Submodules

Michał Muzalewski Warsaw University Białystok

Summary. This article contains the notions of trivial and nontrivial leftmodules and rings, cyclic submodules and inclusion of submodules. A few basic theorems related to these notions are proved.

MML Identifier: LMOD_6.

The notation and terminology used here are introduced in the following papers: [15], [16], [3], [4], [2], [1], [5], [6], [7], [14], [9], [13], [12], [10], [11], and [8].

1. Preliminaries

For simplicity we adopt the following rules: x is arbitrary, K denotes an associative ring, r denotes a scalar of K, V, M, M_1 , M_2 , N denote left modules over K, a denotes a vector of V, m, m_1 , m_2 denote vectors of M, n, n_1 , n_2 denote vectors of N, A denotes a subset of V, l denotes a linear combination of A, and W, W_1 , W_2 , W_3 denote submodules of V. Next we state four propositions:

- (1) If M_1 = the left module structure of M_2 , then $x \in M_1$ if and only if $x \in M_2$.
- (2) For every vector v of the left module structure of V such that a = v holds $r \cdot a = r \cdot v$.
- (3) The left module structure of V is a strict submodule of V.
- (4) V is a submodule of Ω_V .

C 1992 Fondation Philippe le Hodey ISSN 0777-4028 We now define two new predicates. Let us consider K, V. We say that V is non-trivial if and only if:

(Def.1) there exists a vector a of V such that $a \neq \Theta_V$.

Let us consider K. We say that K is non-trivial if and only if:

 $(\text{Def.2}) \quad 0_K \neq 1_K.$

We now state three propositions:

- (5) If K is trivial, then for every r holds $r = 0_K$ and for every a holds $a = \Theta_V$.
- (6) If K is trivial, then V is trivial.
- (7) V is trivial if and only if the left module structure of $V = \mathbf{0}_V$.

3. Submodules and subsets

We now define two new functors. Let us consider K, V, and let W be a strict submodule of V. The functor $\ddot{e}(W)$ yields an element of Sub(V) and is defined by:

(Def.3) $\ddot{\mathrm{e}}(W) = W.$

The functor $\varsigma(V)$ yields a non-empty subset of V and is defined as follows: (Def.4) $\varsigma(V) =$ the carrier of V.

The following two propositions are true:

- (8) For all sets X, Y, A such that $X \subseteq Y$ and A is a subset of X holds A is a subset of Y.
- (9) Every subset of W is a subset of V.

Let us consider K, V, W, and let A be a subset of W. The functor $\ddot{i}(A)$ yields a subset of V and is defined by:

 $(\text{Def.5}) \quad \ddot{i}(A) = A.$

Let A be a non-empty subset of W. Then $\ddot{i}(A)$ is a non-empty subset of V.

- The following propositions are true:
- (10) $x \in \varsigma(V)$ if and only if $x \in V$.
- (11) $x \in \ddot{i}(\varsigma(W))$ if and only if $x \in W$.
- (12) $A \subseteq \mathcal{L}(\operatorname{Lin}(A)).$
- (13) If $A \neq \emptyset$ and A is linearly closed, then $\sum l \in A$.
- (14) If $\Theta_V \in A$ and A is linearly closed, then $\sum l \in A$.
- (15) If $\Theta_V \in A$ and A is linearly closed, then $A = \varsigma(\operatorname{Lin}(A))$.

Let us consider K, V, a. Then $\{a\}$ is a non-empty subset of V. The functor $\prod^* a$ yielding a strict submodule of V is defined by: (Def.6) $\prod^* a = \text{Lin}(\{a\}).$

5. Inclusion of left R-modules

Let us consider K, M, N. The predicate $M \subseteq N$ is defined as follows: (Def.7) M is a submodule of N.

We now state a number of propositions:

- (16) If $M \subseteq N$, then if $x \in M$, then $x \in N$ but if x is a vector of M, then x is a vector of N.
- (17) Suppose $M \subseteq N$. Then
 - (i) $\Theta_M = \Theta_N$,
 - (ii) if $m_1 = n_1$ and $m_2 = n_2$, then $m_1 + m_2 = n_1 + n_2$,
 - (iii) if m = n, then $r \cdot m = r \cdot n$,
 - (iv) if m = n, then -n = -m,
 - (v) if $m_1 = n_1$ and $m_2 = n_2$, then $m_1 m_2 = n_1 n_2$,
- (vi) $\Theta_N \in M$,
- (vii) $\Theta_M \in N$,
- (viii) if $n_1 \in M$ and $n_2 \in M$, then $n_1 + n_2 \in M$,
- (ix) if $n \in M$, then $r \cdot n \in M$,
- (x) if $n \in M$, then $-n \in M$,
- (xi) if $n_1 \in M$ and $n_2 \in M$, then $n_1 n_2 \in M$.
- (18) Suppose $M_1 \subseteq N$ and $M_2 \subseteq N$. Then
 - (i) $\Theta_{M_1} = \Theta_{M_2},$
 - (ii) $\Theta_{M_1} \in M_2$,
- (iii) if the carrier of $M_1 \subseteq$ the carrier of M_2 , then $M_1 \subseteq M_2$,
- (iv) if for every n such that $n \in M_1$ holds $n \in M_2$, then $M_1 \subseteq M_2$,
- (v) if the carrier of M_1 = the carrier of M_2 and M_1 is strict and M_2 is strict, then $M_1 = M_2$,
- (vi) $\mathbf{0}_{M_1} \subseteq M_2$.
- (19) $W_1 + W_2 \subseteq V$ and $W_1 \cap W_2 \subseteq V$.
- (20) $N \subseteq N$.
- (21) For all strict left modules V, M over K such that $V \subseteq M$ and $M \subseteq V$ holds V = M.
- (22) If $V \subseteq M$ and $M \subseteq N$, then $V \subseteq N$.
- (23) If $M \subseteq N$, then $\mathbf{0}_M \subseteq N$.
- (24) If $M \subseteq N$, then $\mathbf{0}_N \subseteq M$.
- (25) If $M \subseteq N$, then $M \subseteq \Omega_N$.

(26)
$$W_1 \subseteq W_1 + W_2$$
 and $W_2 \subseteq W_1 + W_2$

- (27) $W_1 \cap W_2 \subseteq W_1$ and $W_1 \cap W_2 \subseteq W_2$.
- (28) If $W_1 \subseteq W_2$, then $W_1 \cap W_3 \subseteq W_2 \cap W_3$.
- (29) If $W_1 \subseteq W_3$, then $W_1 \cap W_2 \subseteq W_3$.
- (30) If $W_1 \subseteq W_2$ and $W_1 \subseteq W_3$, then $W_1 \subseteq W_2 \cap W_3$.
- $(31) \quad W_1 \cap W_2 \subseteq W_1 + W_2.$
- (32) $W_1 \cap W_2 + W_2 \cap W_3 \subseteq W_2 \cap (W_1 + W_3).$
- (33) If $W_1 \subseteq W_2$, then $W_2 \cap (W_1 + W_3) = W_1 \cap W_2 + W_2 \cap W_3$.
- (34) $W_2 + W_1 \cap W_3 \subseteq (W_1 + W_2) \cap (W_2 + W_3).$
- (35) If $W_1 \subseteq W_2$, then $W_2 + W_1 \cap W_3 = (W_1 + W_2) \cap (W_2 + W_3)$.
- (36) If $W_1 \subseteq W_2$, then $W_1 \subseteq W_2 + W_3$.
- (37) If $W_1 \subseteq W_3$ and $W_2 \subseteq W_3$, then $W_1 + W_2 \subseteq W_3$.
- (38) For all subsets A, B of V such that $A \subseteq B$ holds $\operatorname{Lin}(A) \subseteq \operatorname{Lin}(B)$.
- (39) For all subsets A, B of V holds $\operatorname{Lin}(A \cap B) \subseteq \operatorname{Lin}(A) \cap \operatorname{Lin}(B)$.
- (40) If $M_1 \subseteq M_2$, then $\varsigma(M_1) \subseteq \varsigma(M_2)$.
- (41) $W_1 \subseteq W_2$ if and only if for every a such that $a \in W_1$ holds $a \in W_2$.
- (42) $W_1 \subseteq W_2$ if and only if $\varsigma(W_1) \subseteq \varsigma(W_2)$.
- (43) $W_1 \subseteq W_2$ if and only if $\ddot{i}(\varsigma(W_1)) \subseteq \ddot{i}(\varsigma(W_2))$.
- (44) $\mathbf{0}_W \subseteq V$ and $\mathbf{0}_V \subseteq W$ and $\mathbf{0}_{W_1} \subseteq W_2$.

References

- [1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [5] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651–656, 1990.
- [6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3–11, 1991.
- [8] Michał Muzalewski. Free modules. Formalized Mathematics, 2(4):587–589, 1991.
- [9] Michał Muzalewski and Wojciech Skaba. Finite sums of vectors in left module over associative ring. *Formalized Mathematics*, 2(2):279–282, 1991.
- [10] Michał Muzalewski and Wojciech Skaba. Linear combinations in left module over associative ring. Formalized Mathematics, 2(2):295–300, 1991.
- Michał Muzalewski and Wojciech Skaba. Linear independence in left module over domain. Formalized Mathematics, 2(2):301–303, 1991.
- [12] Michał Muzalewski and Wojciech Skaba. Operations on submodules in left module over associative ring. Formalized Mathematics, 2(2):289–293, 1991.
- [13] Michał Muzalewski and Wojciech Skaba. Submodules and cosets of submodules in left module over associative ring. Formalized Mathematics, 2(2):283–287, 1991.
- [14] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. *Formalized Mathematics*, 2(1):97–104, 1991.

- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received June 19, 1992