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Summary. We prove the Go-board theorem which is a special
case of Hex Theorem. The article is based on [15].

MML Identifier: GOBOARD4.

The terminology and notation used in this paper are introduced in the following
articles: [16], [7], [1], [4], [2], [13], [14], [17], [3], [8], [5], [6], [9], [12], [10], and
[11]. For simplicity we adopt the following convention: p, p1, p2, q, q1, q2 will
be points of E2

T
, P1, P2 will be subsets of E2

T
, f1, f2 will be finite sequences of

elements of E2

T
, r, s will be real numbers, n will be a natural number, and G

will be a Go-board. We now state several propositions:

(1) Given G, f1, f2. Suppose that
(i) 1 ≤ len f1,
(ii) 1 ≤ len f2,
(iii) f1 is a sequence which elements belong to G,
(iv) f2 is a sequence which elements belong to G,
(v) f1(1) ∈ rng Line(G, 1),
(vi) f1(len f1) ∈ rng Line(G, len G),
(vii) f2(1) ∈ rng(G � ,1),
(viii) f2(len f2) ∈ rng(G � ,width G).

Then rng f1 ∩ rng f2 6= ∅.

(2) Given G, f1, f2. Suppose that
(i) 2 ≤ len f1,
(ii) 2 ≤ len f2,
(iii) f1 is a sequence which elements belong to G,
(iv) f2 is a sequence which elements belong to G,
(v) f1(1) ∈ rng Line(G, 1),
(vi) f1(len f1) ∈ rng Line(G, len G),

1This article was written during my visit at Shinshu University in 1992.
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(vii) f2(1) ∈ rng(G � ,1),
(viii) f2(len f2) ∈ rng(G � ,width G).

Then L̃(f1) ∩ L̃(f2) 6= ∅.

(3) Given G, f1, f2. Suppose that
(i) f1 is a special sequence,
(ii) f2 is a special sequence,
(iii) f1 is a sequence which elements belong to G,
(iv) f2 is a sequence which elements belong to G,
(v) f1(1) ∈ rng Line(G, 1),
(vi) f1(len f1) ∈ rng Line(G, len G),
(vii) f2(1) ∈ rng(G � ,1),
(viii) f2(len f2) ∈ rng(G � ,width G).

Then L̃(f1) ∩ L̃(f2) 6= ∅.

(4) Given f1, f2. Suppose that
(i) 2 ≤ len f1,
(ii) 2 ≤ len f2,
(iii) for all n, p, q such that n ∈ dom f1 and n + 1 ∈ dom f1 and f1(n) = p

and f1(n + 1) = q holds p1 = q1 or p2 = q2,
(iv) for all n, p, q such that n ∈ dom f2 and n + 1 ∈ dom f2 and f2(n) = p

and f2(n + 1) = q holds p1 = q1 or p2 = q2,
(v) for every n such that n ∈ dom f1 and n + 1 ∈ dom f1 holds f1(n) 6=

f1(n + 1),
(vi) for every n such that n ∈ dom f2 and n + 1 ∈ dom f2 holds f2(n) 6=

f2(n + 1),
(vii) for every r such that r = (X-coordinate(f1))(1) and for all n, s such

that n ∈ dom f1 and s = (X-coordinate(f1))(n) holds r ≤ s,
(viii) for every r such that r = (X-coordinate(f1))(1) and for all n, s such

that n ∈ dom f2 and s = (X-coordinate(f2))(n) holds r ≤ s,
(ix) for every r such that r = (X-coordinate(f1))(len f1) and for all n, s

such that n ∈ dom f1 and s = (X-coordinate(f1))(n) holds s ≤ r,
(x) for every r such that r = (X-coordinate(f1))(len f1) and for all n, s

such that n ∈ dom f2 and s = (X-coordinate(f2))(n) holds s ≤ r,
(xi) for every r such that r = (Y-coordinate(f2))(1) and for all n, s such

that n ∈ dom f1 and s = (Y-coordinate(f1))(n) holds r ≤ s,
(xii) for every r such that r = (Y-coordinate(f2))(1) and for all n, s such

that n ∈ dom f2 and s = (Y-coordinate(f2))(n) holds r ≤ s,
(xiii) for every r such that r = (Y-coordinate(f2))(len f2) and for all n, s

such that n ∈ dom f1 and s = (Y-coordinate(f1))(n) holds s ≤ r,
(xiv) for every r such that r = (Y-coordinate(f2))(len f2) and for all n, s

such that n ∈ dom f2 and s = (Y-coordinate(f2))(n) holds s ≤ r.

Then L̃(f1) ∩ L̃(f2) 6= ∅.

(5) Given f1, f2. Suppose that
(i) f1 is a special sequence,
(ii) f2 is a special sequence,
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(iii) for every r such that r = (X-coordinate(f1))(1) and for all n, s such
that n ∈ dom f1 and s = (X-coordinate(f1))(n) holds r ≤ s,

(iv) for every r such that r = (X-coordinate(f1))(1) and for all n, s such
that n ∈ dom f2 and s = (X-coordinate(f2))(n) holds r ≤ s,

(v) for every r such that r = (X-coordinate(f1))(len f1) and for all n, s

such that n ∈ dom f1 and s = (X-coordinate(f1))(n) holds s ≤ r,
(vi) for every r such that r = (X-coordinate(f1))(len f1) and for all n, s

such that n ∈ dom f2 and s = (X-coordinate(f2))(n) holds s ≤ r,
(vii) for every r such that r = (Y-coordinate(f2))(1) and for all n, s such

that n ∈ dom f1 and s = (Y-coordinate(f1))(n) holds r ≤ s,
(viii) for every r such that r = (Y-coordinate(f2))(1) and for all n, s such

that n ∈ dom f2 and s = (Y-coordinate(f2))(n) holds r ≤ s,
(ix) for every r such that r = (Y-coordinate(f2))(len f2) and for all n, s

such that n ∈ dom f1 and s = (Y-coordinate(f1))(n) holds s ≤ r,
(x) for every r such that r = (Y-coordinate(f2))(len f2) and for all n, s

such that n ∈ dom f2 and s = (Y-coordinate(f2))(n) holds s ≤ r.

Then L̃(f1) ∩ L̃(f2) 6= ∅.

(6) Given P1, P2. Suppose P1 is a special polygonal arc and P2 is a special
polygonal arc. Given G, f1, f2. Suppose that

(i) f1 is a special sequence,

(ii) P1 = L̃(f1),
(iii) f2 is a special sequence,

(iv) P2 = L̃(f2),
(v) f1 is a sequence which elements belong to G,
(vi) f2 is a sequence which elements belong to G,
(vii) f1(1) ∈ rng Line(G, 1),
(viii) f1(len f1) ∈ rng Line(G, len G),
(ix) f2(1) ∈ rng(G � ,1),
(x) f2(len f2) ∈ rng(G � ,width G).

Then P1 ∩ P2 6= ∅.

(7) Given P1, P2. Suppose P1 is a special polygonal arc and P2 is a special
polygonal arc. Given f1, f2. Suppose that

(i) f1 is a special sequence,

(ii) P1 = L̃(f1),
(iii) f2 is a special sequence,

(iv) P2 = L̃(f2),
(v) for every r such that r = (X-coordinate(f1))(1) and for all n, s such

that n ∈ dom f1 and s = (X-coordinate(f1))(n) holds r ≤ s,
(vi) for every r such that r = (X-coordinate(f1))(1) and for all n, s such

that n ∈ dom f2 and s = (X-coordinate(f2))(n) holds r ≤ s,
(vii) for every r such that r = (X-coordinate(f1))(len f1) and for all n, s

such that n ∈ dom f1 and s = (X-coordinate(f1))(n) holds s ≤ r,
(viii) for every r such that r = (X-coordinate(f1))(len f1) and for all n, s

such that n ∈ dom f2 and s = (X-coordinate(f2))(n) holds s ≤ r,
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(ix) for every r such that r = (Y-coordinate(f2))(1) and for all n, s such
that n ∈ dom f1 and s = (Y-coordinate(f1))(n) holds r ≤ s,

(x) for every r such that r = (Y-coordinate(f2))(1) and for all n, s such
that n ∈ dom f2 and s = (Y-coordinate(f2))(n) holds r ≤ s,

(xi) for every r such that r = (Y-coordinate(f2))(len f2) and for all n, s

such that n ∈ dom f1 and s = (Y-coordinate(f1))(n) holds s ≤ r,
(xii) for every r such that r = (Y-coordinate(f2))(len f2) and for all n, s

such that n ∈ dom f2 and s = (Y-coordinate(f2))(n) holds s ≤ r.
Then P1 ∩ P2 6= ∅.

(8) Given P1, P2, p1, p2, q1, q2. Suppose that
(i) P1 is a special polygonal arc joining p1 and q1,
(ii) P2 is a special polygonal arc joining p2 and q2,
(iii) for every p such that p ∈ P1 ∪ P2 holds p11 ≤ p1 and p1 ≤ q11,
(iv) for every p such that p ∈ P1 ∪ P2 holds p22 ≤ p2 and p2 ≤ q22.

Then P1 ∩ P2 6= ∅.
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