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Summary. The paper contains definitions and basic properties of

Caratheodory~measure, with values in
�

, the enlarged set of real numbers,

where
�

denotes set
�

=
�
∪ {−∞, +∞} - by [14]. The article includes

the text being a continuation of the paper [3]. Caratheodory~theorem and
some theorems concerning basic properties of Caratheodor measure are
proved. The work is the sixth part of the series of articles concerning the
Lebesgue measure theory.

MML Identifier: MEASURE4.

The terminology and notation used in this paper have been introduced in the
following papers: [16], [15], [10], [11], [8], [9], [1], [13], [2], [12], [4], [5], [7], [6],
[3], and [17]. One can prove the following propositions:

(1) For all Real numbers x, y, z such that 0 � ≤ x and 0 � ≤ y and 0 � ≤ z

holds (x + y) + z = x + (y + z).

(2) For all Real numbers x, y, z such that x 6= −∞ and x 6= +∞ holds
y + x ≤ z if and only if y ≤ z − x.

(3) For all Real numbers x, y such that 0 � ≤ x and 0 � ≤ y holds x + y =
y + x.

(4) For every set X and for every σ-field S of subsets of X and for every
function F from � into S and for every element A of S and for every
function G from � into S such that for every element n of � holds G(n) =
A ∩ F (n) holds

⋃
rng G = A ∩

⋃
rng F .

(5) Let X be a set. Let S be a σ-field of subsets of X. Let F be a function
from � into S. Let G be a function from � into S. Suppose G(0) = F (0)
and for every element n of � holds G(n + 1) = F (n + 1) ∪ G(n). Then
for every function H from � into S such that H(0) = F (0) and for every
element n of � holds H(n+1) = F (n+1)\G(n) holds

⋃
rng F =

⋃
rng H.

(6) For every set X holds 2X is a σ-field of subsets of X.
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Let X be a set, and let F be a function from � into 2X . Then rng F is a
non-empty family of subsets of X. Let A be a non-empty family of subsets of
X. Then

⋃
A is an element of 2X . Let F be a function from 2X into

�
. We say

that F is non-negative if and only if:

(Def.1) for every element A of 2X holds 0 � ≤ F (A).

Let F be a function from � into 2X , and let M be a function from 2X into
�
.

Then M · F is a function from � into
�
.

One can prove the following propositions:

(7) For every set X and for every Real numbers a, b there exists a function
M from 2X into

�
such that for every element A of 2X holds if A = ∅,

then M(A) = a but if A 6= ∅, then M(A) = b.

(8) For every set X there exists a function M from 2X into
�

such that for
every element A of 2X holds M(A) = 0 � .

(9) For every set X and for every function F from � into 2X and for every
function M from 2X into

�
such that M is non-negative holds M · F is

non-negative.

(10) For every set X and for every function F from � into 2X and for every
function M from 2X into

�
and for every natural number n holds (M ·

F )(n) = M(F (n)).

(11) Let X be a set. Then there exists a function M from 2X into
�

such
that M is non-negative and M(∅) = 0 � and for all elements A, B of 2X

such that A ⊆ B holds M(A) ≤ M(B) and for every function F from �
into 2X holds M(

⋃
rng F ) ≤

∑
(M · F ).

We now define two new constructions. Let X be a set. A function from 2X

into
�

is said to be a Caratheodor’s measure on X if:

(Def.2) it is non-negative and it(∅) = 0 � and for all elements A, B of 2X such
that A ⊆ B holds it(A) ≤ it(B) and for every function F from � into 2X

holds it(
⋃

rng F ) ≤
∑

(it · F ).

Let C be a Caratheodor’s measure on X. The functor σ-Field(C) yielding a
non-empty family of subsets of X is defined by:

(Def.3) for every element A of 2X holds A ∈ σ-Field(C) if and only if for all
elements W , Z of 2X such that W ⊆ A and Z ⊆ X \ A holds C(W ) +
C(Z) ≤ C(W ∪ Z).

The following propositions are true:

(12) For every set X and for every Caratheodor’s measure C on X and for
all elements W , Z of 2X holds C(W ∪ Z) ≤ C(W ) + C(Z).

(13) For every set X and for every Caratheodor’s measure C on X and for
all elements W , Z of 2X holds C(Z) + C(W ) = C(W ) + C(Z).

(14) For every set X and for every Caratheodor’s measure C on X and for
every element A of 2X holds A ∈ σ-Field(C) if and only if for all elements
W , Z of 2X such that W ⊆ A and Z ⊆ X \ A holds C(W ) + C(Z) =
C(W ∪ Z).
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(15) For every set X and for every Caratheodor’s measure C on X and for
all elements W , Z of 2X such that W ∈ σ-Field(C) and Z ∈ σ-Field(C)
and Z ∩ W = ∅ holds C(W ∪ Z) = C(W ) + C(Z).

(16) For every set X and for every Caratheodor’s measure C on X and for
every set A such that A ∈ σ-Field(C) holds X \ A ∈ σ-Field(C).

(17) For every set X and for every Caratheodor’s measure C on X and
for all sets A, B such that A ∈ σ-Field(C) and B ∈ σ-Field(C) holds
A ∪ B ∈ σ-Field(C).

(18) For every set X and for every Caratheodor’s measure C on X and
for all sets A, B such that A ∈ σ-Field(C) and B ∈ σ-Field(C) holds
A ∩ B ∈ σ-Field(C).

(19) For every set X and for every Caratheodor’s measure C on X and
for all sets A, B such that A ∈ σ-Field(C) and B ∈ σ-Field(C) holds
A \ B ∈ σ-Field(C).

(20) For every set X and for every σ-field S of subsets of X and for every
function N from � into S and for every element A of S there exists
a function F from � into S such that for every element n of � holds
F (n) = A ∩ N(n).

(21) For every set X and for every Caratheodor’s measure C on X holds
σ-Field(C) is a σ-field of subsets of X.

Let X be a set, and let C be a Caratheodor’s measure on X. Then σ-Field(C)
is a σ-field of subsets of X. Let S be a σ-field of subsets of X, and let A be a
subfamily of S. Then

⋃
A is an element of S. The functor σ-Meas(C) yields a

function from σ-Field(C) into
�

and is defined by:

(Def.4) for every element A of 2X such that A ∈ σ-Field(C) holds
(σ-Meas(C))(A) = C(A).

One can prove the following proposition

(22) For every set X and for every Caratheodor’s measure C on X holds
σ-Meas(C) is a measure on σ-Field(C).

Let X be a set, and let C be a Caratheodor’s measure on X, and let A be
an element of σ-Field(C). Then C(A) is a Real number.

One can prove the following proposition

(23) For every set X and for every Caratheodor’s measure C on X holds
σ-Meas(C) is a σ-measure on σ-Field(C).

Let X be a set, and let C be a Caratheodor’s measure on X. Then σ-Meas(C)
is a σ-measure on σ-Field(C).

The following propositions are true:

(24) For every set X and for every Caratheodor’s measure C on X and for
every element A of 2X such that C(A) = 0 � holds A ∈ σ-Field(C).

(25) For every set X and for every Caratheodor’s measure C on X holds
σ-Meas(C) is complete on σ-Field(C).
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[8] Czes law Byliński. Basic functions and operations on functions. Formalized Mathematics,

1(1):245–254, 1990.
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