Submodules

Michał Muzalewski
Warsaw University
Białystok

Abstract

Summary. This article contains the notions of trivial and nontrivial leftmodules and rings, cyclic submodules and inclusion of submodules. A few basic theorems related to these notions are proved.

MML Identifier: LMOD_6.

The notation and terminology used here are introduced in the following papers: [15], [16], [3], [4], [2], [1], [5], [6], [7], [14], [9], [13], [12], [10], [11], and [8].

1. Preliminaries

For simplicity we adopt the following rules: x is arbitrary, K denotes an associative ring, r denotes a scalar of K, V, M, M_{1}, M_{2}, N denote left modules over K, a denotes a vector of V, m, m_{1}, m_{2} denote vectors of M, n, n_{1}, n_{2} denote vectors of N, A denotes a subset of V, l denotes a linear combination of A, and W, W_{1}, W_{2}, W_{3} denote submodules of V. Next we state four propositions:
(1) If $M_{1}=$ the left module structure of M_{2}, then $x \in M_{1}$ if and only if $x \in M_{2}$.
(2) For every vector v of the left module structure of V such that $a=v$ holds $r \cdot a=r \cdot v$.
(3) The left module structure of V is a strict submodule of V.
(4) V is a submodule of Ω_{V}.

2. Trivial and non-trivial modules and rings

We now define two new predicates. Let us consider K, V. We say that V is non-trivial if and only if:
(Def.1) there exists a vector a of V such that $a \neq \Theta_{V}$.
Let us consider K. We say that K is non-trivial if and only if:
(Def.2) $\quad 0_{K} \neq 1_{K}$.
We now state three propositions:
(5) If K is trivial, then for every r holds $r=0_{K}$ and for every a holds $a=\Theta_{V}$.
(6) If K is trivial, then V is trivial.
(7) $\quad V$ is trivial if and only if the left module structure of $V=\mathbf{0}_{V}$.

3. Submodules and subsets

We now define two new functors. Let us consider K, V, and let W be a strict submodule of V. The functor $\ddot{e}(W)$ yields an element of $\operatorname{Sub}(V)$ and is defined by:
(Def.3) $\quad \ddot{\mathrm{e}}(W)=W$.
The functor $\mathrm{ç}(V)$ yields a non-empty subset of V and is defined as follows:
(Def.4) $\quad \varsigma(V)=$ the carrier of V.
The following two propositions are true:
(8) For all sets X, Y, A such that $X \subseteq Y$ and A is a subset of X holds A is a subset of Y.
(9) Every subset of W is a subset of V.

Let us consider K, V, W, and let A be a subset of W. The functor $\mathrm{i}(A)$ yields a subset of V and is defined by:
(Def.5) $\quad \mathrm{i}(A)=A$.
Let A be a non-empty subset of W. Then $\ddot{i}(A)$ is a non-empty subset of V.
The following propositions are true:
(10) $\quad x \in \varsigma(V)$ if and only if $x \in V$.
(11) $\quad x \in \ddot{\mathrm{i}}(\mathrm{c}(W))$ if and only if $x \in W$.
(12) $A \subseteq c(\operatorname{Lin}(A))$.
(13) If $A \neq \emptyset$ and A is linearly closed, then $\sum l \in A$.
(14) If $\Theta_{V} \in A$ and A is linearly closed, then $\sum l \in A$.
(15) If $\Theta_{V} \in A$ and A is linearly closed, then $A=\mathrm{c}(\operatorname{Lin}(A))$.

4. Cyclic submodules

Let us consider K, V, a. Then $\{a\}$ is a non-empty subset of V. The functor $\Pi^{*} a$ yielding a strict submodule of V is defined by:
(Def.6) $\quad \Pi^{*} a=\operatorname{Lin}(\{a\})$.

5. Inclusion of left R-modules

Let us consider K, M, N. The predicate $M \subseteq N$ is defined as follows:
(Def.7) $\quad M$ is a submodule of N.
We now state a number of propositions:
(16) If $M \subseteq N$, then if $x \in M$, then $x \in N$ but if x is a vector of M, then x is a vector of N.
(17) Suppose $M \subseteq N$. Then
(i) $\Theta_{M}=\Theta_{N}$,
(ii) if $m_{1}=n_{1}$ and $m_{2}=n_{2}$, then $m_{1}+m_{2}=n_{1}+n_{2}$,
(iii) if $m=n$, then $r \cdot m=r \cdot n$,
(iv) if $m=n$, then $-n=-m$,
(v) if $m_{1}=n_{1}$ and $m_{2}=n_{2}$, then $m_{1}-m_{2}=n_{1}-n_{2}$,
(vi) $\Theta_{N} \in M$,
(vii) $\Theta_{M} \in N$,
(viii) if $n_{1} \in M$ and $n_{2} \in M$, then $n_{1}+n_{2} \in M$,
(ix) if $n \in M$, then $r \cdot n \in M$,
(x) if $n \in M$, then $-n \in M$,
(xi) if $n_{1} \in M$ and $n_{2} \in M$, then $n_{1}-n_{2} \in M$.
(18) Suppose $M_{1} \subseteq N$ and $M_{2} \subseteq N$. Then
(i) $\Theta_{M_{1}}=\Theta_{M_{2}}$,
(ii) $\Theta_{M_{1}} \in M_{2}$,
(iii) if the carrier of $M_{1} \subseteq$ the carrier of M_{2}, then $M_{1} \subseteq M_{2}$,
(iv) if for every n such that $n \in M_{1}$ holds $n \in M_{2}$, then $M_{1} \subseteq M_{2}$,
(v) if the carrier of $M_{1}=$ the carrier of M_{2} and M_{1} is strict and M_{2} is strict, then $M_{1}=M_{2}$,
(vi) $\quad \mathbf{0}_{M_{1}} \subseteq M_{2}$.
(19) $W_{1}+W_{2} \subseteq V$ and $W_{1} \cap W_{2} \subseteq V$.
(20) $\quad N \subseteq N$.
(21) For all strict left modules V, M over K such that $V \subseteq M$ and $M \subseteq V$ holds $V=M$.
(22) If $V \subseteq M$ and $M \subseteq N$, then $V \subseteq N$.
(23) If $M \subseteq N$, then $\mathbf{0}_{M} \subseteq N$.
(24) If $M \subseteq N$, then $\mathbf{0}_{N} \subseteq M$.
(25) If $M \subseteq N$, then $M \subseteq \Omega_{N}$.
$W_{1} \subseteq W_{1}+W_{2}$ and $W_{2} \subseteq W_{1}+W_{2}$.
$W_{1} \cap W_{2} \subseteq W_{1}$ and $W_{1} \cap W_{2} \subseteq W_{2}$.
If $W_{1} \subseteq W_{2}$, then $W_{1} \cap W_{3} \subseteq W_{2} \cap W_{3}$.
If $W_{1} \subseteq W_{3}$, then $W_{1} \cap W_{2} \subseteq W_{3}$.
If $W_{1} \subseteq W_{2}$ and $W_{1} \subseteq W_{3}$, then $W_{1} \subseteq W_{2} \cap W_{3}$.
$W_{1} \cap W_{2} \subseteq W_{1}+W_{2}$.
$W_{1} \cap W_{2}+W_{2} \cap W_{3} \subseteq W_{2} \cap\left(W_{1}+W_{3}\right)$.
If $W_{1} \subseteq W_{2}$, then $W_{2} \cap\left(W_{1}+W_{3}\right)=W_{1} \cap W_{2}+W_{2} \cap W_{3}$.
$W_{2}+W_{1} \cap W_{3} \subseteq\left(W_{1}+W_{2}\right) \cap\left(W_{2}+W_{3}\right)$.
If $W_{1} \subseteq W_{2}$, then $W_{2}+W_{1} \cap W_{3}=\left(W_{1}+W_{2}\right) \cap\left(W_{2}+W_{3}\right)$.
If $W_{1} \subseteq W_{2}$, then $W_{1} \subseteq W_{2}+W_{3}$.
If $W_{1} \subseteq W_{3}$ and $W_{2} \subseteq W_{3}$, then $W_{1}+W_{2} \subseteq W_{3}$.
For all subsets A, B of V such that $A \subseteq B$ holds $\operatorname{Lin}(A) \subseteq \operatorname{Lin}(B)$.
For all subsets A, B of V holds $\operatorname{Lin}(A \cap B) \subseteq \operatorname{Lin}(A) \cap \operatorname{Lin}(B)$.
If $M_{1} \subseteq M_{2}$, then $\varsigma\left(M_{1}\right) \subseteq \varsigma\left(M_{2}\right)$.
$W_{1} \subseteq W_{2}$ if and only if for every a such that $a \in W_{1}$ holds $a \in W_{2}$.
$W_{1} \subseteq W_{2}$ if and only if $\varsigma\left(W_{1}\right) \subseteq \varsigma\left(W_{2}\right)$.
$W_{1} \subseteq W_{2}$ if and only if $\mathrm{i}\left(\mathrm{c}\left(W_{1}\right)\right) \subseteq \ddot{\mathrm{i}}\left(\mathrm{c}\left(W_{2}\right)\right)$.
$\mathbf{0}_{W} \subseteq V$ and $\mathbf{0}_{V} \subseteq W$ and $\mathbf{0}_{W_{1}} \subseteq W_{2}$.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651-656, 1990.
[6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[7] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[8] Michał Muzalewski. Free modules. Formalized Mathematics, 2(4):587-589, 1991.
[9] Michał Muzalewski and Wojciech Skaba. Finite sums of vectors in left module over associative ring. Formalized Mathematics, 2(2):279-282, 1991.
[10] Michał Muzalewski and Wojciech Skaba. Linear combinations in left module over associative ring. Formalized Mathematics, 2(2):295-300, 1991.
[11] Michał Muzalewski and Wojciech Skaba. Linear independence in left module over domain. Formalized Mathematics, 2(2):301-303, 1991.
[12] Michał Muzalewski and Wojciech Skaba. Operations on submodules in left module over associative ring. Formalized Mathematics, 2(2):289-293, 1991.
[13] Michał Muzalewski and Wojciech Skaba. Submodules and cosets of submodules in left module over associative ring. Formalized Mathematics, 2(2):283-287, 1991.
[14] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Received June 19, 1992

