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Summary. Let 	 = 〈S; K, 0, 1, +, ·〉 be a ring. The structure
op 	 = 〈S; K, 0, 1, +, •〉 is called anti-ring, if α • β = β · α for elements
α, β of K [12, pages 5–7]. It is easily seen that op 	 is also a ring. If
V is a left module over 	 , then V is a right module over op 	 . If W
is a right module over 	 , then W is a left module over op 	 . Let K, L
be rings. A morphism J : K −→ L is called anti-homomorphism, if
J(α · β) = J(β) · J(α) for elements α, β of K. If J : K −→ L is a
homomorphism, then J : K −→ opL is an anti-homomorphism. Let K, L
be rings, V, W left modules over K, L respectively and J : K −→ L an
anti-monomorphism. A map f : V −→ W is called J - semilinear, if
f(x + y) = f(x) + f(y) and f(α · x) = J(α) · f(x) for vectors x, y of V
and a scalar α of K.

MML Identifier: MOD 4.

The papers [19], [18], [21], [3], [4], [1], [20], [17], [2], [7], [8], [11], [14], [15], [16],
[5], [6], [9], [13], and [10] provide the notation and terminology for this paper.

1. Opposite functions

In the sequel A, B, C are non-empty sets and f is a function from [: A, B :] into
C. Let us consider A, B, C, f . Then 
 f is a function from [: B, A :] into C.

We now state the proposition

(1) For every element x of A and for every element y of B holds f(x,

y) = ( 
 f)(y, x).
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2. Opposite rings

In the sequel K, L will be field structures. Let us consider K. The functor opK

yielding a strict field structure is defined by:

(Def.1) opK = 〈the carrier of K, 
 (the multiplication of K), the addition of K,

the reverse-map of K, the unity of K, the zero of K〉.

We now state four propositions:

(2) The group structure of opK = the group structure of K and for an
arbitrary x holds x is a scalar of opK if and only if x is a scalar of K.

(3) op(opK) = the field structure of K.

(4) (i) 0K = 0opK ,
(ii) 1K = 1opK ,
(iii) for all scalars x, y, z, u of K and for all scalars a, b, c, d of opK such

that x = a and y = b and z = c and u = d holds x+y = a+b and x·y = b·a
and −x = −a and x + y + z = a + b + c and x + (y + z) = a + (b + c) and
(x · y) · z = c · (b · a) and x · (y · z) = (c · b) · a and x · (y + z) = (b + c) · a
and (y + z) · x = a · (b + c) and x · y + z · u = b · a + d · c.

(5) For every ring K holds opK is a strict ring.

Let K be a ring. Then opK is a strict ring.

One can prove the following proposition

(6) For every associative ring K holds opK is an associative ring.

Let K be an associative ring. Then opK is a strict associative ring.

Next we state the proposition

(7) For every skew field K holds opK is a skew field.

Let K be a skew field. Then opK is a strict skew field.

One can prove the following proposition

(8) For every field K holds opK is a strict field.

Let K be a field. Then opK is a strict field.

3. Opposite modules

In the sequel V denotes a left module structure over K. Let us consider K, V .
The functor opV yields a strict right module structure over opK and is defined
as follows:

(Def.2) for every function o from [: the carrier of V, the carrier of opK :] into the
carrier of V such that o = 
 (the left multiplication of V ) holds opV = 〈the
carrier of V, the addition of V, the reverse-map of V, the zero of V, o〉.

The following proposition is true

(9) The group structure of opV = the group structure of V and for an
arbitrary x holds x is a vector of V if and only if x is a vector of opV .
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Let us consider K, V , and let o be a function from [: the carrier of K, the
carrier of V :] into the carrier of V . The functor opo yields a function from [: the
carrier of opV, the carrier of opK :] into the carrier of opV and is defined by:

(Def.3) opo = 
 o.

One can prove the following two propositions:

(10) The right multiplication of opV = op(the left multiplication of V ).

(11) opV = 〈the carrier of opV, the addition of opV, the reverse-map of opV,

the zero of opV, op(the left multiplication of V )〉.

In the sequel W denotes a right module structure over K. Let us consider
K, W . The functor opW yields a strict left module structure over opK and is
defined by:

(Def.4) for every function o from [: the carrier of opK, the carrier of W :] into
the carrier of W such that o = 
 (the right multiplication of W ) holds
opW = 〈the carrier of W, the addition of W, the reverse-map of W, the zero
of W,o〉.

We now state the proposition

(12) The group structure of opW = the group structure of W and for an
arbitrary x holds x is a vector of W if and only if x is a vector of opW .

Let us consider K, W , and let o be a function from [: the carrier of W, the
carrier of K :] into the carrier of W . The functor opo yielding a function from
[: the carrier of opK, the carrier of opW :] into the carrier of opW is defined as
follows:

(Def.5) opo = 
 o.

The following propositions are true:

(13) The left multiplication of opW = op(the right multiplication of W ).

(14) opW = 〈the carrier of opW, the addition of opW, the reverse-map of opW,

the zero of opW, op(the right multiplication of W )〉.

(15) For every function o from [: the carrier of K, the carrier of V :] into the
carrier of V holds op(opo) = o.

(16) For every function o from [: the carrier of K, the carrier of V :] into the
carrier of V and for every scalar x of K and for every scalar y of opK and
for every vector v of V and for every vector w of opV such that x = y and
v = w holds (opo)(w, y) = o(x, v).

(17) Let K, L be rings. Then for every V being a left module structure over
K and for every W being a right module structure over L and for every
scalar x of K and for every scalar y of L and for every vector v of V and
for every vector w of W such that L = opK and W = opV and x = y and
v = w holds w · y = x · v.

(18) For all rings K, L and for every V being a left module structure over
K and for every W being a right module structure over L and for all
vectors v1, v2 of V and for all vectors w1, w2 of W such that L = opK

and W = opV and v1 = w1 and v2 = w2 holds w1 + w2 = v1 + v2.
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(19) For every function o from [: the carrier of W, the carrier of K :] into the
carrier of W holds op(opo) = o.

(20) For every function o from [: the carrier of W, the carrier of K :] into the
carrier of W and for every scalar x of K and for every scalar y of opK and
for every vector v of W and for every vector w of opW such that x = y

and v = w holds (opo)(y, w) = o(v, x).

(21) Let K, L be rings. Then for every V being a left module structure over
K and for every W being a right module structure over L and for every
scalar x of K and for every scalar y of L and for every vector v of V and
for every vector w of W such that K = opL and V = opW and x = y and
v = w holds w · y = x · v.

(22) For all rings K, L and for every V being a left module structure over
K and for every W being a right module structure over L and for all
vectors v1, v2 of V and for all vectors w1, w2 of W such that K = opL

and V = opW and v1 = w1 and v2 = w2 holds w1 + w2 = v1 + v2.

(23) For every K being a strict field structure and for every V being a left
module structure over K holds op(opV ) = the left module structure of V .

(24) For every K being a strict field structure and for every W being a right
module structure over K holds op(opW ) = the right module structure of
W .

(25) For every associative ring K and for every left module V over K holds
opV is a strict right module over opK.

Let K be an associative ring, and let V be a left module over K. Then opV

is a strict right module over opK.

One can prove the following proposition

(26) For every associative ring K and for every right module W over K holds
opW is a strict left module over opK.

Let K be an associative ring, and let W be a right module over K. Then
opW is a strict left module over opK.

4. Morphisms of rings

We now define several new attributes. Let us consider K, L. A map from K

into L is antilinear if:

(Def.6) for all scalars x, y of K holds it(x+ y) = it(x)+ it(y) and for all scalars
x, y of K holds it(x · y) = it(y) · it(x) and it(1K) = 1L.

A map from K into L is monomorphism if:

(Def.7) it is linear and it is one-to-one.

A map from K into L is antimonomorphism if:

(Def.8) it is antilinear and it is one-to-one.

A map from K into L is epimorphism if:
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(Def.9) it is linear and rng it = the carrier of L.

A map from K into L is antiepimorphism if:

(Def.10) it is antilinear and rng it = the carrier of L.

A map from K into L is isomorphism if:

(Def.11) it is monomorphism and rng it = the carrier of L.

A map from K into L is antiisomorphism if:

(Def.12) it is antimonomorphism and rng it = the carrier of L.

In the sequel J denotes a map from K into K. We now define four new
attributes. Let us consider K. A map from K into K is endomorphism if:

(Def.13) it is linear.

A map from K into K is antiendomorphism if:

(Def.14) it is antilinear.

A map from K into K is automorphism if:

(Def.15) it is isomorphism.

A map from K into K is antiautomorphism if:

(Def.16) it is antiisomorphism.

One can prove the following propositions:

(27) J is automorphism if and only if the following conditions are satisfied:
(i) for all scalars x, y of K holds J(x + y) = J(x) + J(y),
(ii) for all scalars x, y of K holds J(x · y) = J(x) · J(y),
(iii) J(1K) = 1K ,
(iv) J is one-to-one,
(v) rng J = the carrier of K.

(28) J is antiautomorphism if and only if the following conditions are satis-
fied:

(i) for all scalars x, y of K holds J(x + y) = J(x) + J(y),
(ii) for all scalars x, y of K holds J(x · y) = J(y) · J(x),
(iii) J(1K) = 1K ,
(iv) J is one-to-one,
(v) rng J = the carrier of K.

(29) idK is automorphism.

We follow the rules: K, L will denote rings, J will denote a map from K

into L, and x, y will denote scalars of K. Next we state three propositions:

(30) If J is linear, then J(0K) = 0L and J(−x) = −J(x) and J(x − y) =
J(x) − J(y).

(31) If J is antilinear, then J(0K) = 0L and J(−x) = −J(x) and J(x− y) =
J(x) − J(y).

(32) For every associative ring K holds idK is antiautomorphism if and only
if K is a commutative ring.

One can prove the following proposition
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(33) For every skew field K holds idK is antiautomorphism if and only if K

is a field.

5. Opposite morphisms to morphisms of rings

In the sequel K, L will be field structures and J will be a map from K into L.
Let us consider K, L, J . The functor opJ yielding a map from K into opL is
defined by:

(Def.17) opJ = J .

Next we state several propositions:

(34) op(opJ) = J .

(35) J is linear if and only if opJ is antilinear.

(36) J is antilinear if and only if opJ is linear.

(37) J is monomorphism if and only if opJ is antimonomorphism.

(38) J is antimonomorphism if and only if opJ is monomorphism.

(39) J is epimorphism if and only if opJ is antiepimorphism.

(40) J is antiepimorphism if and only if opJ is epimorphism.

(41) J is isomorphism if and only if opJ is antiisomorphism.

(42) J is antiisomorphism if and only if opJ is isomorphism.

In the sequel J will be a map from K into K. We now state four propositions:

(43) J is endomorphism if and only if opJ is antilinear.

(44) J is antiendomorphism if and only if opJ is linear.

(45) J is automorphism if and only if opJ is antiisomorphism.

(46) J is antiautomorphism if and only if opJ is isomorphism.

6. Morphisms of groups

In the sequel G, H will denote groups. Let us consider G, H. A map from G

into H is said to be a homomorphism from G to H if:

(Def.18) for all elements x, y of G holds it(x + y) = it(x) + it(y).

Then zero(G,H) is a homomorphism from G to H.

In the sequel f is a homomorphism from G to H. We now define four
new constructions. Let us consider G, H. A homomorphism from G to H is
monomorphism if:

(Def.19) it is one-to-one.

A homomorphism from G to H is epimorphism if:

(Def.20) rng it = the carrier of H.

A homomorphism from G to H is isomorphism if:
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(Def.21) it is one-to-one and rng it = the carrier of H.

Let us consider G. An endomorphism of G is a homomorphism from G to G.

We now state the proposition

(47) For every element x of G holds idG(x) = x.

We now define two new constructions. Let us consider G. An endomorphism
of G is automorphism-like if:

(Def.22) it is isomorphism.

An automorphism of G is an automorphism-like endomorphism of G.
Then idG is an automorphism of G.

In the sequel x, y will be elements of G. We now state the proposition

(48) f(0G) = 0H and f(−x) = −f(x) and f(x −′ y) = f(x) −′ f(y).

We adopt the following convention: G, H denote Abelian groups, f denotes
a homomorphism from G to H, and x, y denote elements of G. The following
proposition is true

(49) f(x − y) = f(x) − f(y).

7. Semilinear morphisms

For simplicity we adopt the following rules: K, L are associative rings, J is a
map from K into L, V is a left module over K, and W is a left module over
L. Let us consider K, L, J , V , W . A map from V into W is said to be a
homomorphism from V to W by J if:

(Def.23) for all vectors x, y of V holds it(x + y) = it(x) + it(y) and for every
scalar a of K and for every vector x of V holds it(a · x) = J(a) · it(x).

The following proposition is true

(50) zero(V,W ) is a homomorphism from V to W by J .

In the sequel f denotes a homomorphism from V to W by J . We now define
three new predicates. Let us consider K, L, J , V , W , f . We say that f is a
monomorphism wrp J if and only if:

(Def.24) f is one-to-one.

We say that f is a epimorphism wrp J if and only if:

(Def.25) rng f = the carrier of W .

We say that f is a isomorphism wrp J if and only if:

(Def.26) f is one-to-one and rng f = the carrier of W .

In the sequel J will denote a map from K into K and f will denote a ho-
momorphism from V to V by J . We now define two new constructions. Let us
consider K, J , V . An endomorphism of J and V is a homomorphism from V

to V by J .
Let us consider K, J , V , f . We say that f is a automorphism wrp J if and

only if:
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(Def.27) f is one-to-one and rng f = the carrier of V .

In the sequel W is a left module over K. Let us consider K, V , W . A
homomorphism from V to W is a homomorphism from V to W by idK .

Next we state the proposition

(51) For every map f from V into W holds f is a homomorphism from V to
W if and only if for all vectors x, y of V holds f(x+y) = f(x)+f(y) and
for every scalar a of K and for every vector x of V holds f(a ·x) = a ·f(x).

We now define five new constructions. Let us consider K, V , W . A homo-
morphism from V to W is monomorphism if:

(Def.28) it is one-to-one.

A homomorphism from V to W is epimorphism if:

(Def.29) rng it = the carrier of W .

A homomorphism from V to W is isomorphism if:

(Def.30) it is one-to-one and rng it = the carrier of W .

Let us consider K, V . An endomorphism of V is a homomorphism from V to
V .

An endomorphism of V is automorphism if:

(Def.31) it is one-to-one and rng it = the carrier of V .

8. Annex

Next we state three propositions:

(52) For every skew field K holds K is a field if and only if for all scalars x,
y of K holds x · y = y · x.

(53) For every K being a field structure holds K is a field if and only if K

is a skew field and for all scalars x, y of K holds x · y = y · x.

(54) For every group G and for all elements x, y, z of G such that x+y = x+z

holds y = z.
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[6] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.



opposite rings, modules and their morphisms 65
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