Connectedness Conditions Using Polygonal Arcs

Yatsuka Nakamura Shinshu University Nagano Jarosław Kotowicz¹ Warsaw University Białystok

Summary. A concept of special polygonal arc joining two different points is defined. Any two points in a ball can be connected by this kind of arc, and that is also true for any region in \mathcal{E}_{T}^{2} .

MML Identifier: TOPREAL4.

The notation and terminology used here have been introduced in the following articles: [13], [9], [1], [4], [2], [12], [11], [14], [10], [5], [3], [6], [7], and [8]. For simplicity we follow a convention: P, P_1, P_2, R will denote subsets of \mathcal{E}_T^2 , p, p_1, p_2, q will denote points of \mathcal{E}_T^2 , f, h will denote finite sequences of elements of \mathcal{E}_T^2 , r will denote a real number, u will denote a point of \mathcal{E}^2 , and n, i will denote natural numbers. We now define three new predicates. Let us consider P, p, q. We say that P is a special polygonal arc joining p and q if and only if:

(Def.1) there exists f such that f is a special sequence and $P = \widetilde{\mathcal{L}}(f)$ and p = f(1) and $q = f(\operatorname{len} f)$.

Let us consider P. We say that P is a special polygon if and only if the conditions (Def.2) is satisfied.

- (Def.2) (i) There exist p_1, p_2 such that $p_1 \neq p_2$ and $p_1 \in P$ and $p_2 \in P$,
- (ii) for all p, q such that $p \in P$ and $q \in P$ and $p \neq q$ there exist P_1, P_2 such that P_1 is a special polygonal arc joining p and q and P_2 is a special polygonal arc joining p and q and $P_1 \cap P_2 = \{p, q\}$ and $P = P_1 \cup P_2$.

We say that P is a region if and only if:

(Def.3) P is open and P is connected.

The following propositions are true:

101

C 1992 Fondation Philippe le Hodey ISSN 0777-4028

¹The article was written during my visit at Shinshu University in 1992.

- (1) If P is a special polygonal arc joining p and q, then P is a special polygonal arc.
- (2) If P is a special polygonal arc joining p and q, then P is an arc from p to q.
- (3) If P is a special polygonal arc joining p and q, then $p \in P$ and $q \in P$.
- (4) If P is a special polygonal arc joining p and q, then $p \neq q$.
- (5) If P is a special polygon, then P is a simple closed curve.
- (6) Suppose $p_1 = q_1$ and $p_2 \neq q_2$ and r > 0 and $p \in \text{Ball}(u, r)$ and $q \in \text{Ball}(u, r)$ and $f = \langle p, [p_1, \frac{p_2 + q_2}{2}], q \rangle$. Then f is a special sequence and f(1) = p and f(len f) = q and $\widetilde{\mathcal{L}}(f)$ is a special polygonal arc joining p and q and $\widetilde{\mathcal{L}}(f) \subseteq \text{Ball}(u, r)$.
- (7) Suppose $p_1 \neq q_1$ and $p_2 = q_2$ and r > 0 and $p \in \text{Ball}(u, r)$ and $q \in \text{Ball}(u, r)$ and $f = \langle p, [\frac{p_1 + q_1}{2}, p_2], q \rangle$. Then f is a special sequence and f(1) = p and f(len f) = q and $\widetilde{\mathcal{L}}(f)$ is a special polygonal arc joining p and q and $\widetilde{\mathcal{L}}(f) \subseteq \text{Ball}(u, r)$.
- (8) Suppose $p_1 \neq q_1$ and $p_2 \neq q_2$ and r > 0 and $p \in \text{Ball}(u, r)$ and $q \in \text{Ball}(u, r)$ and $[p_1, q_2] \in \text{Ball}(u, r)$ and $f = \langle p, [p_1, q_2], q \rangle$. Then f is a special sequence and f(1) = p and f(len f) = q and $\widetilde{\mathcal{L}}(f)$ is a special polygonal arc joining p and q and $\widetilde{\mathcal{L}}(f) \subseteq \text{Ball}(u, r)$.
- (9) Suppose $p_1 \neq q_1$ and $p_2 \neq q_2$ and r > 0 and $p \in \text{Ball}(u, r)$ and $q \in \text{Ball}(u, r)$ and $[q_1, p_2] \in \text{Ball}(u, r)$ and $f = \langle p, [q_1, p_2], q \rangle$. Then f is a special sequence and f(1) = p and f(len f) = q and $\widetilde{\mathcal{L}}(f)$ is a special polygonal arc joining p and q and $\widetilde{\mathcal{L}}(f) \subseteq \text{Ball}(u, r)$.
- (10) If r > 0 and $p \neq q$ and $p \in \text{Ball}(u, r)$ and $q \in \text{Ball}(u, r)$, then there exists P such that P is a special polygonal arc joining p and q and $P \subseteq \text{Ball}(u, r)$.
- (11) Suppose $p \neq p_1$ and $p_{12} = p_2$ and f is a special sequence and $f(1) = p_1$ and $f(\operatorname{len} f) = p_2$ and $p \in \mathcal{L}(f, 1, 2)$ and $h = \langle p_1, [\frac{p_1 + p_1}{2}, p_{12}], p \rangle$. Then h is a special sequence and $h(1) = p_1$ and $h(\operatorname{len} h) = p$ and $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_1 and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$ and $\widetilde{\mathcal{L}}(h) = \widetilde{\mathcal{L}}(f \upharpoonright 1) \cup \mathcal{L}(p_1, p)$.
- (12) Suppose $p \neq p_1$ and $p_{11} = p_1$ and f is a special sequence and $f(1) = p_1$ and $f(\operatorname{len} f) = p_2$ and $p \in \mathcal{L}(f, 1, 2)$ and $h = \langle p_1, [p_{11}, \frac{p_{12}+p_2}{2}], p \rangle$. Then h is a special sequence and $h(1) = p_1$ and $h(\operatorname{len} h) = p$ and $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_1 and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$ and $\widetilde{\mathcal{L}}(h) = \widetilde{\mathcal{L}}(f \upharpoonright 1) \cup \mathcal{L}(p_1, p)$.
- (13) Suppose that
 - (i) $p \neq p_1$,
 - (ii) f is a special sequence,
 - $(\text{iii}) \quad f(1) = p_1,$
 - (iv) $f(\operatorname{len} f) = p_2,$
 - (v) $i \in \operatorname{dom} f$,

- (vi) $i+1 \in \operatorname{dom} f$,
- (vii) i > 1,
- (viii) $p \in \mathcal{L}(f, i, i+1),$
- (ix) $p \neq f(i)$,
- $(\mathbf{x}) \quad p \neq f(i+1),$
- (xi) $h = (f \upharpoonright i) \cap \langle p \rangle,$
- (xii) q = f(i).

Then h is a special sequence and $h(1) = p_1$ and $h(\ln h) = p$ and $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_1 and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$ and $\widetilde{\mathcal{L}}(h) = \widetilde{\mathcal{L}}(f \upharpoonright i) \cup \mathcal{L}(q, p)$.

- (14) Suppose $p \neq p_1$ and f is a special sequence and $f(1) = p_1$ and $f(\ln f) = p_2$ and f(2) = p and $p_2 = p_{12}$ and $h = \langle p_1, [\frac{p_1 + p_1}{2}, p_{12}], p \rangle$. Then
 - (i) h is a special sequence,
 - (ii) $h(1) = p_1,$
 - (iii) $h(\operatorname{len} h) = p,$
 - (iv) $\mathcal{L}(h)$ is a special polygonal arc joining p_1 and p,
 - (v) $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f),$
 - (vi) $\widetilde{\mathcal{L}}(h) = \widetilde{\mathcal{L}}(f \upharpoonright 1) \cup \mathcal{L}(p_1, p),$
- (vii) $\widetilde{\mathcal{L}}(h) = \widetilde{\mathcal{L}}(f \upharpoonright 2) \cup \mathcal{L}(p, p).$
- (15) Suppose $p \neq p_1$ and f is a special sequence and $f(1) = p_1$ and $f(\ln f) = p_2$ and f(2) = p and $p_1 = p_{11}$ and $h = \langle p_1, [p_{11}, \frac{p_1 2 + p_2}{2}], p \rangle$. Then
 - (i) h is a special sequence,
 - (ii) $h(1) = p_1,$
 - (iii) $h(\operatorname{len} h) = p,$
 - (iv) $\hat{\mathcal{L}}(h)$ is a special polygonal arc joining p_1 and p,
 - (v) $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f),$
- (vi) $\widetilde{\mathcal{L}}(h) = \widetilde{\mathcal{L}}(f \upharpoonright 1) \cup \mathcal{L}(p_1, p),$
- (vii) $\widetilde{\mathcal{L}}(h) = \widetilde{\mathcal{L}}(f \upharpoonright 2) \cup \mathcal{L}(p, p).$
- (16) Suppose $p \neq p_1$ and f is a special sequence and $f(1) = p_1$ and $f(\ln f) = p_2$ and f(i) = p and i > 2 and $i \in \text{dom } f$ and $h = f \upharpoonright i$. Then h is a special sequence and $h(1) = p_1$ and $h(\ln h) = p$ and $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_1 and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$ and $\widetilde{\mathcal{L}}(h) = \widetilde{\mathcal{L}}(f \upharpoonright i) \cup \mathcal{L}(p, p)$.
- (17) Suppose $p \neq p_1$ and f is a special sequence and $f(1) = p_1$ and $f(\operatorname{len} f) = p_2$ and $p \in \mathcal{L}(f, n, n+1)$ and q = f(n). Then there exists h such that h is a special sequence and $h(1) = p_1$ and $h(\operatorname{len} h) = p$ and $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_1 and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$ and $\widetilde{\mathcal{L}}(h) = \widetilde{\mathcal{L}}(f \upharpoonright n) \cup \mathcal{L}(q, p)$.
- (18) Suppose $p \neq p_1$ and f is a special sequence and $f(1) = p_1$ and $f(\ln f) = p_2$ and $p \in \widetilde{\mathcal{L}}(f)$. Then there exists h such that h is a special sequence and $h(1) = p_1$ and $h(\ln h) = p$ and $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_1 and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$.

- (19) Suppose that
 - (i) $p_1 = p_{21}$ and $p_2 \neq p_{22}$ or $p_1 \neq p_{21}$ and $p_2 = p_{22}$,
 - (ii) r > 0,
 - (iii) $p_1 \notin \text{Ball}(u, r),$
 - (iv) $p_2 \in \text{Ball}(u, r),$
 - (v) $p \in \text{Ball}(u, r),$
 - (vi) f is a special sequence,
- $(vii) \quad f(1) = p_1,$
- (viii) $f(\operatorname{len} f) = p_2,$
- (ix) $\mathcal{L}(p_2, p) \cap \widetilde{\mathcal{L}}(f) = \{p_2\},\$
- (x) $h = f \cap \langle p \rangle.$

Then h is a special sequence and $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_1 and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f) \cup \text{Ball}(u, r)$.

- (20) Suppose that
 - (i) r > 0,
 - (ii) $p_1 \notin \text{Ball}(u, r),$
 - (iii) $p_2 \in \text{Ball}(u, r),$
- (iv) $p \in \text{Ball}(u, r),$
- (v) $[p_1, p_{22}] \in \operatorname{Ball}(u, r),$
- (vi) f is a special sequence,
- $(vii) \quad f(1) = p_1,$
- (viii) $f(\operatorname{len} f) = p_2,$
- (ix) $p_1 \neq p_{21}$,
- $(\mathbf{x}) \quad p_2 \neq p_{22},$
- (xi) $h = f \cap \langle [p_1, p_{22}], p \rangle,$
- (xii) $(\mathcal{L}(p_2, [p_1, p_{22}]) \cup \mathcal{L}([p_1, p_{22}], p)) \cap \mathcal{L}(f) = \{p_2\}.$

Then $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_1 and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f) \cup$ Ball(u, r).

- (21) Suppose that
 - (i) r > 0,
 - (ii) $p_1 \notin \text{Ball}(u, r),$
 - (iii) $p_2 \in \text{Ball}(u, r),$
 - (iv) $p \in \text{Ball}(u, r),$
 - (v) $[p_{21}, p_2] \in \operatorname{Ball}(u, r),$
 - (vi) f is a special sequence,
- (vii) $f(1) = p_1$,
- (viii) $f(\operatorname{len} f) = p_2,$
- (ix) $p_1 \neq p_{21}$,
- (x) $p_2 \neq p_{22}$,
- (xi) $h = f \cap \langle [p_{2\mathbf{1}}, p_{\mathbf{2}}], p \rangle,$
- (xii) $(\mathcal{L}(p_2, [p_{21}, p_2]) \cup \mathcal{L}([p_{21}, p_2], p)) \cap \widetilde{\mathcal{L}}(f) = \{p_2\}.$

Then $\mathcal{L}(h)$ is a special polygonal arc joining p_1 and p and $\mathcal{L}(h) \subseteq \mathcal{L}(f) \cup$ Ball(u, r).

- (22) Suppose r > 0 and $p_1 \notin \text{Ball}(u, r)$ and $p_2 \in \text{Ball}(u, r)$ and $p \in \text{Ball}(u, r)$ and f is a special sequence and $f(1) = p_1$ and $f(\text{len } f) = p_2$ and $p \notin \widetilde{\mathcal{L}}(f)$. Then there exists h such that $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_1 and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f) \cup \text{Ball}(u, r)$.
- (23) Given R, p, p_1, p_2, P, r, u . Then if $p \neq p_1$ and P is a special polygonal arc joining p_1 and p_2 and $P \subseteq R$ and r > 0 and $p \in \text{Ball}(u, r)$ and $p_2 \in \text{Ball}(u, r)$ and $\text{Ball}(u, r) \subseteq R$, then there exists P_1 such that P_1 is a special polygonal arc joining p_1 and p and $P_1 \subseteq R$.
- (24) For every p such that R is a region and $P = \{q : q \neq p \land q \in R \land \neg \bigvee_{P_1} [P_1$ is a special polygonal arc joining p and $q \land P_1 \subseteq R]\}$ holds P is open.
- (25) If R is a region and $p \in R$ and $P = \{q : q = p \lor \bigvee_{P_1} [P_1 \text{ is a special polygonal arc joining } p \text{ and } q \land P_1 \subseteq R]\}$, then P is open.
- (26) If $p \in R$ and $P = \{q : q = p \lor \bigvee_{P_1} [P_1 \text{ is a special polygonal arc joining } p \text{ and } q \land P_1 \subseteq R] \}$, then $P \subseteq R$.
- (27) If R is a region and $p \in R$ and $P = \{q : q = p \lor \bigvee_{P_1} [P_1 \text{ is a special polygonal arc joining } p \text{ and } q \land P_1 \subseteq R]\}$, then $R \subseteq P$.
- (28) If R is a region and $p \in R$ and $P = \{q : q = p \lor \bigvee_{P_1} [P_1 \text{ is a special polygonal arc joining } p \text{ and } q \land P_1 \subseteq R]\}$, then R = P.
- (29) If R is a region and $p \in R$ and $q \in R$ and $p \neq q$, then there exists P such that P is a special polygonal arc joining p and q and $P \subseteq R$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [5] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651–656, 1990.
- [6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [7] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. *Formalized Mathematics*, 2(5):617–621, 1991.
- [8] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Simple closed curves. Formalized Mathematics, 2(5):663–664, 1991.
- [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [10] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [11] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
- [12] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

[14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.

Received August 24, 1992