B holds $[l_1 \mapsto a, l_2 \mapsto b]$ is a finite partial state of S.
 - (49) For every S being a von Neumann definite AMI over N and for every non-empty set A and for every object l_1 of S such that $\text{ObjectKind}(l_1) = A$ and for every element a of A holds $l_1 \mapsto a$ is a finite partial state of S.

Let us consider N, and let S be a von Neumann definite AMI over N, and let l_1 be an object of S, and let a be an element of ObjectKind (l_1) . Then $l_1 \mapsto a$ is a finite partial state of S. Let us consider N, and let S be a von Neumann definite AMI over N, and let l_1 , l_2 be objects of S, and let a be an element of ObjectKind (l_1) , and let b be an element of ObjectKind (l_2) . Then $[l_1 \mapsto a, l_2 \mapsto b]$ is a finite partial state of S.

5. Trivial AMI

Let us consider N. The functor \mathbf{AMI}_{t} yields a strict AMI over N and is defined by the conditions (Def.13).

(Def.13) (i) The objects of $AMI_t = \{0, 1\},\$

- (ii) the instruction counter of $\mathbf{AMI}_{t} = 0$,
- (iii) the instruction locations of $\mathbf{AMI}_{t} = \{1\},\$
- (iv) the instruction codes of $\mathbf{AMI}_{t} = \{0\},\$
- (v) the halt instruction of $\mathbf{AMI}_{t} = 0$,
- (vi) the instructions of $\mathbf{AMI}_{t} = \{ \langle 0, \varepsilon \rangle \},\$
- (vii) the object kind of $\mathbf{AMI}_{t} = [0 \longmapsto \{1\}, 1 \longmapsto \{\langle 0, \varepsilon \rangle\}],$
- (viii) the execution of $\mathbf{AMI}_{t} = \{ \langle 0, \varepsilon \rangle \} \longmapsto \mathrm{id}_{\prod [0 \longmapsto \{1\}, 1 \longmapsto \{ \langle 0, \varepsilon \rangle \}]}$.

Next we state several propositions:

- (50) \mathbf{AMI}_{t} is von Neumann.
- (51) \mathbf{AMI}_{t} is data-oriented.
- (52) \mathbf{AMI}_{t} is halting.
- (53) For all states s_1 , s_2 of **AMI**_t holds $s_1 = s_2$.
- (54) \mathbf{AMI}_{t} is steady-programmed.
- (55) \mathbf{AMI}_{t} is definite.
- (56) \mathbf{AMI}_{t} is realistic.

Let us consider N. Then \mathbf{AMI}_{t} is a von Neumann definite strict AMI over N.

One can prove the following proposition

(57) \mathbf{AMI}_{t} is programmable.

Let us consider N. Note that there exists a von Neumann definite strict AMI over N which is data-oriented halting steady-programmed realistic and programmable.

One can prove the following two propositions:

- (58) For every S being an AMI over N and for every state s of S and for every finite partial state p of S holds $s \upharpoonright \text{dom } p$ is a finite partial state of S.
- (59) For every S being an AMI over N holds \emptyset is a finite partial state of S.

Let us consider N, and let S be a von Neumann definite AMI over N. Observe that there exists a non-empty autonomic finite partial state of S.

Let us consider N, and let S be an AMI over N, and let f, g be finite partial states of S. Then f + g is a finite partial state of S.

6. Autonomic finite partial states

We now state four propositions:

- (60) For every S being a realistic von Neumann definite AMI over N and for every instruction-location l_3 of S and for every element l of ObjectKind(\mathbf{IC}_S) such that $l = l_3$ and for every element h of ObjectKind(l_3) such that $h = \mathbf{halt}_S$ and for every state s of S such that $[\mathbf{IC}_S \longmapsto l, l_3 \longmapsto h] \subseteq s$ holds $\operatorname{CurInstr}(s) = \mathbf{halt}_S$.
- (61) For every S being a realistic von Neumann definite AMI over N and for every instruction-location l_3 of S and for every element l of ObjectKind(\mathbf{IC}_S) such that $l = l_3$ and for every element h of ObjectKind(l_3) such that $h = \mathbf{halt}_S$ holds [$\mathbf{IC}_S \mapsto l, l_3 \mapsto h$] is halting.
- (62) Let S be a realistic halting von Neumann definite AMI over N. Then for every instruction-location l_3 of S and for every element l of ObjectKind(\mathbf{IC}_S) such that $l = l_3$ and for every element h of ObjectKind(l_3) such that $h = \mathbf{halt}_S$ and for every state s of S such that
 - $[\mathbf{IC}_S \longmapsto l, l_3 \longmapsto h] \subseteq s$ and for every *i* holds (Computation(s))(i) = s.
- (63) For every S being a realistic halting von Neumann definite AMI over N and for every instruction-location l_3 of S and for every element l of ObjectKind(\mathbf{IC}_S) such that $l = l_3$ and for every element h of ObjectKind(l_3) such that $h = \mathbf{halt}_S$ holds $[\mathbf{IC}_S \mapsto l, l_3 \mapsto h]$ is autonomic.

We now define two new constructions. Let us consider N, and let S be a realistic halting von Neumann definite AMI over N. One can check that there exists a finite partial state of S which is autonomic and halting.

Let us consider N, and let S be a realistic halting von Neumann definite AMI over N. A pre-program of S is an autonomic halting finite partial state of S.

Let us consider N, and let S be a realistic halting von Neumann definite AMI over N, and let s be a finite partial state of S. Let us assume that s is a pre-program of S. The functor Result(s) yields a finite partial state of S and is defined as follows:

(Def.14) for every state s' of S such that $s \subseteq s'$ holds $\operatorname{Result}(s) = \operatorname{Result}(s') \upharpoonright \operatorname{dom} s$.

7. Pre-programs and programs

Let us consider N, and let S be a realistic halting von Neumann definite AMI over N, and let p be a finite partial state of S, and let F be a function. We say that p computes F if and only if:

(Def.15) for an arbitrary x such that $x \in \text{dom } F$ there exists a finite partial state s of S such that x = s and p + s is a pre-program of S and $F(s) \subseteq \text{Result}(p + s)$. The following three propositions are true:

- (64) For every S being a realistic halting von Neumann definite AMI over N and for every finite partial state p of S holds p computes \Box .
- (65) For every S being a realistic halting von Neumann definite AMI over N and for every finite partial state p of S holds p is a pre-program of S if and only if p computes $\emptyset \mapsto \operatorname{Result}(p)$.
- (66) For every S being a realistic halting von Neumann definite AMI over N and for every finite partial state p of S holds p is a pre-program of S if and only if p computes $\emptyset \mapsto \emptyset$.

Let us consider N, and let S be a realistic halting von Neumann definite AMI over N. A partial function from FinPartSt(S) to FinPartSt(S) is computable if:

(Def.16) there exists a finite partial state p of S such that p computes it.

Next we state three propositions:

- (67) For every N and for every S being a realistic halting von Neumann definite AMI over N and for every partial function F from FinPartSt(S) to FinPartSt(S) such that $F = \Box$ holds F is computable.
- (68) For every N and for every S being a realistic halting von Neumann definite AMI over N and for every partial function F from FinPartSt(S) to FinPartSt(S) such that $F = \emptyset \mapsto \emptyset$ holds F is computable.
- (69) For every N and for every S being a realistic halting von Neumann definite AMI over N and for every pre-program p of S and for every partial function F from FinPartSt(S) to FinPartSt(S) such that $F = \emptyset \mapsto \operatorname{Result}(p)$ holds F is computable.

Let us consider N, and let S be a realistic halting von Neumann definite AMI over N, and let F be a partial function from FinPartSt(S) to FinPartSt(S)satisfying the condition: F is computable. A finite partial state of S is called a program of F if:

(Def.17) it computes F.

The following propositions are true:

- (70) For every N and for every S being a realistic halting von Neumann definite AMI over N and for every partial function F from FinPartSt(S) to FinPartSt(S) such that $F = \Box$ every finite partial state of S is a program of F.
- (71) For every N and for every S being a realistic halting von Neumann definite AMI over N and for every partial function F from FinPartSt(S) to FinPartSt(S) such that $F = \emptyset \mapsto \emptyset$ every pre-program of S is a program of F.
- (72) For every N and for every S being a realistic halting von Neumann definite AMI over N and for every pre-program p of S and for every partial function F from FinPartSt(S) to FinPartSt(S) such that $F = \emptyset \mapsto \operatorname{Result}(p)$ holds p is a program of F.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245–254, 1990.
- [5] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669– 676, 1990.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [8] Czesław Byliński. Graphs of functions. Formalized Mathematics, 1(1):169–173, 1990.
- [9] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
- [10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [11] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics, 2(5):701–709, 1991.
- [12] Czesław Byliński. Subcategories and products of categories. Formalized Mathematics, 1(4):725-732, 1990.
- [13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [15] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829–832, 1990.
- [16] Michał Muzalewski. Rings and modules part II. Formalized Mathematics, 2(4):579– 585, 1991.
- [17] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151–160, 1992.
- [18] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555–561, 1990.
- [19] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [20] Dariusz Surowik. Cyclic groups and some of their properties part I. Formalized Mathematics, 2(5):623–627, 1991.
- [21] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1(2):329–334, 1990.
- [22] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [23] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [24] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [25] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [26] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [27] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [29] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73–83, 1990.

Received December 29, 1992