Connectedness Conditions Using Polygonal Arcs

Yatsuka Nakamura Jarosław Kotowicz ${ }^{1}$
Shinshu University Warsaw University
Nagano
Białystok

Abstract

Summary. A concept of special polygonal arc joining two different points is defined. Any two points in a ball can be connected by this kind of arc, and that is also true for any region in $\mathcal{E}_{\mathrm{T}}^{2}$.

MML Identifier: TOPREAL4.

The notation and terminology used here have been introduced in the following articles: [13], [9], [1], [4], [2], [12], [11], [14], [10], [5], [3], [6], [7], and [8]. For simplicity we follow a convention: P, P_{1}, P_{2}, R will denote subsets of $\mathcal{E}_{\mathrm{T}}^{2}, p$, p_{1}, p_{2}, q will denote points of $\mathcal{E}_{\mathrm{T}}^{2}, f, h$ will denote finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}, r$ will denote a real number, u will denote a point of \mathcal{E}^{2}, and n, i will denote natural numbers. We now define three new predicates. Let us consider P, p, q. We say that P is a special polygonal arc joining p and q if and only if:
(Def.1) there exists f such that f is a special sequence and $P=\widetilde{\mathcal{L}}(f)$ and $p=f(1)$ and $q=f(\operatorname{len} f)$.
Let us consider P. We say that P is a special polygon if and only if the conditions (Def.2) is satisfied.
(Def.2) (i) There exist p_{1}, p_{2} such that $p_{1} \neq p_{2}$ and $p_{1} \in P$ and $p_{2} \in P$,
(ii) for all p, q such that $p \in P$ and $q \in P$ and $p \neq q$ there exist P_{1}, P_{2} such that P_{1} is a special polygonal arc joining p and q and P_{2} is a special polygonal arc joining p and q and $P_{1} \cap P_{2}=\{p, q\}$ and $P=P_{1} \cup P_{2}$.
We say that P is a region if and only if:
(Def.3) $\quad P$ is open and P is connected.
The following propositions are true:

[^0](1) If P is a special polygonal arc joining p and q, then P is a special polygonal arc.
(2) If P is a special polygonal arc joining p and q, then P is an arc from p to q.
(3) If P is a special polygonal arc joining p and q, then $p \in P$ and $q \in P$.
(4) If P is a special polygonal arc joining p and q, then $p \neq q$.
(5) If P is a special polygon, then P is a simple closed curve.
(6) Suppose $p_{1}=q_{1}$ and $p_{2} \neq q_{2}$ and $r>0$ and $p \in \operatorname{Ball}(u, r)$ and $q \in \operatorname{Ball}(u, r)$ and $f=\left\langle p,\left[p_{\mathbf{1}}, \frac{p_{2}+q_{2}}{2}\right], q\right\rangle$. Then f is a special sequence and $f(1)=p$ and $f(\operatorname{len} f)=q$ and $\widetilde{\mathcal{L}}(f)$ is a special polygonal arc joining p and q and $\widetilde{\mathcal{L}}(f) \subseteq \operatorname{Ball}(u, r)$.
(7) Suppose $p_{1} \neq q_{1}$ and $p_{2}=q_{2}$ and $r>0$ and $p \in \operatorname{Ball}(u, r)$ and $q \in \operatorname{Ball}(u, r)$ and $f=\left\langle p,\left[\frac{p_{1}+q_{1}}{2}, p_{\mathbf{2}}\right], q\right\rangle$. Then f is a special sequence and $f(1)=p$ and $f(\operatorname{len} f)=q$ and $\widetilde{\mathcal{L}}(f)$ is a special polygonal arc joining p and q and $\widetilde{\mathcal{L}}(f) \subseteq \operatorname{Ball}(u, r)$.
(8) Suppose $p_{\mathbf{1}} \neq q_{1}$ and $p_{\mathbf{2}} \neq q_{\mathbf{2}}$ and $r>0$ and $p \in \operatorname{Ball}(u, r)$ and $q \in \operatorname{Ball}(u, r)$ and $\left[p_{\mathbf{1}}, q_{\mathbf{2}}\right] \in \operatorname{Ball}(u, r)$ and $f=\left\langle p,\left[p_{\mathbf{1}}, q_{\mathbf{2}}\right], q\right\rangle$. Then f is a special sequence and $f(1)=p$ and $f(\operatorname{len} f)=q$ and $\mathcal{L}(f)$ is a special polygonal arc joining p and q and $\widetilde{\mathcal{L}}(f) \subseteq \operatorname{Ball}(u, r)$.
(9) Suppose $p_{\mathbf{1}} \neq q_{1}$ and $p_{\mathbf{2}} \neq q_{\mathbf{2}}$ and $r>0$ and $p \in \operatorname{Ball}(u, r)$ and $q \in \operatorname{Ball}(u, r)$ and $\left[q_{\mathbf{1}}, p_{\mathbf{2}}\right] \in \operatorname{Ball}(u, r)$ and $f=\left\langle p,\left[q_{\mathbf{1}}, p_{\mathbf{2}}\right], q\right\rangle$. Then f is a special sequence and $f(1)=p$ and $f(\operatorname{len} f)=q$ and $\tilde{\mathcal{L}}(f)$ is a special polygonal arc joining p and q and $\widetilde{\mathcal{L}}(f) \subseteq \operatorname{Ball}(u, r)$.
(10) If $r>0$ and $p \neq q$ and $p \in \operatorname{Ball}(u, r)$ and $q \in \operatorname{Ball}(u, r)$, then there exists P such that P is a special polygonal arc joining p and q and $P \subseteq \operatorname{Ball}(u, r)$.
(11) Suppose $p \neq p_{1}$ and $p_{12}=p_{2}$ and f is a special sequence and $f(1)=p_{1}$ and $f(\operatorname{len} f)=p_{2}$ and $p \in \mathcal{L}(f, 1,2)$ and $h=\left\langle p_{1},\left[\frac{p_{11}+p_{1}}{2}, p_{12}\right], p\right\rangle$. Then h is a special sequence and $h(1)=p_{1}$ and $h(\operatorname{len} h)=p$ and $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_{1} and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$ and $\widetilde{\mathcal{L}}(h)=$ $\widetilde{\mathcal{L}}(f \upharpoonright 1) \cup \mathcal{L}\left(p_{1}, p\right)$.

Suppose $p \neq p_{1}$ and $p_{11}=p_{1}$ and f is a special sequence and $f(1)=p_{1}$ and $f(\operatorname{len} f)=p_{2}$ and $p \in \mathcal{L}(f, 1,2)$ and $h=\left\langle p_{1},\left[p_{1 \mathbf{1}}, \frac{p_{12}+p_{\mathbf{2}}}{2}\right], p\right\rangle$. Then h is a special sequence and $h(1)=p_{1}$ and $h(\operatorname{len} h)=p$ and $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_{1} and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$ and $\widetilde{\mathcal{L}}(h)=$ $\widetilde{\mathcal{L}}(f \upharpoonright 1) \cup \mathcal{L}\left(p_{1}, p\right)$.
(13) Suppose that
(i) $p \neq p_{1}$,
(ii) f is a special sequence,
(iii) $f(1)=p_{1}$,
(iv) $f(\operatorname{len} f)=p_{2}$,
(v) $\quad i \in \operatorname{dom} f$,

$$
\begin{aligned}
\text { (vi) } & i+1 \in \operatorname{dom} f, \\
\text { (vii) } & i>1, \\
\text { (viii) } & p \in \mathcal{L}(f, i, i+1), \\
\text { (ix) } & p \neq f(i), \\
\text { (x) } & p \neq f(i+1), \\
\text { (xi) } & h=(f \upharpoonright i) \frown\langle p\rangle, \\
\text { (xii) } & q=f(i) .
\end{aligned}
$$

Then h is a special sequence and $h(1)=p_{1}$ and $h(\operatorname{len} h)=p$ and $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_{1} and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$ and $\widetilde{\mathcal{L}}(h)=$ $\widetilde{\mathcal{L}}(f \upharpoonright i) \cup \mathcal{L}(q, p)$.
(14) Suppose $p \neq p_{1}$ and f is a special sequence and $f(1)=p_{1}$ and $f(\operatorname{len} f)=$ p_{2} and $f(2)=p$ and $p_{\mathbf{2}}=p_{12}$ and $h=\left\langle p_{1},\left[\frac{p_{11}+p_{1}}{2}, p_{12}\right], p\right\rangle$. Then
(i) h is a special sequence,
(ii) $h(1)=p_{1}$,
(iii) $h(\operatorname{len} h)=p$,
(iv) $\tilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_{1} and p,
(v) $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$,
(vi) $\tilde{\mathcal{L}}(h)=\widetilde{\mathcal{L}}(f \upharpoonright 1) \cup \mathcal{L}\left(p_{1}, p\right)$,
(vii) $\widetilde{\mathcal{L}}(h)=\widetilde{\mathcal{L}}(f \upharpoonright 2) \cup \mathcal{L}(p, p)$.
(15) Suppose $p \neq p_{1}$ and f is a special sequence and $f(1)=p_{1}$ and $f(\operatorname{len} f)=$ p_{2} and $f(2)=p$ and $p_{\mathbf{1}}=p_{1 \mathbf{1}}$ and $h=\left\langle p_{1},\left[p_{1 \mathbf{1}}, \frac{p_{1}+p_{\mathbf{2}}}{2}\right], p\right\rangle$. Then
(i) h is a special sequence,
(ii) $h(1)=p_{1}$,
(iii) $\quad h(\operatorname{len} h)=p$,
(iv) $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_{1} and p,
(v) $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$,
(vi) $\tilde{\mathcal{L}}(h)=\widetilde{\mathcal{L}}(f \upharpoonright 1) \cup \mathcal{L}\left(p_{1}, p\right)$,
(vii) $\widetilde{\mathcal{L}}(h)=\widetilde{\mathcal{L}}(f \upharpoonright 2) \cup \mathcal{L}(p, p)$.
(16) Suppose $p \neq p_{1}$ and f is a special sequence and $f(1)=p_{1}$ and $f(\operatorname{len} f)=$ p_{2} and $f(i)=p$ and $i>2$ and $i \in \operatorname{dom} f$ and $h=f \upharpoonright i$. Then h is a special sequence and $h(1)=p_{1}$ and $h(\operatorname{len} h)=p$ and $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_{1} and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$ and $\widetilde{\mathcal{L}}(h)=\widetilde{\mathcal{L}}(f \upharpoonright i) \cup \mathcal{L}(p, p)$.
(17) Suppose $p \neq p_{1}$ and f is a special sequence and $f(1)=p_{1}$ and $f($ len $f)=$ p_{2} and $p \in \mathcal{L}(f, n, n+1)$ and $q=f(n)$. Then there exists h such that h is a special sequence and $h(1)=p_{1}$ and $h(\operatorname{len} h)=p$ and $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_{1} and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$ and $\widetilde{\mathcal{L}}(h)=$ $\widetilde{\mathcal{L}}(f \upharpoonright n) \cup \mathcal{L}(q, p)$.
(18)

Suppose $p \neq p_{1}$ and f is a special sequence and $f(1)=p_{1}$ and $f(\operatorname{len} f)=$ p_{2} and $p \in \widetilde{\mathcal{L}}(f)$. Then there exists h such that h is a special sequence and $h(1)=p_{1}$ and $h($ len $h)=p$ and $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_{1} and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$.
(19) Suppose that
(i) $p_{1}=p_{21}$ and $p_{2} \neq p_{22}$ or $p_{\mathbf{1}} \neq p_{21}$ and $p_{2}=p_{22}$,
(ii) $r>0$,
(iii) $\quad p_{1} \notin \operatorname{Ball}(u, r)$,
(iv) $p_{2} \in \operatorname{Ball}(u, r)$,
(v) $p \in \operatorname{Ball}(u, r)$,
(vi) f is a special sequence,
(vii) $f(1)=p_{1}$,
(viii) $f(\operatorname{len} f)=p_{2}$,
(ix) $\mathcal{L}\left(p_{2}, p\right) \cap \widetilde{\mathcal{L}}(f)=\left\{p_{2}\right\}$,
(x) $\quad h=f^{\wedge}\langle p\rangle$.

Then h is a special sequence and $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_{1} and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f) \cup \operatorname{Ball}(u, r)$.
(20) Suppose that
(i) $r>0$,
(ii) $p_{1} \notin \operatorname{Ball}(u, r)$,
(iii) $p_{2} \in \operatorname{Ball}(u, r)$,
(iv) $p \in \operatorname{Ball}(u, r)$,
(v) $\left[p_{\mathbf{1}}, p_{2 \mathbf{2}}\right] \in \operatorname{Ball}(u, r)$,
(vi) f is a special sequence,
(vii) $f(1)=p_{1}$,
(viii) $f(\operatorname{len} f)=p_{2}$,
(ix) $\quad p_{1} \neq p_{21}$,
(x) $\quad p_{2} \neq p_{22}$,
(xi) $h=f^{\wedge}\left\langle\left[p_{\mathbf{1}}, p_{2 \mathbf{2}}\right], p\right\rangle$,
(xii) $\quad\left(\mathcal{L}\left(p_{2},\left[p_{\mathbf{1}}, p_{2 \boldsymbol{2}}\right]\right) \cup \mathcal{L}\left(\left[p_{\mathbf{1}}, p_{2 \mathbf{2}}\right], p\right)\right) \cap \widetilde{\mathcal{L}}(f)=\left\{p_{2}\right\}$.

Then $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_{1} and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f) \cup$ $\operatorname{Ball}(u, r)$.
(21) Suppose that
(i) $r>0$,
(ii) $p_{1} \notin \operatorname{Ball}(u, r)$,
(iii) $p_{2} \in \operatorname{Ball}(u, r)$,
(iv) $p \in \operatorname{Ball}(u, r)$,
(v) $\left[p_{21}, p_{2}\right] \in \operatorname{Ball}(u, r)$,
(vi) f is a special sequence,
(vii) $f(1)=p_{1}$,
(viii) $f(\operatorname{len} f)=p_{2}$,
(ix) $p_{1} \neq p_{21}$,
(x) $p_{2} \neq p_{22}$,
(xi) $h=f^{\wedge}\left\langle\left[p_{2 \mathbf{1}}, p_{\mathbf{2}}\right], p\right\rangle$,
(xii) $\quad\left(\mathcal{L}\left(p_{2},\left[p_{21}, p_{\mathbf{2}}\right]\right) \cup \mathcal{L}\left(\left[p_{2 \mathbf{1}}, p_{\mathbf{2}}\right], p\right)\right) \cap \widetilde{\mathcal{L}}(f)=\left\{p_{2}\right\}$.

Then $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_{1} and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f) \cup$ $\operatorname{Ball}(u, r)$.

Suppose $r>0$ and $p_{1} \notin \operatorname{Ball}(u, r)$ and $p_{2} \in \operatorname{Ball}(u, r)$ and $p \in \operatorname{Ball}(u, r)$ and f is a special sequence and $f(1)=p_{1}$ and $f(\operatorname{len} f)=p_{2}$ and $p \notin \widetilde{\mathcal{L}}(f)$. Then there exists h such that $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining p_{1} and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f) \cup \operatorname{Ball}(u, r)$.
(23) Given $R, p, p_{1}, p_{2}, P, r, u$. Then if $p \neq p_{1}$ and P is a special polygonal arc joining p_{1} and p_{2} and $P \subseteq R$ and $r>0$ and $p \in \operatorname{Ball}(u, r)$ and $p_{2} \in \operatorname{Ball}(u, r)$ and $\operatorname{Ball}(u, r) \subseteq R$, then there exists P_{1} such that P_{1} is a special polygonal arc joining p_{1} and p and $P_{1} \subseteq R$.
(24) For every p such that R is a region and $P=\left\{q: q \neq p \wedge q \in R \wedge \neg \bigvee_{P_{1}}\left[P_{1}\right.\right.$ is a special polygonal arc joining p and $\left.\left.q \wedge P_{1} \subseteq R\right]\right\}$ holds P is open.
(25) If R is a region and $p \in R$ and $P=\left\{q: q=p \vee \bigvee_{P_{1}}\left[P_{1}\right.\right.$ is a special polygonal arc joining p and $\left.\left.q \wedge P_{1} \subseteq R\right]\right\}$, then P is open.
(26) If $p \in R$ and $P=\left\{q: q=p \vee \bigvee_{P_{1}}\left[P_{1}\right.\right.$ is a special polygonal arc joining p and $\left.\left.q \wedge P_{1} \subseteq R\right]\right\}$, then $P \subseteq R$.
(27) If R is a region and $p \in R$ and $P=\left\{q: q=p \vee \bigvee_{P_{1}}\left[P_{1}\right.\right.$ is a special polygonal arc joining p and $\left.\left.q \wedge P_{1} \subseteq R\right]\right\}$, then $R \subseteq P$.
(28) If R is a region and $p \in R$ and $P=\left\{q: q=p \vee \bigvee_{P_{1}}\left[P_{1}\right.\right.$ is a special polygonal arc joining p and $\left.\left.q \wedge P_{1} \subseteq R\right]\right\}$, then $R=P$.
(29) If R is a region and $p \in R$ and $q \in R$ and $p \neq q$, then there exists P such that P is a special polygonal arc joining p and q and $P \subseteq R$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651-656, 1990.
[6] Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[7] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[8] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[11] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[12] Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Received August 24, 1992

[^0]: ${ }^{1}$ The article was written during my visit at Shinshu University in 1992.

