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Summary. This article contains the notions of trivial and non-
trivial leftmodules and rings, cyclic submodules and inclusion of sub-
modules. A few basic theorems related to these notions are proved.
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The notation and terminology used here are introduced in the following papers:
[15], [16], [3], [4], [2], [1], [5], [6], [7], [14], [9], [13], [12], [10], [11], and [8].

1. Preliminaries

For simplicity we adopt the following rules: x is arbitrary, K denotes an asso-
ciative ring, r denotes a scalar of K, V , M , M1, M2, N denote left modules over
K, a denotes a vector of V , m, m1, m2 denote vectors of M , n, n1, n2 denote
vectors of N , A denotes a subset of V , l denotes a linear combination of A, and
W , W1, W2, W3 denote submodules of V . Next we state four propositions:

(1) If M1 = the left module structure of M2, then x ∈ M1 if and only if
x ∈ M2.

(2) For every vector v of the left module structure of V such that a = v

holds r · a = r · v.

(3) The left module structure of V is a strict submodule of V .

(4) V is a submodule of ΩV .
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2. Trivial and non-trivial modules and rings

We now define two new predicates. Let us consider K, V . We say that V is
non-trivial if and only if:

(Def.1) there exists a vector a of V such that a 6= ΘV .

Let us consider K. We say that K is non-trivial if and only if:

(Def.2) 0K 6= 1K .

We now state three propositions:

(5) If K is trivial, then for every r holds r = 0K and for every a holds
a = ΘV .

(6) If K is trivial, then V is trivial.

(7) V is trivial if and only if the left module structure of V = 0V .

3. Submodules and subsets

We now define two new functors. Let us consider K, V , and let W be a strict
submodule of V . The functor ë(W ) yields an element of Sub(V ) and is defined
by:

(Def.3) ë(W ) = W .

The functor ç(V ) yields a non-empty subset of V and is defined as follows:

(Def.4) ç(V ) = the carrier of V .

The following two propositions are true:

(8) For all sets X, Y , A such that X ⊆ Y and A is a subset of X holds A

is a subset of Y .

(9) Every subset of W is a subset of V .

Let us consider K, V , W , and let A be a subset of W . The functor ı̈(A)
yields a subset of V and is defined by:

(Def.5) ı̈(A) = A.

Let A be a non-empty subset of W . Then ı̈(A) is a non-empty subset of V .

The following propositions are true:

(10) x ∈ ç(V ) if and only if x ∈ V .

(11) x ∈ ı̈(ç(W )) if and only if x ∈ W .

(12) A ⊆ ç(Lin(A)).

(13) If A 6= ∅ and A is linearly closed, then
∑

l ∈ A.

(14) If ΘV ∈ A and A is linearly closed, then
∑

l ∈ A.

(15) If ΘV ∈ A and A is linearly closed, then A = ç(Lin(A)).
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4. Cyclic submodules

Let us consider K, V , a. Then {a} is a non-empty subset of V . The functor
∏

∗
a yielding a strict submodule of V is defined by:

(Def.6)
∏

∗
a = Lin({a}).

5. Inclusion of left R-modules

Let us consider K, M , N . The predicate M ⊆ N is defined as follows:

(Def.7) M is a submodule of N .

We now state a number of propositions:

(16) If M ⊆ N , then if x ∈ M , then x ∈ N but if x is a vector of M , then x

is a vector of N .

(17) Suppose M ⊆ N . Then
(i) ΘM = ΘN ,
(ii) if m1 = n1 and m2 = n2, then m1 + m2 = n1 + n2,
(iii) if m = n, then r · m = r · n,
(iv) if m = n, then −n = −m,
(v) if m1 = n1 and m2 = n2, then m1 − m2 = n1 − n2,
(vi) ΘN ∈ M ,
(vii) ΘM ∈ N ,
(viii) if n1 ∈ M and n2 ∈ M , then n1 + n2 ∈ M ,
(ix) if n ∈ M , then r · n ∈ M ,
(x) if n ∈ M , then −n ∈ M ,
(xi) if n1 ∈ M and n2 ∈ M , then n1 − n2 ∈ M .

(18) Suppose M1 ⊆ N and M2 ⊆ N . Then
(i) ΘM1

= ΘM2
,

(ii) ΘM1
∈ M2,

(iii) if the carrier of M1 ⊆ the carrier of M2, then M1 ⊆ M2,
(iv) if for every n such that n ∈ M1 holds n ∈ M2, then M1 ⊆ M2,
(v) if the carrier of M1 = the carrier of M2 and M1 is strict and M2 is

strict, then M1 = M2,
(vi) 0M1

⊆ M2.

(19) W1 + W2 ⊆ V and W1 ∩ W2 ⊆ V .

(20) N ⊆ N .

(21) For all strict left modules V , M over K such that V ⊆ M and M ⊆ V

holds V = M .

(22) If V ⊆ M and M ⊆ N , then V ⊆ N .

(23) If M ⊆ N , then 0M ⊆ N .

(24) If M ⊆ N , then 0N ⊆ M .

(25) If M ⊆ N , then M ⊆ ΩN .
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(26) W1 ⊆ W1 + W2 and W2 ⊆ W1 + W2.

(27) W1 ∩ W2 ⊆ W1 and W1 ∩ W2 ⊆ W2.

(28) If W1 ⊆ W2, then W1 ∩ W3 ⊆ W2 ∩ W3.

(29) If W1 ⊆ W3, then W1 ∩ W2 ⊆ W3.

(30) If W1 ⊆ W2 and W1 ⊆ W3, then W1 ⊆ W2 ∩ W3.

(31) W1 ∩ W2 ⊆ W1 + W2.

(32) W1 ∩ W2 + W2 ∩ W3 ⊆ W2 ∩ (W1 + W3).

(33) If W1 ⊆ W2, then W2 ∩ (W1 + W3) = W1 ∩ W2 + W2 ∩ W3.

(34) W2 + W1 ∩ W3 ⊆ (W1 + W2) ∩ (W2 + W3).

(35) If W1 ⊆ W2, then W2 + W1 ∩ W3 = (W1 + W2) ∩ (W2 + W3).

(36) If W1 ⊆ W2, then W1 ⊆ W2 + W3.

(37) If W1 ⊆ W3 and W2 ⊆ W3, then W1 + W2 ⊆ W3.

(38) For all subsets A, B of V such that A ⊆ B holds Lin(A) ⊆ Lin(B).

(39) For all subsets A, B of V holds Lin(A ∩ B) ⊆ Lin(A) ∩ Lin(B).

(40) If M1 ⊆ M2, then ç(M1) ⊆ ç(M2).

(41) W1 ⊆ W2 if and only if for every a such that a ∈ W1 holds a ∈ W2.

(42) W1 ⊆ W2 if and only if ç(W1) ⊆ ç(W2).

(43) W1 ⊆ W2 if and only if ı̈(ç(W1)) ⊆ ı̈(ç(W2)).

(44) 0W ⊆ V and 0V ⊆ W and 0W1
⊆ W2.
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