Some Isomorphisms Between Functor Categories

Andrzej Trybulec Warsaw University Białystok

Summary. We define some well known isomorphisms between functor categories: between $A^{\dot{\bigcirc}(o,m)}$ and A, between $C^{[A,B]}$ and $(C^B)^A$, and between $[B,C]^A$ and $[B^A, C^A]$. Compare [12] and [11]. Unfortunately in this paper "functor" is used in two different meanings, as a lingual function and as a functor between categories.

MML Identifier: ISOCAT_2.

The notation and terminology used in this paper are introduced in the following papers: [17], [18], [4], [5], [3], [7], [1], [2], [10], [13], [8], [14], [6], [9], [16], and [15].

1. Preliminaries

The scheme *ChoiceD* concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , and a binary predicate \mathcal{P} , and states that:

there exists a function h from \mathcal{A} into \mathcal{B} such that for every element a of \mathcal{A} holds $\mathcal{P}[a, h(a)]$

provided the parameters meet the following requirement:

• for every element a of \mathcal{A} there exists an element b of \mathcal{B} such that $\mathcal{P}[a, b]$.

Let A, B, C be non-empty sets, and let f be a function from A into C^B . Then uncurry f is a function from [A, B] into C.

We now state several propositions:

(1) For all non-empty sets A, B, C and for every function f from A into C^B holds curry uncurry f = f.

C 1992 Fondation Philippe le Hodey ISSN 0777-4028

- (2) For all non-empty sets A, B, C and for every function f from A into C^B and for every element a of A and for every element b of B holds (uncurry $f)(\langle a, b \rangle) = f(a)(b)$.
- (3) For an arbitrary x and for every non-empty set A and for all functions f, g from $\{x\}$ into A such that f(x) = g(x) holds f = g.
- (4) For all non-empty sets A, B and for every element x of A and for every function f from A into B holds $f(x) \in \operatorname{rng} f$.
- (5) For all non-empty sets A, B, C and for all functions f, g from A into [B, C] such that $\pi_1(B \times C) \cdot f = \pi_1(B \times C) \cdot g$ and $\pi_2(B \times C) \cdot f = \pi_2(B \times C) \cdot g$ holds f = g.

We adopt the following rules: A, B, C will be categories and F, F_1, F_2 will be functors from A to B. The following two propositions are true:

- (6) For every morphism f of A holds $\operatorname{id}_{\operatorname{cod} f} \cdot f = f$.
- (7) For every morphism f of A holds $f \cdot id_{\text{dom } f} = f$.
- In the sequel o, m will be arbitrary. The following two propositions are true:
- (8) o is an object of B^A if and only if o is a functor from A to B.
- (9) For every morphism f of B^A there exist functors F_1 , F_2 from A to B and there exists a natural transformation t from F_1 to F_2 such that F_1 is naturally transformable to F_2 and dom $f = F_1$ and cod $f = F_2$ and $f = \langle \langle F_1, F_2 \rangle, t \rangle$.

2. The isomorphism between $A^{\dot{\bigcirc}(o,m)}$ and A

Let us consider A, B, and let a be an object of A. The functor $a \mapsto B$ yields a functor from B^A to B and is defined by:

(Def.1) for all functors F_1 , F_2 from A to B and for every natural transformation t from F_1 to F_2 such that F_1 is naturally transformable to F_2 holds $(a \mapsto B)(\langle \langle F_1, F_2 \rangle, t \rangle) = t(a)$.

One can prove the following two propositions:

- (10) The objects of $\dot{\heartsuit}(o,m) = \{o\}$ and the morphisms of $\dot{\circlearrowright}(o,m) = \{m\}$.
- (11) $A^{\dot{\circlearrowright}(o,m)} \cong A.$

3. The isomorphism between $C^{[A,B]}$ and $(C^B)^A$

Next we state four propositions:

- (12) For every functor F from [A, B] to C and for every object a of A and for every object b of B holds $F(a, -)(b) = F(\langle a, b \rangle)$.
- (13) For all objects a_1, a_2 of A and for all objects b_1, b_2 of B holds $\hom(a_1, a_2) \neq \emptyset$ and $\hom(b_1, b_2) \neq \emptyset$ if and only if $\hom(\langle a_1, b_1 \rangle, \langle a_2, b_2 \rangle) \neq \emptyset$.

- (14) Let a_1, a_2 be objects of A. Then for all objects b_1, b_2 of B such that $\hom(\langle a_1, b_1 \rangle, \langle a_2, b_2 \rangle) \neq \emptyset$ and for every morphism f of A and for every morphism g of B holds $\langle f, g \rangle$ is a morphism from $\langle a_1, b_1 \rangle$ to $\langle a_2, b_2 \rangle$ if and only if f is a morphism from a_1 to a_2 and g is a morphism from b_1 to b_2 .
- (15) For all functors F_1 , F_2 from [A, B] to C such that F_1 is naturally transformable to F_2 and for every natural transformation t from F_1 to F_2 and for every object a of A holds $F_1(a, -)$ is naturally transformable to $F_2(a, -)$ and $(\operatorname{curry} t)(a)$ is a natural transformation from $F_1(a, -)$ to $F_2(a, -)$.

Let us consider A, B, C, and let F be a functor from [A, B] to C, and let f be a morphism of A. The functor $\operatorname{curry}(F, f)$ yields a function from the morphisms of B into the morphisms of C and is defined by:

(Def.2) $\operatorname{curry}(F, f) = (\operatorname{curry} F)(f).$

The following two propositions are true:

- (16) For all objects a_1 , a_2 of A and for all objects b_1 , b_2 of B and for every morphism f of A and for every morphism g of B such that $f \in \text{hom}(a_1, a_2)$ and $g \in \text{hom}(b_1, b_2)$ holds $\langle f, g \rangle \in \text{hom}(\langle a_1, b_1 \rangle, \langle a_2, b_2 \rangle)$.
- (17) For every functor F from [A, B] to C and for all objects a, b of A such that $hom(a, b) \neq \emptyset$ and for every morphism f from a to b holds F(a, -) is naturally transformable to F(b, -) and $curry(F, f) \cdot$ the id-map of B is a natural transformation from F(a, -) to F(b, -).

Let us consider A, B, C, and let F be a functor from [A, B] to C, and let f be a morphism of A. The functor F(f, -) yielding a natural transformation from F(dom f, -) to F(cod f, -) is defined by:

(Def.3) $F(f, -) = \operatorname{curry}(F, f) \cdot \operatorname{the id-map} of B.$

We now state four propositions:

- (18) For every functor F from [A, B] to C and for every morphism g of A holds $F(\operatorname{dom} g, -)$ is naturally transformable to $F(\operatorname{cod} g, -)$.
- (19) For every functor F from [A, B] to C and for every morphism f of A and for every object b of B holds $F(f, -)(b) = F(\langle f, id_b \rangle)$.
- (20) For every functor F from [A, B] to C and for every object a of A holds $\operatorname{id}_{F(a,-)} = F(\operatorname{id}_a, -).$
- (21) For every functor F from [A, B] to C and for all morphisms g, f of A such that dom $g = \operatorname{cod} f$ and for every natural transformation t from $F(\operatorname{dom} f, -)$ to $F(\operatorname{dom} g, -)$ such that t = F(f, -) holds $F(g \cdot f, -) = F(g, -) \circ t$.

Let us consider A, B, C, and let F be a functor from [A, B] to C. The functor export(F) yielding a functor from A to C^B is defined as follows:

(Def.4) for every morphism f of A holds $(export(F))(f) = \langle \langle F(\operatorname{dom} f, -), F(\operatorname{cod} f, -) \rangle, F(f, -) \rangle$.

We now state several propositions:

- (22) For every functor F from [A, B] to C and for every morphism f of A holds $(export(F))(f) = \langle \langle F(\operatorname{dom} f, -), F(\operatorname{cod} f, -) \rangle, F(f, -) \rangle$.
- (23) For all functors F_1 , F_2 from A to B such that F_1 is transformable to F_2 and for every transformation t from F_1 to F_2 and for every object a of Aholds $t(a) \in \text{hom}(F_1(a), F_2(a))$.
- (24) For every functor F from [A, B] to C and for every object a of A holds (export(F))(a) = F(a, -).
- (25) For every functor F from [A, B] to C and for every object a of A holds (export(F))(a) is a functor from B to C.
- (26) For all functors F_1 , F_2 from [A, B] to C such that $export(F_1) = export(F_2)$ holds $F_1 = F_2$.
- (27) Let F_1 , F_2 be functors from [A, B] to C. Suppose F_1 is naturally transformable to F_2 . Let t be a natural transformation from F_1 to F_2 . Then export (F_1) is naturally transformable to export (F_2) and there exists a natural transformation G from export (F_1) to export (F_2) such that for every function s from [the objects of A, the objects of B] into the morphisms of C such that t = s and for every object a of A holds $G(a) = \langle \langle (export(F_1))(a), (export(F_2))(a) \rangle$, $(eurry s)(a) \rangle$.

Let us consider A, B, C, and let F_1 , F_2 be functors from [A, B] to C satisfying the condition: F_1 is naturally transformable to F_2 . Let t be a natural transformation from F_1 to F_2 . The functor export(t) yielding a natural transformation from export (F_1) to export (F_2) is defined as follows:

(Def.5) for every function s from [the objects of A, the objects of B] into the morphisms of C such that t = s and for every object a of A holds $(export(t))(a) = \langle \langle (export(F_1))(a), (export(F_2))(a) \rangle, (curry s)(a) \rangle$.

We now state several propositions:

- (28) For every functor F from [A, B] to C holds $id_{export(F)} = export(id_F)$.
- (29) For all functors F_1 , F_2 , F_3 from [A, B] to C such that F_1 is naturally transformable to F_2 and F_2 is naturally transformable to F_3 and for every natural transformation t_1 from F_1 to F_2 and for every natural transformation t_2 from F_2 to F_3 holds export $(t_2 \circ t_1) = \text{export}(t_2) \circ \text{export}(t_1)$.
- (30) For all functors F_1 , F_2 from [A, B] to C such that F_1 is naturally transformable to F_2 and for all natural transformations t_1 , t_2 from F_1 to F_2 such that $export(t_1) = export(t_2)$ holds $t_1 = t_2$.
- (31) For every functor G from A to C^B there exists a functor F from [A, B] to C such that $G = \operatorname{export}(F)$.
- (32) For all functors F_1 , F_2 from [A, B] to C such that $export(F_1)$ is naturally transformable to $export(F_2)$ and for every natural transformation t from $export(F_1)$ to $export(F_2)$ holds F_1 is naturally transformable to F_2 and there exists a natural transformation u from F_1 to F_2 such that t = export(u).

Let us consider A, B, C. The functor $export_{A,B,C}$ yields a functor from $C^{[A,B]}$ to $(C^B)^A$ and is defined by:

(Def.6) for all functors F_1 , F_2 from [A, B] to C such that F_1 is naturally transformable to F_2 and for every natural transformation t from F_1 to F_2 holds $export_{A,B,C}(\langle\langle F_1, F_2 \rangle, t \rangle) = \langle\langle export(F_1), export(F_2) \rangle, export(t) \rangle.$

Next we state two propositions:

- (33) **export**_{A,B,C} is an isomorphism.
- $(34) C^{[A,B]} \cong (C^B)^A.$
 - 4. The isomorphism between $[B, C]^A$ and $[B^A, C^A]$

We now state the proposition

(35) For all functors F_1 , F_2 from A to B and for every functor G from B to C such that F_1 is naturally transformable to F_2 and for every natural transformation t from F_1 to F_2 holds $G \cdot t = G \cdot t$ qua a function.

We now define two new functors. Let us consider A, B. Then $\pi_1(A \times B)$ is a functor from [A, B] to A. Then $\pi_2(A \times B)$ is a functor from [A, B] to B. Let us consider A, B, C, and let F be a functor from A to B, and let G be a functor from A to C. Then $\langle F, G \rangle$ is a functor from A to [B, C]. Let F be a functor from A to [B, C]. The functor $\pi_1 \cdot F$ yielding a functor from A to B is defined as follows:

(Def.7)
$$\pi_1 \cdot F = \pi_1(B \times C) \cdot F.$$

The functor $\pi_2 \cdot F$ yielding a functor from A to C is defined by:

(Def.8) $\pi_2 \cdot F = \pi_2(B \times C) \cdot F.$

The following two propositions are true:

- (36) For every functor F from A to B and for every functor G from A to C holds $\pi_1 \cdot \langle F, G \rangle = F$ and $\pi_2 \cdot \langle F, G \rangle = G$.
- (37) For all functors F, G from A to [B, C] such that $\pi_1 \cdot F = \pi_1 \cdot G$ and $\pi_2 \cdot F = \pi_2 \cdot G$ holds F = G.

We now define two new functors. Let us consider A, B, C, and let F_1, F_2 be functors from A to [B, C], and let t be a natural transformation from F_1 to F_2 . The functor $\pi_1 \cdot t$ yielding a natural transformation from $\pi_1 \cdot F_1$ to $\pi_1 \cdot F_2$ is defined as follows:

(Def.9) $\pi_1 \cdot t = \pi_1(B \times C) \cdot t.$

The functor $\pi_2 \cdot t$ yielding a natural transformation from $\pi_2 \cdot F_1$ to $\pi_2 \cdot F_2$ is defined as follows:

(Def.10) $\pi_2 \cdot t = \pi_2(B \times C) \cdot t.$

We now state several propositions:

- (38) For all functors F, G from A to [B, C] such that F is naturally transformable to G holds $\pi_1 \cdot F$ is naturally transformable to $\pi_1 \cdot G$ and $\pi_2 \cdot F$ is naturally transformable to $\pi_2 \cdot G$.
- (39) For all functors F_1 , F_2 , G_1 , G_2 from A to [B, C] such that F_1 is naturally transformable to F_2 and G_1 is naturally transformable to G_2 and for every natural transformation s from F_1 to F_2 and for every natural transformation t from G_1 to G_2 such that $\pi_1 \cdot s = \pi_1 \cdot t$ and $\pi_2 \cdot s = \pi_2 \cdot t$ holds s = t.
- (40) For every functor F from A to [B, C] holds $\operatorname{id}_{\pi_1 \cdot F} = \pi_1 \cdot (\operatorname{id}_F)$ and $\operatorname{id}_{\pi_2 \cdot F} = \pi_2 \cdot (\operatorname{id}_F)$.
- (41) For all functors F, G, H from A to [B, C] such that F is naturally transformable to G and G is naturally transformable to H and for every natural transformation s from F to G and for every natural transformation t from G to H holds $\pi_1 \cdot (t^\circ s) = \pi_1 \cdot t^\circ \pi_1 \cdot s$ and $\pi_2 \cdot (t^\circ s) = \pi_2 \cdot t^\circ \pi_2 \cdot s$.
- (42) For every functor F from A to B and for every functor G from A to C and for all objects a, b of A such that $hom(a, b) \neq \emptyset$ and for every morphism f from a to b holds $\langle F, G \rangle(f) = \langle F(f), G(f) \rangle$.
- (43) For every functor F from A to B and for every functor G from A to C and for every object a of A holds $\langle F, G \rangle(a) = \langle F(a), G(a) \rangle$.
- (44) For all functors F_1 , G_1 from A to B and for all functors F_2 , G_2 from A to C such that F_1 is transformable to G_1 and F_2 is transformable to G_2 holds $\langle F_1, F_2 \rangle$ is transformable to $\langle G_1, G_2 \rangle$.

Let us consider A, B, C, and let F_1 , G_1 be functors from A to B, and let F_2 , G_2 be functors from A to C satisfying the condition: F_1 is transformable to G_1 and F_2 is transformable to G_2 . Let t_1 be a transformation from F_1 to G_1 , and let t_2 be a transformation from F_2 to G_2 . The functor $\langle t_1, t_2 \rangle$ yielding a transformation from $\langle F_1, F_2 \rangle$ to $\langle G_1, G_2 \rangle$ is defined as follows:

(Def.11)
$$\langle t_1, t_2 \rangle = \langle t_1, t_2 \rangle.$$

One can prove the following propositions:

- (45) For all functors F_1 , G_1 from A to B and for all functors F_2 , G_2 from A to C such that F_1 is transformable to G_1 and F_2 is transformable to G_2 and for every transformation t_1 from F_1 to G_1 and for every transformation t_2 from F_2 to G_2 and for every object a of A holds $\langle t_1, t_2 \rangle \langle a \rangle = \langle t_1(a), t_2(a) \rangle$.
- (46) For all functors F_1 , G_1 from A to B and for all functors F_2 , G_2 from A to C such that F_1 is naturally transformable to G_1 and F_2 is naturally transformable to G_2 holds $\langle F_1, F_2 \rangle$ is naturally transformable to $\langle G_1, G_2 \rangle$.

Let us consider A, B, C, and let F_1 , G_1 be functors from A to B, and let F_2 , G_2 be functors from A to C satisfying the conditions: F_1 is naturally transformable to G_1 and F_2 is naturally transformable to G_2 . Let t_1 be a natural transformation from F_1 to G_1 , and let t_2 be a natural transformation from F_2 to G_2 . The functor $\langle t_1, t_2 \rangle$ yielding a natural transformation from $\langle F_1, F_2 \rangle$ to $\langle G_1, G_2 \rangle$ is defined as follows: (Def.12) $\langle t_1, t_2 \rangle = \langle t_1, t_2 \rangle.$

Next we state the proposition

(47) For all functors F_1 , G_1 from A to B and for all functors F_2 , G_2 from A to C such that F_1 is naturally transformable to G_1 and F_2 is naturally transformable to G_2 and for every natural transformation t_1 from F_1 to G_1 and for every natural transformation t_2 from F_2 to G_2 holds $\pi_1 \langle t_1, t_2 \rangle = t_1$ and $\pi_2 \cdot \langle t_1, t_2 \rangle = t_2$.

Let us consider A, B, C. The functor **distribute**_{A,B,C} yielding a functor from $[B, C]^A$ to $[B^A, C^A]$ is defined by:

(Def.13) for all functors F_1 , F_2 from A to [B, C] such that F_1 is naturally transformable to F_2 and for every natural transformation t from F_1 to F_2 holds **distribute**_{A,B,C}($\langle\langle F_1, F_2 \rangle, t \rangle$) = $\langle\langle\langle \pi_1 \cdot F_1, \pi_1 \cdot F_2 \rangle, \pi_1 \cdot t \rangle, \langle\langle \pi_2 \cdot F_1, \pi_2 \cdot F_2 \rangle, \pi_2 \cdot t \rangle$.

One can prove the following two propositions:

- (48) **distribute**_{A,B,C} is an isomorphism.
- $(49) \quad [B, C]^A \cong [B^A, C^A].$

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537–541, 1990.
- Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245–254, 1990.
- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [6] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409-420, 1990.
- [7] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- Czesław Byliński. Subcategories and products of categories. Formalized Mathematics, 1(4):725-732, 1990.
- [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [11] Saunders Mac Lane. Categories for the Working Mathematician. Volume 5 of Graduate Texts in Mathematics, Springer Verlag, New York, Heidelberg, Berlin, 1971.
- [12] Zbigniew Semadeni and Antoni Wiweger. Wstęp do teorii kategorii i funktorów. Volume 45 of Biblioteka Matematyczna, PWN, Warszawa, 1978.
- [13] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [14] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [15] Andrzej Trybulec. Isomorphisms of categories. Formalized Mathematics, 2(5):629–634, 1991.
- [16] Andrzej Trybulec. Natural transformations. Discrete categories. Formalized Mathematics, 2(4):467–474, 1991.
- [17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

[18] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.

Received June 5, 1992