# Reper Algebras 

Michał Muzalewski<br>Warsaw University<br>Białystok


#### Abstract

Summary. We shall describe $n$-dimensional spaces with the reper operation [10, pages 72-79]. An inspiration to such approach comes from the monograph [12] and so-called Leibniz program. Let us recall that the Leibniz program is a program of algebraization of geometry using purely geometric notions. Leibniz formulated his program in opposition to algebraization method developed by Descartes. The Euclidean geometry in Szmielew's approach [12] is a theory of structures $\langle S ; \|, \oplus, O\rangle$, where $\langle S ; \|, \oplus, O\rangle$ is Desarguean midpoint plane and $O \subseteq S \times S \times S$ is the relation of equi-orthogonal basis. Points $o, p, q$ are in relation $O$ if they form an isosceles triangle with the right angle in vertex $a$. If we fix vertices $a, p$, then there exist exactly two points $q, q^{\prime}$ such that $O(a p q), O\left(a p q^{\prime}\right)$. Moreover $q \oplus q^{\prime}=a$. In accordance with the Leibniz program we replace the relation of equi-orthogonal basis by a binary operation $*: S \times S \rightarrow S$, called the reper operation. A standard model for the Euclidean geometry in the above sense is the oriented plane over the field of real numbers with the reper operations $*$ defined by the condition: $a * b=q$ iff the point $q$ is the result of rotating of $p$ about right angle around the center $a$.


MML Identifier: MIDSP_3.

The terminology and notation used here are introduced in the following articles: [13], [5], [6], [3], [7], [2], [4], [1], [8], [11], and [9].

## 1. Substitutions in tuples

For simplicity we adopt the following rules: $n, i, j, k, l$ are natural numbers, $D$ is a non-empty set, $c, d$ are elements of $D$, and $p, q, r$ are finite sequences of elements of $D$. The following propositions are true:
(1) If len $p=j+1+k$, then there exist $q, r, c$ such that $\operatorname{len} q=j$ and len $r=k$ and $p=q^{\wedge}\langle c\rangle \wedge r$.
(2) If $i \in \operatorname{Seg} n$, then there exist $j, k$ such that $n=j+1+k$ and $i=j+1$.
（3）Suppose $p=q^{\wedge}\langle c\rangle \wedge r$ and $i=\operatorname{len} q+1$ ．Then for every $l$ such that $1 \leq l$ and $l \leq \operatorname{len} q$ holds $p(l)=q(l)$ and $p(i)=c$ and for every $l$ such that $i+1 \leq l$ and $l \leq \operatorname{len} p$ holds $p(l)=r(l-i)$.
（4）$l \leq j$ or $l=j+1$ or $j+2 \leq l$ ．
（5）If $l \in \operatorname{Seg} n \backslash\{i\}$ and $i=j+1$ ，then $1 \leq l$ and $l \leq j$ or $i+1 \leq l$ and $l \leq n$ ．
Let us consider $n, i, D$ ，$d$ ，and let $p$ be an element of $D^{n+1}$ ．Let us assume that $i \in \operatorname{Seg}(n+1)$ ．The functor $p(i / d)$ yielding an element of $D^{n+1}$ is defined as follows：
（Def．1）$\quad p(i / d)(i)=d$ and for every $l$ such that $l \in \operatorname{Seg}$ len $p \backslash\{i\}$ holds $p(i / d)(l)=$ $p(l)$ ．

## 2．Reper Algebra Structure and its Properties

Let us consider $n$ ．We consider structures of reper algebra over $n$ which are extension of a midpoint algebra structure and are systems

〈a carrier，a midpoint operation，a reper〉，
where the carrier is a non－empty set，the midpoint operation is a binary op－ eration on the carrier，and the reper is a function from（the carrier）${ }^{n}$ into the carrier．Let us observe that there exists a structure of reper algebra over $n+2$ which is midpoint algebra－like．

We adopt the following rules：$R_{1}$ will denote a midpoint algebra－like structure of reper algebra over $n+2$ and $a, b, d, p_{1}, p_{1}^{\prime}$ will denote points of $R_{1}$ ．We now define two new modes．Let us consider $i, D$ ．A tuple of $i$ and $D$ is an element of $D^{i}$ ．

Let us consider $n, R_{1}, i$ ．A tuple of $i$ and $R_{1}$ is a tuple of $i$ and the carrier of $R_{1}$ ．

In the sequel $p, q$ will denote tuples of $n+1$ and $R_{1}$ ．Let us consider $n, R_{1}$ ， $a$ ．Then $\langle a\rangle$ is a tuple of 1 and $R_{1}$ ．Let us consider $n, R_{1}, i, j$ ，and let $p$ be a tuple of $i$ and $R_{1}$ ，and let $q$ be a tuple of $j$ and $R_{1}$ ．Then $p^{\wedge} q$ is a tuple of $i+j$ and $R_{1}$ ．

We now state the proposition
（6）$\langle a\rangle \wedge p$ is a tuple of $n+2$ and $R_{1}$ ．
We now define two new functors．Let us consider $n, R_{1}, a, p$ ．The functor $*(a, p)$ yielding a point of $R_{1}$ is defined as follows：
（Def．2）$\quad *(a, p)=\left(\right.$ the reper of $\left.R_{1}\right)(\langle a\rangle \sim p)$ ．
Let us consider $n, i, R_{1}, d, p$ ．The functor $p_{\lceil i \rightarrow d}$ yields a tuple of $n+1$ and $R_{1}$ and is defined as follows：
（Def．3）for every $D$ and for every element $p^{\prime}$ of $D^{n+1}$ and for every element $d^{\prime}$ of $D$ such that $D=$ the carrier of $R_{1}$ and $p^{\prime}=p$ and $d^{\prime}=d$ holds $p_{\upharpoonright i \dot{\rightarrow} d}=p^{\prime}\left(i / d^{\prime}\right)$ ．

We now state the proposition
(7) If $i \in \operatorname{Seg}(n+1)$, then $p_{\upharpoonright i \rightarrow d}(i)=d$ and for every $l$ such that $l \in$ Seg len $p \backslash\{i\}$ holds $p_{\upharpoonright i \rightarrow d}(l)=p(l)$.
Let us consider $n$. A natural number is said to be a natural number of $n$ if:
(Def.4) $1 \leq$ it and it $\leq n+1$.
In the sequel $m$ is a natural number of $n$. We now state several propositions:
(8) $\quad i$ is a natural number of $n$ if and only if $i \in \operatorname{Seg}(n+1)$.
(9) $1 \leq i+1$.
(10) If $i \leq n$, then $i+1$ is a natural number of $n$.
(11) If for every $m$ holds $p(m)=q(m)$, then $p=q$.
(12) For every natural number $l$ of $n$ such that $l=i$ holds $p_{i i \rightarrow d}(l)=d$ and for all natural numbers $l, i$ of $n$ such that $l \neq i$ holds $p_{\mid i \dot{\rightarrow} d}(l)=p(l)$.
We now define three new predicates. Let us consider $n, D$, and let $p$ be an element of $D^{n+1}$, and let us consider $m$. Then $p(m)$ is an element of $D$. Let us consider $n, R_{1}$. We say that $R_{1}$ is invariance if and only if:
(Def.5) for all $a, b, p, q$ such that for every $m$ holds $a \oplus q(m)=b \oplus p(m)$ holds $a \oplus *(b, q)=b \oplus *(a, p)$.
Let us consider $n, i, R_{1}$. We say that $R_{1}$ has property of zero in $i$ if and only if: (Def.6) for all $a, p$ holds $*\left(a, p_{\upharpoonright i \rightarrow a}\right)=a$.
We say that $R_{1}$ is semi additive in $i$ if and only if:
(Def.7) for all $a, p_{1}, p$ such that $p(i)=p_{1}$ holds $*\left(a, p_{\mid i \dot{\rightarrow} \rightarrow \oplus p_{1}}\right)=a \oplus *(a, p)$.
The following proposition is true
(13) If $R_{1}$ is semi additive in $m$, then for all $a, d, p, q$ such that $q=p_{\text {「 } m \rightarrow d}$ holds $*\left(a, p_{\mid m \rightarrow a \oplus d}\right)=a \oplus *(a, q)$.
We now define two new predicates. Let us consider $n, i, R_{1}$. We say that $R_{1}$ is additive in $i$ if and only if:
(Def.8) for all $a, p_{1}, p_{1}^{\prime}, p$ such that $p(i)=p_{1}$ holds $*\left(a, p_{\upharpoonright i \rightarrow p_{1} \oplus p_{1}^{\prime}}\right)=*(a, p) \oplus$ $*\left(a, p_{\left\ulcorner i \dot{ } p_{1}^{\prime}\right.}\right)$.
We say that $R_{1}$ is alternative in $i$ if and only if:
(Def.9) for all $a, p, p_{1}$ such that $p(i)=p_{1}$ holds $*\left(a, p_{\text {「i+1 }}^{\rightarrow} p_{1}\right)=a$.
In the sequel $W$ is an atlas of $R_{1}$ and $v$ is a vector of $W$. Let us consider $n$, $R_{1}, W, i$. A tuple of $i$ and $W$ is a tuple of $i$ and the carrier of the algebra of $W$.

In the sequel $x, y$ are tuples of $n+1$ and $W$. Let us consider $n, R_{1}, W, x$, $i, v$. The functor $x_{\mid i \rightarrow v}$ yields a tuple of $n+1$ and $W$ and is defined by:
(Def.10) for every $D$ and for every element $x^{\prime}$ of $D^{n+1}$ and for every element $v^{\prime}$ of $D$ such that $D=$ the carrier of the algebra of $W$ and $x^{\prime}=x$ and $v^{\prime}=v$ holds $x_{\upharpoonright i \rightarrow v}=x^{\prime}\left(i / v^{\prime}\right)$.
Next we state three propositions:
(14) If $i \in \operatorname{Seg}(n+1)$, then $x_{\mid i \rightarrow v}(i)=v$ and for every $l$ such that $l \in$ Seg len $x \backslash\{i\}$ holds $x_{\lceil i \rightarrow v}(l)=x(l)$.
(15) For every natural number $l$ of $n$ such that $l=i$ holds $x_{\mid i \rightarrow v}(l)=v$ and for all natural numbers $l, i$ of $n$ such that $l \neq i$ holds $x_{\mid i \rightarrow v}(l)=x(l)$.

If for every $m$ holds $x(m)=y(m)$, then $x=y$.
The scheme SeqLambdaD' concerns a natural number $\mathcal{A}$, a non-empty set $\mathcal{B}$, and a unary functor $\mathcal{F}$ yielding an element of $\mathcal{B}$ and states that:
there exists a finite sequence $z$ of elements of $\mathcal{B}$ such that len $z=\mathcal{A}+1$ and for every natural number $j$ of $\mathcal{A}$ holds $z(j)=\mathcal{F}(j)$
for all values of the parameters.
We now define two new functors. Let us consider $n, R_{1}, W, a, x$. The functor $(a, x) . W$ yielding a tuple of $n+1$ and $R_{1}$ is defined as follows:
(Def.11) $\quad((a, x) . W)(m)=(a, x(m)) . W$.
Let us consider $n, R_{1}, W, a, p$. The functor $W(a, p)$ yielding a tuple of $n+1$ and $W$ is defined by:
(Def.12) $\quad W(a, p)(m)=W(a, p(m))$.
The following three propositions are true:
(17) $W(a, p)=x$ if and only if $(a, x) \cdot W=p$.
(18) $W(a,(a, x) . W)=x$.
(19) $\quad(a, W(a, p)) . W=p$.

Let us consider $n, R_{1}, W, a, x$. The functor $\Phi(a, x)$ yields a vector of $W$ and is defined by:
(Def.13) $\quad \Phi(a, x)=W(a, *(a,(a, x) . W))$.
One can prove the following propositions:
(20) If $W(a, p)=x$ and $W(a, b)=v$, then $*(a, p)=b$ if and only if $\Phi(a, x)=$ $v$.
(21) $\quad R_{1}$ is invariance if and only if for all $a, b, x$ holds $\Phi(a, x)=\Phi(b, x)$.
(23) 1 is an element of $\operatorname{Seg}(n+1)$.

$$
1 \text { is a natural number of } n \text {. }
$$

## 3. Reper Algebra and its Atlas

Let us consider $n$. A midpoint algebra-like structure of reper algebra over $n+2$ is called a reper algebra of $n$ if:
(Def.14) it is invariance.
For simplicity we adopt the following convention: $R_{1}$ will be a reper algebra of $n, a, b$ will be points of $R_{1}, p$ will be a tuple of $n+1$ and $R_{1}, W$ will be an atlas of $R_{1}, v$ will be a vector of $W$, and $x$ will be a tuple of $n+1$ and $W$. Next we state the proposition

$$
\begin{equation*}
\Phi(a, x)=\Phi(b, x) . \tag{25}
\end{equation*}
$$

Let us consider $n, R_{1}, W, x$. The functor $\Phi(x)$ yields a vector of $W$ and is defined by:
(Def.15) for every $a$ holds $\Phi(x)=\Phi(a, x)$.
We now state a number of propositions:
(26) If $W(a, p)=x$ and $W(a, b)=v$ and $\Phi(x)=v$, then $*(a, p)=b$.
(27) If $(a, x) \cdot W=p$ and $(a, v) \cdot W=b$ and $*(a, p)=b$, then $\Phi(x)=v$.
(28) If $W(a, p)=x$ and $W(a, b)=v$, then $W\left(a, p_{\text {Pm }}^{\rightarrow b}\right)=x_{\mid m \rightarrow v}$.
(29) If $(a, x) \cdot W=p$ and $(a, v) \cdot W=b$, then $\left(a, x_{\mid m \dot{\rightarrow}}\right) \cdot W=p_{\text {「 } m \rightarrow b}$.
(30) $\quad R_{1}$ has property of zero in $m$ if and only if for every $x$ holds
$\Phi\left(\left(x_{\text {I } m \rightarrow 0_{W}}\right)\right)=0_{W}$.
(31) $\quad R_{1}$ is semi additive in $m$ if and only if for every $x$ holds $\Phi\left(\left(x_{\upharpoonright m \rightarrow 2 x(m)}\right)\right)=$ $2 \Phi(x)$.
(32) If $R_{1}$ has property of zero in $m$ and $R_{1}$ is additive in $m$, then $R_{1}$ is semi additive in $m$.
(33) If $R_{1}$ has property of zero in $m$, then $R_{1}$ is additive in $m$ if and only if for all $x, v$ holds $\Phi\left(\left(x_{\mid m \dot{\rightarrow} x(m)+v}\right)\right)=\Phi(x)+\Phi\left(\left(x_{\mid m \rightarrow v}\right)\right)$.
(34) If $W(a, p)=x$ and $m \leq n$, then $W\left(a, p_{\text {「 } m+1 \dot{\rightarrow} p(m)}\right)=x_{\text {Pm+1 }} \dot{\rightarrow} x(m)$.
(35) If $(a, x) \cdot W=p$ and $m \leq n$, then $\left(a, x_{\text {im+1 }} x(m)\right) \cdot W=p_{\text {i } m+1 \rightarrow p(m)}$.
(36) If $m \leq n$, then $R_{1}$ is alternative in $m$ if and only if for every $x$ holds $\Phi\left(\left(x_{\lceil m+1} \dot{\rightarrow} x(m)\right)\right)=0_{W}$.

## References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[9] Michał Muzalewski. Atlas of Midpoint Algebra. Formalized Mathematics, 2(4):487-491, 1991.
[10] Michał Muzalewski. Foundations of Metric-Affine Geometry. Dział Wydawnictw Filii UW w Białymstoku, Filia UW w Białymstoku, 1990.
[11] Michał Muzalewski. Midpoint algebras. Formalized Mathematics, 1(3):483-488, 1990.
[12] Wanda Szmielew. From Affine to Euclidean Geometry. Volume 27, PWN - D.Reidel Publ. Co., Warszawa - Dordrecht, 1983.
[13] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received May 28, 1992

