Opposite Rings, Modules and their Morphisms

Michał Muzalewski
Warsaw University
Białystok

Abstract

Summary. Let $\mathbb{K}=\langle S ; K, 0,1,+, \cdot\rangle$ be a ring. The structure ${ }^{\mathrm{op}} \mathbb{K}=\langle S ; K, 0,1,+, \bullet\rangle$ is called anti-ring, if $\alpha \bullet \beta=\beta \cdot \alpha$ for elements α, β of K [12, pages $5-7]$. It is easily seen that ${ }^{\mathrm{op}} \mathbb{K}$ is also a ring. If V is a left module over \mathbb{K}, then V is a right module over ${ }^{\circ \mathrm{P}} \mathbb{K}$. If W is a right module over \mathbb{K}, then W is a left module over ${ }^{\text {op }} \mathbb{K}$. Let K, L be rings. A morphism $J: K \longrightarrow L$ is called anti-homomorphism, if $J(\alpha \cdot \beta)=J(\beta) \cdot J(\alpha)$ for elements α, β of K. If $J: K \longrightarrow L$ is a homomorphism, then $J: K \longrightarrow{ }^{\text {op }} L$ is an anti-homomorphism. Let K, L be rings, V, W left modules over K, L respectively and $J: K \longrightarrow L$ an anti-monomorphism. A map $f: V \longrightarrow W$ is called J - semilinear, if $f(x+y)=f(x)+f(y)$ and $f(\alpha \cdot x)=J(\alpha) \cdot f(x)$ for vectors x, y of V and a scalar α of K.

MML Identifier: MOD_4.

The papers [19], [18], [21], [3], [4], [1], [20], [17], [2], [7], [8], [11], [14], [15], [16], [5], [6], [9], [13], and [10] provide the notation and terminology for this paper.

1. Opposite functions

In the sequel A, B, C are non-empty sets and f is a function from $: A, B]$ into C. Let us consider A, B, C, f. Then $\curvearrowleft f$ is a function from $: B, A$: into C.

We now state the proposition
(1) For every element x of A and for every element y of B holds $f(x$, $y)=(\curvearrowleft f)(y, x)$.

2. Opposite Rings

In the sequel K, L will be field structures. Let us consider K. The functor ${ }^{\text {op }} K$ yielding a strict field structure is defined by:
(Def.1) $\quad{ }^{\text {op }} K=\langle$ the carrier of $K, \curvearrowleft($ the multiplication of $K)$, the addition of K, the reverse-map of K, the unity of K, the zero of $K\rangle$.
We now state four propositions:
(2) The group structure of ${ }^{\text {op }} K=$ the group structure of K and for an arbitrary x holds x is a scalar of op K if and only if x is a scalar of K.
(3) $\quad{ }^{\mathrm{op}}\left({ }^{\mathrm{op}} K\right)=$ the field structure of K.
(4) (i) $0_{K}=0_{\mathrm{op}_{K}}$,
(ii) $1_{K}=1_{\mathrm{op} K}$,
(iii) for all scalars x, y, z, u of K and for all scalars a, b, c, d of ${ }^{\text {op }} K$ such that $x=a$ and $y=b$ and $z=c$ and $u=d$ holds $x+y=a+b$ and $x \cdot y=b \cdot a$ and $-x=-a$ and $x+y+z=a+b+c$ and $x+(y+z)=a+(b+c)$ and $(x \cdot y) \cdot z=c \cdot(b \cdot a)$ and $x \cdot(y \cdot z)=(c \cdot b) \cdot a$ and $x \cdot(y+z)=(b+c) \cdot a$ and $(y+z) \cdot x=a \cdot(b+c)$ and $x \cdot y+z \cdot u=b \cdot a+d \cdot c$.
(5) For every ring K holds ${ }^{\mathrm{op}} K$ is a strict ring.

Let K be a ring. Then ${ }^{\text {op }} K$ is a strict ring.
One can prove the following proposition
(6) For every associative ring K holds ${ }^{\text {op }} K$ is an associative ring.

Let K be an associative ring. Then ${ }^{\text {op }} K$ is a strict associative ring.
Next we state the proposition
(7) For every skew field K holds ${ }^{\circ}{ }^{\text {op }} K$ is a skew field.

Let K be a skew field. Then ${ }^{\text {op }} K$ is a strict skew field.
One can prove the following proposition
(8) For every field K holds ${ }^{\text {op }} K$ is a strict field.

Let K be a field. Then ${ }^{\text {op }} K$ is a strict field.

3. Opposite modules

In the sequel V denotes a left module structure over K. Let us consider K, V. The functor ${ }^{\mathrm{op}} V$ yields a strict right module structure over ${ }^{\circ}{ }^{\mathrm{op}} K$ and is defined as follows:
(Def.2) for every function o from : the carrier of V, the carrier of ${ }^{\text {op }} K$: into the carrier of V such that $o=\curvearrowleft($ the left multiplication of $V)$ holds ${ }^{\mathrm{op}} V=\langle$ the carrier of V, the addition of V, the reverse-map of V, the zero of $V, o\rangle$.
The following proposition is true
(9) The group structure of ${ }^{\mathrm{op}} V=$ the group structure of V and for an arbitrary x holds x is a vector of V if and only if x is a vector of ${ }^{\mathrm{op}} V$.

Let us consider K, V, and let o be a function from : the carrier of K, the carrier of V : into the carrier of V. The functor ${ }^{{ }^{\text {op }} o \text { yields a function from [: the }}$ carrier of ${ }^{\mathrm{op}} V$, the carrier of ${ }^{\text {op }} K$; into the carrier of ${ }^{\mathrm{op}} V$ and is defined by:
(Def.3) ${ }^{\mathrm{op}} o=\curvearrowleft$ ค.
One can prove the following two propositions:
(10) The right multiplication of ${ }^{\mathrm{op}} V={ }^{\mathrm{op}}$ (the left multiplication of V).
(11) ${ }^{\mathrm{op}} V=\left\langle\right.$ the carrier of ${ }^{\mathrm{op}} V$, the addition of ${ }^{\mathrm{op}} V$, the reverse-map of ${ }^{\mathrm{op}} V$, the zero of ${ }^{\mathrm{op}} V,{ }^{\mathrm{op}}($ the left multiplication of $\left.V)\right\rangle$.
In the sequel W denotes a right module structure over K. Let us consider K, W. The functor ${ }^{\text {op }} W$ yields a strict left module structure over ${ }^{\text {op }} K$ and is defined by:
(Def.4) for every function o from : the carrier of ${ }^{\text {op }} K$, the carrier of W : into the carrier of W such that $o=\curvearrowleft$ (the right multiplication of W) holds ${ }^{\text {op }} W=\langle$ the carrier of W, the addition of W, the reverse-map of W, the zero of $W, o\rangle$.
We now state the proposition
(12) The group structure of ${ }^{\text {op }} W=$ the group structure of W and for an arbitrary x holds x is a vector of W if and only if x is a vector of ${ }^{\circ 口} W$.
Let us consider K, W, and let o be a function from : the carrier of W, the carrier of K : into the carrier of W. The functor ${ }^{{ }^{\circ}{ }_{o} o \text { yielding a function from }}$: the carrier of ${ }^{\text {op }} K$, the carrier of ${ }^{\text {op }} W$: into the carrier of ${ }^{\text {op }} W$ is defined as follows:
(Def.5) $\quad{ }^{\mathrm{op}} o=\curvearrowleft$.
The following propositions are true:
(13) The left multiplication of ${ }^{\mathrm{op}} W={ }^{\mathrm{op}}$ (the right multiplication of W).
(14) ${ }^{\mathrm{op}} W=\left\langle\right.$ the carrier of ${ }^{\text {op }} W$, the addition of ${ }^{\mathrm{op}} W$, the reverse-map of ${ }^{\text {op }} W$, the zero of ${ }^{\mathrm{op}} W$, ${ }^{\mathrm{op}}$ (the right multiplication of $\left.\left.W\right)\right\rangle$.
(15) For every function o from : the carrier of K, the carrier of V : into the carrier of V holds ${ }^{\mathrm{op}}\left({ }^{\circ}{ }^{\mathrm{op}} o\right)=o$.
(16) For every function o from : the carrier of K, the carrier of V : into the carrier of V and for every scalar x of K and for every scalar y of ${ }^{\text {op }} K$ and for every vector v of V and for every vector w of ${ }^{\text {op }} V$ such that $x=y$ and $v=w$ holds $\left({ }^{\circ \mathrm{P}} o\right)(w, y)=o(x, v)$.
(17) Let K, L be rings. Then for every V being a left module structure over K and for every W being a right module structure over L and for every scalar x of K and for every scalar y of L and for every vector v of V and for every vector w of W such that $L={ }^{\mathrm{op}} K$ and $W={ }^{\mathrm{op}} V$ and $x=y$ and $v=w$ holds $w \cdot y=x \cdot v$.
(18) For all rings K, L and for every V being a left module structure over K and for every W being a right module structure over L and for all vectors v_{1}, v_{2} of V and for all vectors w_{1}, w_{2} of W such that $L={ }^{\text {op }} K$ and $W={ }^{\mathrm{op}} V$ and $v_{1}=w_{1}$ and $v_{2}=w_{2}$ holds $w_{1}+w_{2}=v_{1}+v_{2}$.
(19) For every function o from : the carrier of W, the carrier of K] into the carrier of W holds ${ }^{\mathrm{op}}\left({ }^{\mathrm{op}} o\right)=o$.
(20) For every function o from : the carrier of W, the carrier of K : into the carrier of W and for every scalar x of K and for every scalar y of ${ }^{\text {op }} K$ and for every vector v of W and for every vector w of ${ }^{\circ 口} W$ such that $x=y$ and $v=w$ holds $\left({ }^{\mathrm{op}} o\right)(y, w)=o(v, x)$.
(21) Let K, L be rings. Then for every V being a left module structure over K and for every W being a right module structure over L and for every scalar x of K and for every scalar y of L and for every vector v of V and for every vector w of W such that $K={ }^{\mathrm{op}} L$ and $V={ }^{\mathrm{op}} W$ and $x=y$ and $v=w$ holds $w \cdot y=x \cdot v$.
(22) For all rings K, L and for every V being a left module structure over K and for every W being a right module structure over L and for all vectors v_{1}, v_{2} of V and for all vectors w_{1}, w_{2} of W such that $K={ }^{\text {op }} L$ and $V={ }^{\mathrm{op}} W$ and $v_{1}=w_{1}$ and $v_{2}=w_{2}$ holds $w_{1}+w_{2}=v_{1}+v_{2}$.
(23) For every K being a strict field structure and for every V being a left module structure over K holds ${ }^{\mathrm{op}}\left({ }^{\mathrm{op}} V\right)=$ the left module structure of V.
(24) For every K being a strict field structure and for every W being a right module structure over K holds ${ }^{\mathrm{op}}\left({ }^{\mathrm{op}} W\right)=$ the right module structure of W.
(25) For every associative ring K and for every left module V over K holds ${ }^{\mathrm{op}} V$ is a strict right module over ${ }^{\mathrm{op}} K$.
Let K be an associative ring, and let V be a left module over K. Then ${ }^{\text {op }} V$ is a strict right module over ${ }^{\text {op }} K$.

One can prove the following proposition
(26) For every associative ring K and for every right module W over K holds ${ }^{\text {op }} W$ is a strict left module over ${ }^{\text {op }} K$.
Let K be an associative ring, and let W be a right module over K. Then ${ }^{\text {op }} W$ is a strict left module over ${ }^{\text {op }} K$.

4. Morphisms of Rings

We now define several new attributes. Let us consider K, L. A map from K into L is antilinear if:
(Def.6) for all scalars x, y of K holds $\operatorname{it}(x+y)=\operatorname{it}(x)+\operatorname{it}(y)$ and for all scalars x, y of K holds $\operatorname{it}(x \cdot y)=\operatorname{it}(y) \cdot \operatorname{it}(x)$ and $\operatorname{it}\left(1_{K}\right)=1_{L}$.
A map from K into L is monomorphism if:
(Def.7) it is linear and it is one-to-one.
A map from K into L is antimonomorphism if:
(Def.8) it is antilinear and it is one-to-one.
A map from K into L is epimorphism if:
(Def.9) it is linear and rng it $=$ the carrier of L.
A map from K into L is antiepimorphism if:
(Def.10) it is antilinear and rng it $=$ the carrier of L.
A map from K into L is isomorphism if:
(Def.11) it is monomorphism and rng it $=$ the carrier of L.
A map from K into L is antiisomorphism if:
(Def.12) it is antimonomorphism and rng it $=$ the carrier of L.
In the sequel J denotes a map from K into K. We now define four new attributes. Let us consider K. A map from K into K is endomorphism if:
(Def.13) it is linear.
A map from K into K is antiendomorphism if:
(Def.14) it is antilinear.
A map from K into K is automorphism if:
(Def.15) it is isomorphism.
A map from K into K is antiautomorphism if:
(Def.16) it is antiisomorphism.
One can prove the following propositions:
(27) J is automorphism if and only if the following conditions are satisfied:
(i) for all scalars x, y of K holds $J(x+y)=J(x)+J(y)$,
(ii) for all scalars x, y of K holds $J(x \cdot y)=J(x) \cdot J(y)$,
(iii) $J\left(1_{K}\right)=1_{K}$,
(iv) J is one-to-one,
(v) $\quad \operatorname{rng} J=$ the carrier of K.
(28) J is antiautomorphism if and only if the following conditions are satisfied:
(i) for all scalars x, y of K holds $J(x+y)=J(x)+J(y)$,
(ii) for all scalars x, y of K holds $J(x \cdot y)=J(y) \cdot J(x)$,
(iii) $J\left(1_{K}\right)=1_{K}$,
(iv) J is one-to-one,
(v) $\quad \operatorname{rng} J=$ the carrier of K.
(29) id_{K} is automorphism.

We follow the rules: K, L will denote rings, J will denote a map from K into L, and x, y will denote scalars of K. Next we state three propositions:
(30) If J is linear, then $J\left(0_{K}\right)=0_{L}$ and $J(-x)=-J(x)$ and $J(x-y)=$ $J(x)-J(y)$.
(31) If J is antilinear, then $J\left(0_{K}\right)=0_{L}$ and $J(-x)=-J(x)$ and $J(x-y)=$ $J(x)-J(y)$.
(32) For every associative ring K holds $^{\operatorname{id}}{ }_{K}$ is antiautomorphism if and only if K is a commutative ring.
One can prove the following proposition
(33) For every skew field K holds id_{K} is antiautomorphism if and only if K is a field.

5. Opposite morphisms to morphisms of Rings

In the sequel K, L will be field structures and J will be a map from K into L. Let us consider K, L, J. The functor ${ }^{\text {op }} J$ yielding a map from K into ${ }^{\text {op }} L$ is defined by:
(Def.17) $\quad{ }^{\text {op }} J=J$.
Next we state several propositions:
(34) $\quad{ }^{\mathrm{op}}\left({ }^{\mathrm{op}} J\right)=J$.
(35) J is linear if and only if ${ }^{\circ} J$ is antilinear.
(36) J is antilinear if and only if ${ }^{\text {op }} J$ is linear.
(37) J is monomorphism if and only if op J is antimonomorphism.
(38) J is antimonomorphism if and only if ${ }^{\text {op }} J$ is monomorphism.
(39) J is epimorphism if and only if ${ }^{\text {op }} J$ is antiepimorphism.
(40) J is antiepimorphism if and only if op J is epimorphism.
(41) J is isomorphism if and only if ${ }^{\circ} J$ is antiisomorphism.
(42) J is antiisomorphism if and only if op J is isomorphism.

In the sequel J will be a map from K into K. We now state four propositions:
(43) J is endomorphism if and only if ${ }^{\circ} J$ is antilinear.
(44) J is antiendomorphism if and only if ${ }^{\text {op }} J$ is linear.
(45) J is automorphism if and only if op J is antiisomorphism.
(46) J is antiautomorphism if and only if op J is isomorphism.

6. Morphisms of groups

In the sequel G, H will denote groups. Let us consider G, H. A map from G into H is said to be a homomorphism from G to H if:
(Def.18) for all elements x, y of G holds $\operatorname{it}(x+y)=\operatorname{it}(x)+\operatorname{it}(y)$.
Then $\operatorname{zero}(G, H)$ is a homomorphism from G to H.
In the sequel f is a homomorphism from G to H. We now define four new constructions. Let us consider G, H. A homomorphism from G to H is monomorphism if:
(Def.19) it is one-to-one.
A homomorphism from G to H is epimorphism if:
(Def.20) rng it $=$ the carrier of H.
A homomorphism from G to H is isomorphism if:
(Def.21) it is one-to-one and rng it $=$ the carrier of H.
Let us consider G. An endomorphism of G is a homomorphism from G to G.
We now state the proposition
(47) For every element x of G holds $\operatorname{id}_{G}(x)=x$.

We now define two new constructions. Let us consider G. An endomorphism of G is automorphism-like if:
(Def.22) it is isomorphism.
An automorphism of G is an automorphism-like endomorphism of G.
Then id_{G} is an automorphism of G.
In the sequel x, y will be elements of G. We now state the proposition

$$
\begin{equation*}
f\left(0_{G}\right)=0_{H} \text { and } f(-x)=-f(x) \text { and } f\left(x-^{\prime} y\right)=f(x)-^{\prime} f(y) \tag{48}
\end{equation*}
$$

We adopt the following convention: G, H denote Abelian groups, f denotes a homomorphism from G to H, and x, y denote elements of G. The following proposition is true

$$
\begin{equation*}
f(x-y)=f(x)-f(y) \tag{49}
\end{equation*}
$$

7. Semilinear morphisms

For simplicity we adopt the following rules: K, L are associative rings, J is a map from K into L, V is a left module over K, and W is a left module over L. Let us consider K, L, J, V, W. A map from V into W is said to be a homomorphism from V to W by J if:
(Def.23) for all vectors x, y of V holds $\operatorname{it}(x+y)=\operatorname{it}(x)+\operatorname{it}(y)$ and for every scalar a of K and for every vector x of V holds it $(a \cdot x)=J(a) \cdot$ it (x).
The following proposition is true
(50) $\quad \operatorname{zero}(V, W)$ is a homomorphism from V to W by J.

In the sequel f denotes a homomorphism from V to W by J. We now define three new predicates. Let us consider K, L, J, V, W, f. We say that f is a monomorphism wrp J if and only if:
(Def.24) $\quad f$ is one-to-one.
We say that f is a epimorphism wrp J if and only if:
(Def.25) $\quad \operatorname{rng} f=$ the carrier of W.
We say that f is a isomorphism wrp J if and only if:
(Def.26) $\quad f$ is one-to-one and $\operatorname{rng} f=$ the carrier of W.
In the sequel J will denote a map from K into K and f will denote a homomorphism from V to V by J. We now define two new constructions. Let us consider K, J, V. An endomorphism of J and V is a homomorphism from V to V by J.

Let us consider K, J, V, f. We say that f is a automorphism wrp J if and only if:
(Def.27) $\quad f$ is one-to-one and $\operatorname{rng} f=$ the carrier of V.
In the sequel W is a left module over K. Let us consider K, V, W. A homomorphism from V to W is a homomorphism from V to W by id_{K}.

Next we state the proposition
(51) For every map f from V into W holds f is a homomorphism from V to W if and only if for all vectors x, y of V holds $f(x+y)=f(x)+f(y)$ and for every scalar a of K and for every vector x of V holds $f(a \cdot x)=a \cdot f(x)$.
We now define five new constructions. Let us consider K, V, W. A homomorphism from V to W is monomorphism if:
(Def.28) it is one-to-one.
A homomorphism from V to W is epimorphism if:
(Def.29) rng it = the carrier of W.
A homomorphism from V to W is isomorphism if:
(Def.30) it is one-to-one and rng it $=$ the carrier of W.
Let us consider K, V. An endomorphism of V is a homomorphism from V to V.

An endomorphism of V is automorphism if:
(Def.31) it is one-to-one and rng it $=$ the carrier of V.

8. Annex

Next we state three propositions:
(52) For every skew field K holds K is a field if and only if for all scalars x, y of K holds $x \cdot y=y \cdot x$.
(53) For every K being a field structure holds K is a field if and only if K is a skew field and for all scalars x, y of K holds $x \cdot y=y \cdot x$.
(54) For every group G and for all elements x, y, z of G such that $x+y=x+z$ holds $y=z$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409-420, 1990.
[6] Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[8] Eugeniusz Kusak, Wojciech Leończuk, and Michat Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[9] Michał Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563-571, 1991.
[10] Michał Muzalewski. Category of rings. Formalized Mathematics, 2(5):643-648, 1991.
[11] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[12] Michał Muzalewski. Foundations of Metric-Affine Geometry. Dział Wydawnictw Filii UW w Białymstoku, Filia UW w Białymstoku, 1990.
[13] Michał Muzalewski. Rings and modules - part II. Formalized Mathematics, 2(4):579585, 1991.
[14] Michat Muzalewski and Wojciech Skaba. Groups, rings, left- and right-modules. Formalized Mathematics, 2(2):275-278, 1991.
[15] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.
[16] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[17] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[18] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[20] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Received June 22, 1992

