Go-Board Theorem

Jarosław Kotowicz ${ }^{1} \quad$ Yatsuka Nakamura
Warsaw University
Białystok
Shinshu University
Nagano

Abstract

Summary. We prove the Go-board theorem which is a special case of Hex Theorem. The article is based on [15].

MML Identifier: GOBOARD4.

The terminology and notation used in this paper are introduced in the following articles: [16], [7], [1], [4], [2], [13], [14], [17], [3], [8], [5], [6], [9], [12], [10], and [11]. For simplicity we adopt the following convention: $p, p_{1}, p_{2}, q, q_{1}, q_{2}$ will be points of $\mathcal{E}_{\mathrm{T}}^{2}, P_{1}, P_{2}$ will be subsets of $\mathcal{E}_{\mathrm{T}}^{2}, f_{1}, f_{2}$ will be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}, r, s$ will be real numbers, n will be a natural number, and G will be a Go-board. We now state several propositions:
(1) Given G, f_{1}, f_{2}. Suppose that
(i) $1 \leq \operatorname{len} f_{1}$,
(ii) $1 \leq \operatorname{len} f_{2}$,
(iii) f_{1} is a sequence which elements belong to G,
(iv) f_{2} is a sequence which elements belong to G,
(v) $f_{1}(1) \in \operatorname{rng} \operatorname{Line}(G, 1)$,
(vi) $f_{1}\left(\operatorname{len} f_{1}\right) \in \operatorname{rng} \operatorname{Line}(G$, len $G)$,
(vii) $\quad f_{2}(1) \in \operatorname{rng}\left(G_{\square, 1}\right)$,
(viii) $\quad f_{2}\left(\operatorname{len} f_{2}\right) \in \operatorname{rng}\left(G_{\square, \text { width } G}\right)$.

Then rng $f_{1} \cap \operatorname{rng} f_{2} \neq \emptyset$.
(2) Given G, f_{1}, f_{2}. Suppose that
(i) $2 \leq \operatorname{len} f_{1}$,
(ii) $2 \leq \operatorname{len} f_{2}$,
(iii) f_{1} is a sequence which elements belong to G,
(iv) f_{2} is a sequence which elements belong to G,
(v) $f_{1}(1) \in \operatorname{rng} \operatorname{Line}(G, 1)$,
(vi) $\quad f_{1}\left(\operatorname{len} f_{1}\right) \in \operatorname{rng} \operatorname{Line}(G, \operatorname{len} G)$,

[^0](vii) $\quad f_{2}(1) \in \operatorname{rng}\left(G_{\square, 1}\right)$,
(viii) $\quad f_{2}\left(\operatorname{len} f_{2}\right) \in \operatorname{rng}\left(G_{\square, \text { width } G}\right)$.

Then $\widetilde{\mathcal{L}}\left(f_{1}\right) \cap \widetilde{\mathcal{L}}\left(f_{2}\right) \neq \emptyset$.
(3) Given G, f_{1}, f_{2}. Suppose that
(i) f_{1} is a special sequence,
(ii) $\quad f_{2}$ is a special sequence,
(iii) f_{1} is a sequence which elements belong to G,
(iv) f_{2} is a sequence which elements belong to G,
(v) $f_{1}(1) \in \operatorname{rng} \operatorname{Line}(G, 1)$,
(vi) $\quad f_{1}\left(\operatorname{len} f_{1}\right) \in \operatorname{rng} \operatorname{Line}(G$, len $G)$,
(vii) $\quad f_{2}(1) \in \operatorname{rng}\left(G_{\square, 1}\right)$,
(viii) $\quad f_{2}\left(\operatorname{len} f_{2}\right) \in \operatorname{rng}\left(G_{\square, \text { width } G}\right)$.

Then $\widetilde{\mathcal{L}}\left(f_{1}\right) \cap \widetilde{\mathcal{L}}\left(f_{2}\right) \neq \emptyset$.
(4) Given f_{1}, f_{2}. Suppose that
(i) $2 \leq \operatorname{len} f_{1}$,
(ii) $2 \leq \operatorname{len} f_{2}$,
(iii) for all n, p, q such that $n \in \operatorname{dom} f_{1}$ and $n+1 \in \operatorname{dom} f_{1}$ and $f_{1}(n)=p$ and $f_{1}(n+1)=q$ holds $p_{1}=q_{1}$ or $p_{2}=q_{2}$,
(iv) for all n, p, q such that $n \in \operatorname{dom} f_{2}$ and $n+1 \in \operatorname{dom} f_{2}$ and $f_{2}(n)=p$ and $f_{2}(n+1)=q$ holds $p_{1}=q_{1}$ or $p_{\mathbf{2}}=q_{\mathbf{2}}$,
(v) for every n such that $n \in \operatorname{dom} f_{1}$ and $n+1 \in \operatorname{dom} f_{1}$ holds $f_{1}(n) \neq$ $f_{1}(n+1)$,
(vi) for every n such that $n \in \operatorname{dom} f_{2}$ and $n+1 \in \operatorname{dom} f_{2}$ holds $f_{2}(n) \neq$ $f_{2}(n+1)$,
(vii) for every r such that $r=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)(1)$ and for all n, s such that $n \in \operatorname{dom} f_{1}$ and $s=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)(n)$ holds $r \leq s$,
(viii) for every r such that $r=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)(1)$ and for all n, s such that $n \in \operatorname{dom} f_{2}$ and $s=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{2}\right)\right)(n)$ holds $r \leq s$,
(ix) for every r such that $r=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)\left(\operatorname{len} f_{1}\right)$ and for all n, s such that $n \in \operatorname{dom} f_{1}$ and $s=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)(n)$ holds $s \leq r$,
(x) for every r such that $r=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)\left(\operatorname{len} f_{1}\right)$ and for all n, s such that $n \in \operatorname{dom} f_{2}$ and $s=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{2}\right)\right)(n)$ holds $s \leq r$,
(xi) for every r such that $r=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{2}\right)\right)(1)$ and for all n, s such that $n \in \operatorname{dom} f_{1}$ and $s=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{1}\right)\right)(n)$ holds $r \leq s$,
(xii) for every r such that $r=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{2}\right)\right)(1)$ and for all n, s such that $n \in \operatorname{dom} f_{2}$ and $s=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{2}\right)\right)(n)$ holds $r \leq s$,
(xiii) for every r such that $r=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{2}\right)\right)\left(\operatorname{len} f_{2}\right)$ and for all n, s such that $n \in \operatorname{dom} f_{1}$ and $s=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{1}\right)\right)(n)$ holds $s \leq r$,
(xiv) for every r such that $r=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{2}\right)\right)\left(\operatorname{len} f_{2}\right)$ and for all n, s such that $n \in \operatorname{dom} f_{2}$ and $s=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{2}\right)\right)(n)$ holds $s \leq r$. Then $\widetilde{\mathcal{L}}\left(f_{1}\right) \cap \widetilde{\mathcal{L}}\left(f_{2}\right) \neq \emptyset$.
(5) Given f_{1}, f_{2}. Suppose that
(i) f_{1} is a special sequence,
(ii) f_{2} is a special sequence,
(iii) for every r such that $r=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)(1)$ and for all n, s such that $n \in \operatorname{dom} f_{1}$ and $s=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)(n)$ holds $r \leq s$,
(iv) for every r such that $r=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)(1)$ and for all n, s such that $n \in \operatorname{dom} f_{2}$ and $s=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{2}\right)\right)(n)$ holds $r \leq s$,
(v) for every r such that $r=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)\left(\operatorname{len} f_{1}\right)$ and for all n, s such that $n \in \operatorname{dom} f_{1}$ and $s=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)(n)$ holds $s \leq r$,
(vi) for every r such that $r=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)\left(\right.$ len $\left.f_{1}\right)$ and for all n, s such that $n \in \operatorname{dom} f_{2}$ and $s=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{2}\right)\right)(n)$ holds $s \leq r$,
(vii) for every r such that $r=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{2}\right)\right)(1)$ and for all n, s such that $n \in \operatorname{dom} f_{1}$ and $s=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{1}\right)\right)(n)$ holds $r \leq s$,
(viii) for every r such that $r=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{2}\right)\right)(1)$ and for all n, s such that $n \in \operatorname{dom} f_{2}$ and $s=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{2}\right)\right)(n)$ holds $r \leq s$,
(ix) for every r such that $r=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{2}\right)\right)\left(\operatorname{len} f_{2}\right)$ and for all n, s such that $n \in \operatorname{dom} f_{1}$ and $s=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{1}\right)\right)(n)$ holds $s \leq r$,
(x) for every r such that $r=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{2}\right)\right)\left(\operatorname{len} f_{2}\right)$ and for all n, s such that $n \in \operatorname{dom} f_{2}$ and $s=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{2}\right)\right)(n)$ holds $s \leq r$. Then $\widetilde{\mathcal{L}}\left(f_{1}\right) \cap \widetilde{\mathcal{L}}\left(f_{2}\right) \neq \emptyset$.
(6) Given P_{1}, P_{2}. Suppose P_{1} is a special polygonal arc and P_{2} is a special polygonal arc. Given G, f_{1}, f_{2}. Suppose that
(i) f_{1} is a special sequence,
(ii) $\quad P_{1}=\widetilde{\mathcal{L}}\left(f_{1}\right)$,
(iii) f_{2} is a special sequence,
(iv) $\quad P_{2}=\widetilde{\mathcal{L}}\left(f_{2}\right)$,
(v) f_{1} is a sequence which elements belong to G,
(vi) f_{2} is a sequence which elements belong to G,
(vii) $f_{1}(1) \in \operatorname{rng} \operatorname{Line}(G, 1)$,
(viii) $\quad f_{1}\left(\operatorname{len} f_{1}\right) \in \operatorname{rng} \operatorname{Line}(G$, len $G)$,
(ix) $\quad f_{2}(1) \in \operatorname{rng}\left(G_{\square, 1}\right)$,
(x) $\quad f_{2}\left(\operatorname{len} f_{2}\right) \in \operatorname{rng}\left(G_{\square, \text { width } G}\right)$. Then $P_{1} \cap P_{2} \neq \emptyset$.
(7) Given P_{1}, P_{2}. Suppose P_{1} is a special polygonal arc and P_{2} is a special polygonal arc. Given f_{1}, f_{2}. Suppose that
(i) f_{1} is a special sequence,
(ii) $\quad P_{1}=\widetilde{\mathcal{L}}\left(f_{1}\right)$,
(iii) f_{2} is a special sequence,
(iv) $P_{2}=\widetilde{\mathcal{L}}\left(f_{2}\right)$,
(v) for every r such that $r=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)(1)$ and for all n, s such that $n \in \operatorname{dom} f_{1}$ and $s=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)(n)$ holds $r \leq s$,
(vi) for every r such that $r=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)(1)$ and for all n, s such that $n \in \operatorname{dom} f_{2}$ and $s=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{2}\right)\right)(n)$ holds $r \leq s$,
(vii) for every r such that $r=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)\left(\right.$ len $\left.f_{1}\right)$ and for all n, s such that $n \in \operatorname{dom} f_{1}$ and $s=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)(n)$ holds $s \leq r$,
(viii) for every r such that $r=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)\left(\right.$ len $\left.f_{1}\right)$ and for all n, s such that $n \in \operatorname{dom} f_{2}$ and $s=\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{2}\right)\right)(n)$ holds $s \leq r$,
(ix) for every r such that $r=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{2}\right)\right)(1)$ and for all n, s such that $n \in \operatorname{dom} f_{1}$ and $s=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{1}\right)\right)(n)$ holds $r \leq s$,
(x) for every r such that $r=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{2}\right)\right)(1)$ and for all n, s such that $n \in \operatorname{dom} f_{2}$ and $s=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{2}\right)\right)(n)$ holds $r \leq s$,
(xi) for every r such that $r=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{2}\right)\right)\left(\operatorname{len} f_{2}\right)$ and for all n, s such that $n \in \operatorname{dom} f_{1}$ and $s=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{1}\right)\right)(n)$ holds $s \leq r$,
(xii) for every r such that $r=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{2}\right)\right)\left(\operatorname{len} f_{2}\right)$ and for all n, s such that $n \in \operatorname{dom} f_{2}$ and $s=\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{2}\right)\right)(n)$ holds $s \leq r$. Then $P_{1} \cap P_{2} \neq \emptyset$.
(8) Given $P_{1}, P_{2}, p_{1}, p_{2}, q_{1}, q_{2}$. Suppose that
(i) $\quad P_{1}$ is a special polygonal arc joining p_{1} and q_{1},
(ii) $\quad P_{2}$ is a special polygonal arc joining p_{2} and q_{2},
(iii) for every p such that $p \in P_{1} \cup P_{2}$ holds $p_{11} \leq p_{1}$ and $p_{1} \leq q_{11}$,
(iv) for every p such that $p \in P_{1} \cup P_{2}$ holds $p_{22} \leq p_{2}$ and $p_{2} \leq q_{22}$. Then $P_{1} \cap P_{2} \neq \emptyset$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[6] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[8] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[9] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
[10] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[11] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized Mathematics, 3(1):117-121, 1992.
[12] Yatsuka Nakamura and Jarosław Kotowicz. Connectedness conditions using polygonal arcs. Formalized Mathematics, 3(1):101-106, 1992.
[13] Beata Padlewska and Agata Darmochwat. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[14] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, $1(\mathbf{2}): 263-264,1990$.
[15] Yukio Takeuchi and Yatsuka Nakamura. On the Jordan curve theorem. Technical Report 19804, Dept. of Information Eng., Shinshu University, 500 Wakasato, Nagano city, Japan, April 1980.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Received August 24, 1992

[^0]: ${ }^{1}$ This article was written during my visit at Shinshu University in 1992.

