Functional Sequence from a Domain to a Domain

Beata Perkowska Warsaw University Białystok

Summary. Definitions of functional sequences and basic operations on functional sequences from a domain to a domain, point and uniform convergent, limit of functional sequence from a domain to the set of real numbers and facts about properties of the limit of functional sequences are proved.

MML Identifier: SEQFUNC.

The articles [11], [1], [2], [3], [13], [5], [6], [9], [8], [4], [12], [7], and [10] provide the notation and terminology for this paper. For simplicity we adopt the following rules: D, D_1, D_2 denote non-empty sets, n, k denote natural numbers, p, r denote real numbers, and f denotes a function. Let us consider D_1, D_2 . A function is called a sequence of partial functions from D_1 into D_2 if:

(Def.1) dom it = \mathbb{N} and rng it $\subseteq D_1 \rightarrow D_2$.

In the sequel F, F_1 , F_2 are sequences of partial functions from D_1 into D_2 . Let us consider D_1 , D_2 , F, n. Then F(n) is a partial function from D_1 to D_2 .

In the sequel G, H, H_1, H_2, J are sequences of partial functions from D into \mathbb{R} . One can prove the following two propositions:

- (1) f is a sequence of partial functions from D_1 into D_2 if and only if dom $f = \mathbb{N}$ and for every n holds f(n) is a partial function from D_1 to D_2 .
- (2) For all F_1 , F_2 such that for every n holds $F_1(n) = F_2(n)$ holds $F_1 = F_2$.

The scheme *ExFuncSeq* deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , and a unary functor \mathcal{F} yielding a partial function from \mathcal{A} to \mathcal{B} and states that:

there exists a sequence G of partial functions from \mathcal{A} into \mathcal{B} such that for every n holds $G(n) = \mathcal{F}(n)$ for all values of the parameters.

> C 1992 Fondation Philippe le Hodey ISSN 0777-4028

We now define several new functors. Let us consider D, H, r. The functor r H yields a sequence of partial functions from D into \mathbb{R} and is defined as follows:

(Def.2) for every n holds (r H)(n) = r H(n).

Let us consider D, H. The functor H^{-1} yielding a sequence of partial functions from D into \mathbb{R} is defined by:

(Def.3) for every *n* holds $H^{-1}(n) = \frac{1}{H(n)}$.

The functor -H yields a sequence of partial functions from D into $\mathbb R$ and is defined by:

(Def.4) for every n holds (-H)(n) = -H(n).

The functor |H| yields a sequence of partial functions from D into \mathbb{R} and is defined as follows:

(Def.5) for every n holds |H|(n) = |H(n)|.

Let us consider D, G, H. The functor G + H yields a sequence of partial functions from D into \mathbb{R} and is defined by:

(Def.6) for every n holds (G + H)(n) = G(n) + H(n).

The functor G - H yielding a sequence of partial functions from D into \mathbb{R} is defined as follows:

(Def.7)
$$G - H = G + -H$$
.

The functor GH yields a sequence of partial functions from D into \mathbb{R} and is defined as follows:

(Def.8) for every n holds (GH)(n) = G(n)H(n).

Let us consider D, H, G. The functor $\frac{G}{H}$ yielding a sequence of partial functions from D into \mathbb{R} is defined as follows:

(Def.9) $\frac{G}{H} = G H^{-1}.$

Next we state a number of propositions:

- (3) $H_1 = \frac{G}{H}$ if and only if for every *n* holds $H_1(n) = \frac{G(n)}{H(n)}$.
- (4) $H_1 = G H$ if and only if for every *n* holds $H_1(n) = G(n) H(n)$.
- (5) G + H = H + G and (G + H) + J = G + (H + J).
- (6) GH = HG and (GH)J = G(HJ).
- (7) (G+H) J = G J + H J and J (G+H) = J G + J H.
- (8) -H = (-1) H.
- (9) (G H) J = G J H J and J G J H = J (G H).
- (10) r(G+H) = rG + rH and r(G-H) = rG rH.
- (11) $(r \cdot p) H = r (p H).$
- $(12) \quad 1 H = H.$
- $(13) \quad --H = H.$
- (14) $G^{-1}H^{-1} = (GH)^{-1}.$
- (15) If $r \neq 0$, then $(r H)^{-1} = r^{-1} H^{-1}$.
- (16) $|H|^{-1} = |H^{-1}|.$

- (17) |GH| = |G||H|.
- $(18) \quad |\frac{G}{H}| = \frac{|G|}{|H|}.$
- (19) |r H| = |r| |H|.

In the sequel x is an element of D, X, Y are sets, and f is a partial function from D to \mathbb{R} . We now define three new constructions. Let us consider D_1 , D_2 , F, X. We say that X is common for elements of F if and only if:

(Def.10) $X \neq \emptyset$ and for every *n* holds $X \subseteq \text{dom } F(n)$.

Let us consider D, H, x. The functor H # x yielding a sequence of real numbers is defined as follows:

(Def.11) for every n holds (H#x)(n) = H(n)(x).

Let us consider D, H, X. We say that H is point-convergent on X if and only if:

(Def.12) X is common for elements of H and there exists f such that X = dom fand for every x such that $x \in X$ and for every p such that p > 0 there exists k such that for every n such that $n \ge k$ holds |H(n)(x) - f(x)| < p.

Next we state two propositions:

- (20) H is point-convergent on X if and only if X is common for elements of H and there exists f such that X = dom f and for every x such that $x \in X$ holds H # x is convergent and $\lim(H \# x) = f(x)$.
- (21) H is point-convergent on X if and only if X is common for elements of H and for every x such that $x \in X$ holds H # x is convergent.

We now define two new constructions. Let us consider D, H, X. We say that H is uniform-convergent on X if and only if:

(Def.13) X is common for elements of H and there exists f such that X = dom fand for every p such that p > 0 there exists k such that for all n, x such that $n \ge k$ and $x \in X$ holds |H(n)(x) - f(x)| < p.

Let us assume that H is point-convergent on X. The functor $\lim_X H$ yielding a partial function from D to \mathbb{R} is defined as follows:

(Def.14) dom $\lim_X H = X$ and for every x such that $x \in \text{dom } \lim_X H$ holds $(\lim_X H)(x) = \lim_X (H \# x).$

We now state a number of propositions:

- (22) If H is point-convergent on X, then $f = \lim_X H$ if and only if dom f = X and for every x such that $x \in X$ and for every p such that p > 0 there exists k such that for every n such that $n \ge k$ holds |H(n)(x) f(x)| < p.
- (23) If H is uniform-convergent on X, then H is point-convergent on X.
- (24) If $Y \subseteq X$ and $Y \neq \emptyset$ and X is common for elements of H, then Y is common for elements of H.
- (25) If $Y \subseteq X$ and $Y \neq \emptyset$ and H is point-convergent on X, then H is point-convergent on Y and $\lim_X H \upharpoonright Y = \lim_Y H$.
- (26) If $Y \subseteq X$ and $Y \neq \emptyset$ and H is uniform-convergent on X, then H is uniform-convergent on Y.

- (27) If X is common for elements of H, then for every x such that $x \in X$ holds $\{x\}$ is common for elements of H.
- (28) If H is point-convergent on X, then for every x such that $x \in X$ holds $\{x\}$ is common for elements of H.
- (29) Suppose $\{x\}$ is common for elements of H_1 and $\{x\}$ is common for elements of H_2 . Then $H_1 # x + H_2 # x = (H_1 + H_2) # x$ and $H_1 # x H_2 # x = (H_1 H_2) # x$ and $(H_1 # x) (H_2 # x) = (H_1 H_2) # x$.
- (30) If $\{x\}$ is common for elements of H, then |H|#x = |H#x| and (-H)#x = -H#x.
- (31) If $\{x\}$ is common for elements of H, then (rH)#x = r(H#x).
- (32) Suppose X is common for elements of H_1 and X is common for elements of H_2 . Then for every x such that $x \in X$ holds $H_1 \# x + H_2 \# x = (H_1 + H_2) \# x$ and $H_1 \# x H_2 \# x = (H_1 H_2) \# x$ and $(H_1 \# x) (H_2 \# x) = (H_1 H_2) \# x$.
- (33) If X is common for elements of H, then for every x such that $x \in X$ holds |H| # x = |H # x| and (-H) # x = -H # x.
- (34) If X is common for elements of H, then for every x such that $x \in X$ holds (r H) # x = r (H # x).
- (35) Suppose H_1 is point-convergent on X and H_2 is point-convergent on X. Then for every x such that $x \in X$ holds $H_1 \# x + H_2 \# x = (H_1 + H_2) \# x$ and $H_1 \# x - H_2 \# x = (H_1 - H_2) \# x$ and $(H_1 \# x) (H_2 \# x) = (H_1 H_2) \# x$.
- (36) If H is point-convergent on X, then for every x such that $x \in X$ holds |H| # x = |H # x| and (-H) # x = -H # x.
- (37) If H is point-convergent on X, then for every x such that $x \in X$ holds (rH)#x = r(H#x).
- (38) If X is common for elements of H_1 and X is common for elements of H_2 , then X is common for elements of $H_1 + H_2$ and X is common for elements of $H_1 H_2$ and X is common for elements of $H_1 H_2$.
- (39) If X is common for elements of H, then X is common for elements of |H| and X is common for elements of -H.
- (40) If X is common for elements of H, then X is common for elements of r H.
- (41) Suppose H_1 is point-convergent on X and H_2 is point-convergent on X. Then
 - (i) $H_1 + H_2$ is point-convergent on X,
 - (ii) $\lim_X (H_1 + H_2) = \lim_X H_1 + \lim_X H_2,$
 - (iii) $H_1 H_2$ is point-convergent on X,
 - (iv) $\lim_X (H_1 H_2) = \lim_X H_1 \lim_X H_2,$
 - (v) $H_1 H_2$ is point-convergent on X,
 - (vi) $\lim_X (H_1 H_2) = \lim_X H_1 \lim_X H_2.$
- (42) If H is point-convergent on X, then |H| is point-convergent on X and $\lim_X |H| = |\lim_X H|$ and -H is point-convergent on X and $\lim_X (-H) =$

 $-\lim_X H.$

- (43) If H is point-convergent on X, then r H is point-convergent on X and $\lim_X (r H) = r \lim_X H.$
- (44) H is uniform-convergent on X if and only if X is common for elements of H and H is point-convergent on X and for every r such that 0 < rthere exists k such that for all n, x such that $n \ge k$ and $x \in X$ holds $|H(n)(x) - (\lim_{X} H)(x)| < r$.

In the sequel H will be a sequence of partial functions from \mathbb{R} into \mathbb{R} . Let us consider n, k. Then $\max(n, k)$ is a natural number.

We now state the proposition

(45) If H is uniform-convergent on X and for every n holds H(n) is continuous on X, then $\lim_X H$ is continuous on X.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [5] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697–702, 1990.
- [6] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
- [7] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781–786, 1990.
- Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [9] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [10] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [12] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [13] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received May 22, 1992