Some Properties of Binary Relations

Waldemar Korczyński
Pedagogical University Kielce

Abstract

Summary. The article contains some theorems on binary relations, which are used in papers [2], [3], [1], and other.

MML Identifier: SYSREL.

The articles [5], [6], [7], and [4] provide the terminology and notation for this paper. We adopt the following rules: x, y are arbitrary, X, Y, Z, W are sets, and R, S, T are binary relations. We now state a number of propositions:
(1) If $X \cap Y=\emptyset$ and $x \in X \cup Y$, then $x \in X$ and $x \notin Y$ or $x \in Y$ and $x \notin X$.
(2) $(X \cup Y) \cup Z=X \cup Z \cup(Y \cup Z)$.
(3) $\quad X \cup(X \cup Y)=X \cup Y$.
(4) If $X \subseteq Y \cap Z$, then $X \subseteq Y$ and $X \subseteq Z$.
(5) $\varnothing=\emptyset$.
(6) $\varnothing \backslash R=\varnothing$.
(7) $\quad R \subseteq S$ if and only if $R \backslash S=\varnothing$.
(8) $\quad R \cap S=\varnothing$ if and only if $R \backslash S=R$.
(9) $\quad R \backslash R=\varnothing$.
(10) If $R \subseteq \varnothing$, then $R=\varnothing$.
(11) $\varnothing \cup R=R$ and $R \cup \varnothing=R$ and $\varnothing \cap R=\varnothing$ and $R \cap \varnothing=\varnothing$.

Let us consider X, Y. Then $: X, Y$: is a binary relation.
Next we state several propositions:
(12) If $X \neq \emptyset$ and $Y \neq \emptyset$, then dom: $X, Y:]=X$ and $\operatorname{rng}[: X, Y:]=Y$.
(13) $\quad \operatorname{dom}(R \cap[: X, Y:) \subseteq X$ and $\operatorname{rng}(R \cap: X, Y:]) \subseteq Y$.
(14) If $X \cap Y=\emptyset$, then $\operatorname{dom}(R \cap: X, Y:]) \cap \operatorname{rng}(R \cap: X, Y:])=\emptyset$ and $\left.\operatorname{dom}\left(R^{\smile} \cap: X, Y:\right]\right) \cap \operatorname{rng}\left(R^{\smile} \cap[: X, Y:]\right)=\emptyset$.
(15) If $R \subseteq: X, Y:$, then $\operatorname{dom} R \subseteq X$ and rng $R \subseteq Y$.
(16) If $R \subseteq: X, Y:$, then $R^{\smile} \subseteq[: Y, X:$.

$$
\begin{equation*}
\text { If } X \cap Y=\emptyset \text {, then }: X, Y: \cap: Y, X:]=\emptyset . \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
[X, Y]^{\smile}=[Y, X:] . \tag{18}
\end{equation*}
$$

Next we state a number of propositions:
$(R \cup S) \cdot T=R \cdot T \cup S \cdot T$ and $R \cdot(S \cup T)=R \cdot S \cup R \cdot T$.
If $R \subseteq: X, Y:$ and $\langle x, y\rangle \in R$, then $x \in X$ and $y \in Y$.
(21) (i) If $X \cap Y=\emptyset$ and $R \subseteq: X, Y: \cup \cup Y, X:$ and $\langle x, y\rangle \in R$ and $x \in X$, then $x \notin Y$ and $y \notin X$ and $y \in Y$,
(ii) \quad if $X \cap Y=\emptyset$ and $R \subseteq: X, Y: \cup: Y, X:$ and $\langle x, y\rangle \in R$ and $y \in Y$, then $y \notin X$ and $x \notin Y$ and $x \in X$,
(iii) if $X \cap Y=\emptyset$ and $R \subseteq\{X, Y: \cup\{Y, X:$ and $\langle x, y\rangle \in R$ and $x \in Y$, then $x \notin X$ and $y \notin Y$ and $y \in X$,
(iv) if $X \cap Y=\emptyset$ and $R \subseteq: X, Y: \cup: Y, X:$ and $\langle x, y\rangle \in R$ and $y \in X$, then $x \notin X$ and $y \notin Y$ and $x \in Y$.
(22) If $\operatorname{rng} R \cap \operatorname{dom} S=\emptyset$ or $\operatorname{dom} S \cap \operatorname{rng} R=\emptyset$, then $R \cdot S=\varnothing$.
(23) If $R \subseteq: X, Y$: and $Z \subseteq X$, then $R \upharpoonright Z=R \cap: Z, Y$: but if $R \subseteq: X$, Y : and $Z \subseteq Y$, then $Z \upharpoonright R=R \cap: X, Z:$.
(24) If $R \subseteq: X, Y$: and $X=Z \cup W$, then $R=R \upharpoonright Z \cup R \upharpoonright W$.
(25) If $X \cap Y=\emptyset$ and $R \subseteq:: X, Y: \cup: Y, X:$, then $R \upharpoonright X \subseteq: X, Y:$.
(26) If $R \subseteq S$, then $R^{\smile} \subseteq S^{\hookrightarrow}$.
(27) $\triangle_{X} \subseteq: X, X:$.
(28) $\triangle_{X} \cdot \triangle_{X}=\triangle_{X}$.
(29) $\triangle_{\{x\}}=\{\langle x, x\rangle\}$.
(30) $\langle x, y\rangle \in \triangle_{X}$ if and only if $\langle y, x\rangle \in \triangle_{X}$.
(31) $\triangle_{X \cup Y}=\triangle_{X} \cup \triangle_{Y}$ and $\triangle_{X \cap Y}=\triangle_{X} \cap \triangle_{Y}$ and $\triangle_{X \backslash Y}=\triangle_{X} \backslash \triangle_{Y}$.
(32) If $X \subseteq Y$, then $\triangle_{X} \subseteq \triangle_{Y}$.
(33) $\triangle_{X \backslash Y} \backslash \triangle_{X}=\varnothing$.
(34) If $R \subseteq \triangle_{\operatorname{dom} R}$, then $R=\triangle_{\operatorname{dom} R}$.
(35) If $\triangle_{X} \subseteq R \cup R^{\hookrightarrow}$, then $\triangle_{X} \subseteq R$ and $\triangle_{X} \subseteq R^{\hookrightarrow}$.
(36) If $\triangle_{X} \subseteq R$, then $\triangle_{X} \subseteq R^{\hookrightarrow}$.
(37) If $R \subseteq: X, X:$, then $R \backslash \triangle_{\operatorname{dom} R}=R \backslash \triangle_{X}$ and $R \backslash \triangle_{\operatorname{rng} R}=R \backslash \triangle_{X}$.
(38) If $\triangle_{X} \cdot\left(R \backslash \triangle_{X}\right)=\varnothing$, then $\operatorname{dom}\left(R \backslash \triangle_{X}\right)=\operatorname{dom} R \backslash \operatorname{dom}\left(\triangle_{X}\right)$ but if $\left(R \backslash \triangle_{X}\right) \cdot \triangle_{X}=\varnothing$, then $\operatorname{rng}\left(R \backslash \triangle_{X}\right)=\operatorname{rng} R \backslash \operatorname{rng}\left(\triangle_{X}\right)$.
(39) If $R \subseteq R \cdot R$ and $R \cdot\left(R \backslash \triangle_{\operatorname{rng} R}\right)=\varnothing$, then $\triangle_{\operatorname{rng} R} \subseteq R$ but if $R \subseteq R \cdot R$ and $\left(R \backslash \triangle_{\operatorname{dom} R}\right) \cdot R=\varnothing$, then $\triangle_{\operatorname{dom} R} \subseteq R$.
(40) (i) If $R \subseteq R \cdot R$ and $R \cdot\left(R \backslash \triangle_{\mathrm{rng} R}\right)=\varnothing$, then $R \cap \triangle_{\mathrm{rng} R}=\triangle_{\mathrm{rng}} R$,
(ii) if $R \subseteq R \cdot R$ and $\left(R \backslash \triangle_{\operatorname{dom} R}\right) \cdot R=\varnothing$, then $R \cap \triangle_{\operatorname{dom} R}=\triangle_{\operatorname{dom} R}$.
(41) If $R \cdot\left(R \backslash \triangle_{X}\right)=\varnothing$ and $\operatorname{rng} R \subseteq X$, then $R \cdot\left(R \backslash \triangle_{\operatorname{rng} R}\right)=\varnothing$ but if $\left(R \backslash \triangle_{X}\right) \cdot R=\varnothing$ and $\operatorname{dom} R \subseteq X$, then $\left(R \backslash \triangle_{\operatorname{dom} R}\right) \cdot R=\varnothing$.
Let us consider R. The functor CL (R) yielding a binary relation is defined as follows:
(Def.1) $\quad \mathrm{CL}(R)=R \cap \triangle_{\mathrm{dom} R}$.

One can prove the following propositions:
(42) $\mathrm{CL}(R) \subseteq R$ and $\mathrm{CL}(R) \subseteq \triangle_{\mathrm{dom} R}$.
(43) If $\langle x, y\rangle \in \mathrm{CL}(R)$, then $x \in \operatorname{dom} \mathrm{CL}(R)$ and $x=y$.
(44) $\operatorname{dom} \mathrm{CL}(R)=\operatorname{rng} \mathrm{CL}(R)$.
(45) (i) $\quad x \in \operatorname{dom} \operatorname{CL}(R)$ if and only if $x \in \operatorname{dom} R$ and $\langle x, x\rangle \in R$,
(ii) $\quad x \in \operatorname{rng} \mathrm{CL}(R)$ if and only if $x \in \operatorname{dom} R$ and $\langle x, x\rangle \in R$,
(iii) $\quad x \in \operatorname{rng} \mathrm{CL}(R)$ if and only if $x \in \operatorname{rng} R$ and $\langle x, x\rangle \in R$,
(iv) $\quad x \in \operatorname{dom} \mathrm{CL}(R)$ if and only if $x \in \operatorname{rng} R$ and $\langle x, x\rangle \in R$.
(46) $\mathrm{CL}(R)=\triangle_{\mathrm{dom} \mathrm{CL}(R)}$.
(47) (i) If $R \cdot R=R$ and $R \cdot(R \backslash \mathrm{CL}(R))=\varnothing$ and $\langle x, y\rangle \in R$ and $x \neq y$, then $x \in \operatorname{dom} R \backslash \operatorname{dom} \operatorname{CL}(R)$ and $y \in \operatorname{dom} \mathrm{CL}(R)$,
(ii) \quad if $R \cdot R=R$ and $(R \backslash \operatorname{CL}(R)) \cdot R=\varnothing$ and $\langle x, y\rangle \in R$ and $x \neq y$, then $y \in \operatorname{rng} R \backslash \operatorname{dom} \mathrm{CL}(R)$ and $x \in \operatorname{dom} \mathrm{CL}(R)$.
(48) (i) If $R \cdot R=R$ and $R \cdot\left(R \backslash \triangle_{\operatorname{dom} R}\right)=\varnothing$ and $\langle x, y\rangle \in R$ and $x \neq y$, then $x \in \operatorname{dom} R \backslash \operatorname{dom} \operatorname{CL}(R)$ and $y \in \operatorname{dom} \mathrm{CL}(R)$,
(ii) \quad if $R \cdot R=R$ and $\left(R \backslash \triangle_{\operatorname{dom} R}\right) \cdot R=\varnothing$ and $\langle x, y\rangle \in R$ and $x \neq y$, then $y \in \operatorname{rng} R \backslash \operatorname{dom} \mathrm{CL}(R)$ and $x \in \operatorname{dom} \mathrm{CL}(R)$.
(49) (i) If $R \cdot R=R$ and $R \cdot\left(R \backslash \triangle_{\operatorname{dom} R}\right)=\varnothing$, then $\operatorname{dom} \mathrm{CL}(R)=\operatorname{rng} R$ and $\operatorname{rng} \mathrm{CL}(R)=\operatorname{rng} R$,
(ii) \quad if $R \cdot R=R$ and $\left(R \backslash \triangle_{\operatorname{dom} R}\right) \cdot R=\varnothing$, then $\operatorname{dom} \operatorname{CL}(R)=\operatorname{dom} R$ and $\operatorname{rng} \mathrm{CL}(R)=\operatorname{dom} R$.
(50) $\quad \operatorname{dom} \mathrm{CL}(R) \subseteq \operatorname{dom} R$ and $\operatorname{rng} \mathrm{CL}(R) \subseteq \operatorname{rng} R$ and $\operatorname{rng} \mathrm{CL}(R) \subseteq \operatorname{dom} R$ and $\operatorname{dom} \mathrm{CL}(R) \subseteq \operatorname{rng} R$.
(51) $\quad \triangle_{\operatorname{dom~CL}(R)} \subseteq \triangle_{\operatorname{dom} R}$ and $\triangle_{\mathrm{rng} \mathrm{CL}(R)} \subseteq \triangle_{\mathrm{dom} R}$.
(52) $\quad \triangle_{\mathrm{dom} \mathrm{CL}(R)} \subseteq R$ and $\triangle_{\mathrm{rng} \mathrm{CL}(R)} \subseteq R$.
(53) If $\triangle_{X} \subseteq R$ and $\triangle_{X} \cdot\left(R \backslash \triangle_{X}\right)=\varnothing$, then $R \upharpoonright X=\triangle_{X}$ but if $\triangle_{X} \subseteq R$ and $\left(R \backslash \triangle_{X}\right) \cdot \triangle_{X}=\varnothing$, then $X \upharpoonright R=\triangle_{X}$.
(54) (i) If $\triangle_{\operatorname{dom~CL}(R)} \cdot\left(R \backslash \triangle_{\operatorname{dom~CL}(R)}\right)=\varnothing$, then $R \upharpoonright \operatorname{dom~CL}(R)=\triangle_{\operatorname{dom~CL}(R)}$ and $R \upharpoonright \operatorname{rng} \mathrm{CL}(R)=\triangle_{\operatorname{dom~CL}(R)}$,
(ii) if $\left(R \backslash \triangle_{\mathrm{rng} \mathrm{CL}(R)}\right) \cdot \triangle_{\mathrm{rng} \mathrm{CL}(R)}=\varnothing$, then $\operatorname{dom~CL}(R) \upharpoonright R=\triangle_{\operatorname{dom~CL}(R)}$ and $\operatorname{rng} \mathrm{CL}(R) \upharpoonright R=\triangle_{\operatorname{rng~CL}(R)}$.
(55) If $R \cdot\left(R \backslash \triangle_{\operatorname{dom} R}\right)=\varnothing$, then $\triangle_{\text {dom CL}(R)} \cdot\left(R \backslash \triangle_{\operatorname{dom~CL}(R)}\right)=\varnothing$ but if $\left(R \backslash \triangle_{\text {dom } R}\right) \cdot R=\varnothing$, then $\left(R \backslash \triangle_{\operatorname{dom~CL}(R)}\right) \cdot \triangle_{\text {dom CL}(R)}=\varnothing$.
(56) (i) If $S \cdot R=S$ and $R \cdot\left(R \backslash \triangle_{\operatorname{dom} R}\right)=\varnothing$, then $S \cdot\left(R \backslash \triangle_{\operatorname{dom} R}\right)=\varnothing$,
(ii) if $R \cdot S=S$ and $\left(R \backslash \triangle_{\operatorname{dom} R}\right) \cdot R=\varnothing$, then $\left(R \backslash \triangle_{\operatorname{dom} R}\right) \cdot S=\varnothing$.
(57) If $S \cdot R=S$ and $R \cdot\left(R \backslash \triangle_{\operatorname{dom} R}\right)=\varnothing$, then $\mathrm{CL}(S) \subseteq \mathrm{CL}(R)$ but if $R \cdot S=S$ and $\left(R \backslash \triangle_{\text {dom }}\right) \cdot R=\varnothing$, then $\mathrm{CL}(S) \subseteq \mathrm{CL}(R)$.
(58) (i) If $S \cdot R=S$ and $R \cdot\left(R \backslash \triangle_{\text {dom } R}\right)=\varnothing$ and $R \cdot S=R$ and $S \cdot(S \backslash$ $\left.\triangle_{\mathrm{dom} S}\right)=\varnothing$, then $\mathrm{CL}(S)=\mathrm{CL}(R)$,
(ii) if $R \cdot S=S$ and $\left(R \backslash \triangle_{\operatorname{dom} R}\right) \cdot R=\varnothing$ and $S \cdot R=R$ and $\left(S \backslash \triangle_{\operatorname{dom} S}\right) \cdot S=$ \varnothing, then $\mathrm{CL}(S)=\mathrm{CL}(R)$.

References

[1] Waldemar Korczyński. Definitions of Petri net - part III - S_SIEC. Main Mizar Library, 1992.
[2] Waldemar Korczyński. Definitons of Petri net - part I - FF_SIEC. Main Mizar Library, 1992.
[3] Waldemar Korczyński. Definitons of Petri net - part II - E_SIEC. Main Mizar Library, 1992.
[4] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[6] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[7] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received January 17, 1992

