Functional Sequence from a Domain to a Domain

Beata Perkowska
Warsaw University
Białystok

Abstract

Summary. Definitions of functional sequences and basic operations on functional sequences from a domain to a domain, point and uniform convergent, limit of functional sequence from a domain to the set of real numbers and facts about properties of the limit of functional sequences are proved.

MML Identifier: SEQFUNC.

The articles [11], [1], [2], [3], [13], [5], [6], [9], [8], [4], [12], [7], and [10] provide the notation and terminology for this paper. For simplicity we adopt the following rules: D, D_{1}, D_{2} denote non-empty sets, n, k denote natural numbers, p, r denote real numbers, and f denotes a function. Let us consider D_{1}, D_{2}. A function is called a sequence of partial functions from D_{1} into D_{2} if:
(Def.1) dom it $=\mathbb{N}$ and rng it $\subseteq D_{1} \dot{\rightarrow} D_{2}$.
In the sequel F, F_{1}, F_{2} are sequences of partial functions from D_{1} into D_{2}. Let us consider D_{1}, D_{2}, F, n. Then $F(n)$ is a partial function from D_{1} to D_{2}.

In the sequel G, H, H_{1}, H_{2}, J are sequences of partial functions from D into \mathbb{R}. One can prove the following two propositions:
(1) $\quad f$ is a sequence of partial functions from D_{1} into D_{2} if and only if $\operatorname{dom} f=\mathbb{N}$ and for every n holds $f(n)$ is a partial function from D_{1} to D_{2}.
(2) For all F_{1}, F_{2} such that for every n holds $F_{1}(n)=F_{2}(n)$ holds $F_{1}=F_{2}$.

The scheme ExFuncSeq deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, and a unary functor \mathcal{F} yielding a partial function from \mathcal{A} to \mathcal{B} and states that:
there exists a sequence G of partial functions from \mathcal{A} into \mathcal{B} such that for every n holds $G(n)=\mathcal{F}(n)$
for all values of the parameters.

We now define several new functors. Let us consider D, H, r. The functor $r H$ yields a sequence of partial functions from D into \mathbb{R} and is defined as follows:
(Def.2) for every n holds $(r H)(n)=r H(n)$.
Let us consider D, H. The functor H^{-1} yielding a sequence of partial functions from D into \mathbb{R} is defined by:
(Def.3) for every n holds $H^{-1}(n)=\frac{1}{H(n)}$.
The functor $-H$ yields a sequence of partial functions from D into \mathbb{R} and is defined by:
(Def.4) for every n holds $(-H)(n)=-H(n)$.
The functor $|H|$ yields a sequence of partial functions from D into \mathbb{R} and is defined as follows:
(Def.5) for every n holds $|H|(n)=|H(n)|$.
Let us consider D, G, H. The functor $G+H$ yields a sequence of partial functions from D into \mathbb{R} and is defined by:
(Def.6) for every n holds $(G+H)(n)=G(n)+H(n)$.
The functor $G-H$ yielding a sequence of partial functions from D into \mathbb{R} is defined as follows:
(Def.7) $\quad G-H=G+-H$.
The functor $G H$ yields a sequence of partial functions from D into \mathbb{R} and is defined as follows:
(Def.8) for every n holds $(G H)(n)=G(n) H(n)$.
Let us consider D, H, G. The functor $\frac{G}{H}$ yielding a sequence of partial functions from D into \mathbb{R} is defined as follows:
(Def.9) $\frac{G}{H}=G H^{-1}$.
Next we state a number of propositions:

$$
\begin{align*}
& H_{1}=\frac{G}{H} \text { if and only if for every } n \text { holds } H_{1}(n)=\frac{G(n)}{H(n)} \text {. } \tag{3}\\
& H_{1}=G-H \text { if and only if for every } n \text { holds } H_{1}(n)=G(n)-H(n) \text {. } \\
& G+H=H+G \text { and }(G+H)+J=G+(H+J) \text {. } \\
& G H=H G \text { and }(G H) J=G(H J) \text {. } \\
& (G+H) J=G J+H J \text { and } J(G+H)=J G+J H \text {. } \\
& -H=(-1) H \text {. } \\
& (G-H) J=G J-H J \text { and } J G-J H=J(G-H) \text {. } \\
& r(G+H)=r G+r H \text { and } r(G-H)=r G-r H \text {. } \\
& (r \cdot p) H=r(p H) \text {. } \\
& 1 H=H . \\
& --H=H . \\
& G^{-1} H^{-1}=(G H)^{-1} . \\
& \text { If } r \neq 0, \text { then }(r H)^{-1}=r^{-1} H^{-1} . \\
& |H|^{-1}=\left|H^{-1}\right| \text {. }
\end{align*}
$$

$$
\begin{align*}
& |G H|=|G||H| \text {. } \tag{17}\\
& \left|\frac{G}{H}\right|=\frac{|G|}{|H|} . \tag{18}\\
& |r H|=|r||H| . \tag{19}
\end{align*}
$$

In the sequel x is an element of D, X, Y are sets, and f is a partial function from D to \mathbb{R}. We now define three new constructions. Let us consider D_{1}, D_{2}, F, X. We say that X is common for elements of F if and only if:
(Def.10) $\quad X \neq \emptyset$ and for every n holds $X \subseteq \operatorname{dom} F(n)$.
Let us consider D, H, x. The functor $H \# x$ yielding a sequence of real numbers is defined as follows:
(Def.11) for every n holds $(H \# x)(n)=H(n)(x)$.
Let us consider D, H, X. We say that H is point-convergent on X if and only if:
(Def.12) $\quad X$ is common for elements of H and there exists f such that $X=\operatorname{dom} f$ and for every x such that $x \in X$ and for every p such that $p>0$ there exists k such that for every n such that $n \geq k$ holds $|H(n)(x)-f(x)|<p$.
Next we state two propositions:
(20) $\quad H$ is point-convergent on X if and only if X is common for elements of H and there exists f such that $X=\operatorname{dom} f$ and for every x such that $x \in X$ holds $H \# x$ is convergent and $\lim (H \# x)=f(x)$.
(21) H is point-convergent on X if and only if X is common for elements of H and for every x such that $x \in X$ holds $H \# x$ is convergent.
We now define two new constructions. Let us consider D, H, X. We say that H is uniform-convergent on X if and only if:
(Def.13) $\quad X$ is common for elements of H and there exists f such that $X=\operatorname{dom} f$ and for every p such that $p>0$ there exists k such that for all n, x such that $n \geq k$ and $x \in X$ holds $|H(n)(x)-f(x)|<p$.
Let us assume that H is point-convergent on X. The functor $\lim _{X} H$ yielding a partial function from D to \mathbb{R} is defined as follows:
(Def.14) $\operatorname{dom}_{X} \lim _{X} H=X$ and for every x such that $x \in \operatorname{dom}_{X} H$ holds $\left(\lim _{X} H\right)(x)=\lim (H \# x)$.
We now state a number of propositions:
(22) If H is point-convergent on X, then $f=\lim _{X} H$ if and only if $\operatorname{dom} f=$ X and for every x such that $x \in X$ and for every p such that $p>0$ there exists k such that for every n such that $n \geq k$ holds $|H(n)(x)-f(x)|<p$.
(23) If H is uniform-convergent on X, then H is point-convergent on X.
(24) If $Y \subseteq X$ and $Y \neq \emptyset$ and X is common for elements of H, then Y is common for elements of H.
(25) If $Y \subseteq X$ and $Y \neq \emptyset$ and H is point-convergent on X, then H is point-convergent on Y and $\lim _{X} H \upharpoonright Y=\lim _{Y} H$.
(26) If $Y \subseteq X$ and $Y \neq \emptyset$ and H is uniform-convergent on X, then H is uniform-convergent on Y.
(27) If X is common for elements of H, then for every x such that $x \in X$ holds $\{x\}$ is common for elements of H.
(28) If H is point-convergent on X, then for every x such that $x \in X$ holds $\{x\}$ is common for elements of H.
(29) Suppose $\{x\}$ is common for elements of H_{1} and $\{x\}$ is common for elements of H_{2}. Then $H_{1} \# x+H_{2} \# x=\left(H_{1}+H_{2}\right) \# x$ and $H_{1} \# x-H_{2} \# x=$ $\left(H_{1}-H_{2}\right) \# x$ and $\left(H_{1} \# x\right)\left(H_{2} \# x\right)=\left(H_{1} H_{2}\right) \# x$.
(30) If $\{x\}$ is common for elements of H, then $|H| \# x=|H \# x|$ and $(-H) \# x=-H \# x$.
(31) If $\{x\}$ is common for elements of H, then $(r H) \# x=r(H \# x)$.

Suppose X is common for elements of H_{1} and X is common for elements of H_{2}. Then for every x such that $x \in X$ holds $H_{1} \# x+H_{2} \# x=$ $\left(H_{1}+H_{2}\right) \# x$ and $H_{1} \# x-H_{2} \# x=\left(H_{1}-H_{2}\right) \# x$ and $\left(H_{1} \# x\right)\left(H_{2} \# x\right)=$ $\left(H_{1} H_{2}\right) \# x$.
(33) If X is common for elements of H, then for every x such that $x \in X$ holds $|H| \# x=|H \# x|$ and $(-H) \# x=-H \# x$.
(34) If X is common for elements of H, then for every x such that $x \in X$ holds $(r H) \# x=r(H \# x)$.
(35) Suppose H_{1} is point-convergent on X and H_{2} is point-convergent on X. Then for every x such that $x \in X$ holds $H_{1} \# x+H_{2} \# x=\left(H_{1}+H_{2}\right) \# x$ and $H_{1} \# x-H_{2} \# x=\left(H_{1}-H_{2}\right) \# x$ and $\left(H_{1} \# x\right)\left(H_{2} \# x\right)=\left(H_{1} H_{2}\right) \# x$.
(36) If H is point-convergent on X, then for every x such that $x \in X$ holds $|H| \# x=|H \# x|$ and $(-H) \# x=-H \# x$.
(37) If H is point-convergent on X, then for every x such that $x \in X$ holds $(r H) \# x=r(H \# x)$.
(38) If X is common for elements of H_{1} and X is common for elements of H_{2}, then X is common for elements of $H_{1}+H_{2}$ and X is common for elements of $H_{1}-H_{2}$ and X is common for elements of $H_{1} H_{2}$.
(39) If X is common for elements of H, then X is common for elements of $|H|$ and X is common for elements of $-H$.
(40) If X is common for elements of H, then X is common for elements of $r H$.
(41) Suppose H_{1} is point-convergent on X and H_{2} is point-convergent on X. Then
(i) $H_{1}+H_{2}$ is point-convergent on X,
(ii) $\lim _{X}\left(H_{1}+H_{2}\right)=\lim _{X} H_{1}+\lim _{X} H_{2}$,
(iii) $H_{1}-H_{2}$ is point-convergent on X,
(iv) $\lim _{X}\left(H_{1}-H_{2}\right)=\lim _{X} H_{1}-\lim _{X} H_{2}$,
(v) $H_{1} H_{2}$ is point-convergent on X,
(vi) $\lim _{X}\left(H_{1} H_{2}\right)=\lim _{X} H_{1} \lim _{X} H_{2}$.
(42) If H is point-convergent on X, then $|H|$ is point-convergent on X and $\lim _{X}|H|=\left|\lim _{X} H\right|$ and $-H$ is point-convergent on X and $\lim _{X}(-H)=$
$-\lim _{X} H$.
(43) If H is point-convergent on X, then $r H$ is point-convergent on X and $\lim _{X}(r H)=r \lim _{X} H$.
(44) $\quad H$ is uniform-convergent on X if and only if X is common for elements of H and H is point-convergent on X and for every r such that $0<r$ there exists k such that for all n, x such that $n \geq k$ and $x \in X$ holds $\left|H(n)(x)-\left(\lim _{X} H\right)(x)\right|<r$.
In the sequel H will be a sequence of partial functions from \mathbb{R} into \mathbb{R}. Let us consider n, k. Then $\max (n, k)$ is a natural number.

We now state the proposition
(45) If H is uniform-convergent on X and for every n holds $H(n)$ is continuous on X, then $\lim _{X} H$ is continuous on X.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[4] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[5] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[6] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[7] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
[8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[9] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[10] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[12] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[13] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received May 22, 1992

