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Summary. Two useful facts about Go-board are proved.

MML Identifier: GOBOARD3.

The terminology and notation used in this paper have been introduced in the
following articles: [16], [8], [1], [5], [2], [14], [15], [17], [4], [10], [9], [3], [6], [7],
[13], [11], and [12]. For simplicity we follow the rules: p, q are points of E 2

T
, f ,

g are finite sequences of elements of E 2

T
, n, m, i, j are natural numbers, and G

is a Go-board. One can prove the following two propositions:

(1) Suppose that
(i) for every n such that n ∈ dom f there exist i, j such that 〈〈i, j〉〉 ∈ the

indices of G and f(n) = Gi,j ,
(ii) f is one-to-one,

(iii) for every n such that 1 ≤ n and n ≤ len f − 2 holds L(f, n, n + 1) ∩
L(f, n + 1, n + 2) = {f(n + 1)},

(iv) for all n, m such that n − m > 1 or m − n > 1 holds L(f, n, n + 1) ∩
L(f,m,m + 1) = ∅,

(v) for all n, p, q such that 1 ≤ n and n ≤ len f − 1 and f(n) = p and
f(n + 1) = q holds p1 = q1 or p2 = q2.

Then there exists g such that g is a sequence which elements belong to
G and g is one-to-one and for every n such that 1 ≤ n and n ≤ len g − 2
holds L(g, n, n + 1)∩L(g, n + 1, n + 2) = {g(n + 1)} and for all n, m such
that n − m > 1 or m − n > 1 holds L(g, n, n + 1) ∩ L(g,m,m + 1) = ∅
and for all n, p, q such that 1 ≤ n and n ≤ len g − 1 and g(n) = p and

g(n + 1) = q holds p1 = q1 or p2 = q2 and L̃(f) = L̃(g) and f(1) = g(1)
and f(len f) = g(len g) and len f ≤ len g.

1This article was written during my visit at Shinshu University in 1992.

123
c© 1992 Fondation Philippe le Hodey

ISSN 0777–4028



124 jaros law kotowicz and yatsuka nakamura

(2) Suppose for every n such that n ∈ dom f there exist i, j such that
〈〈i, j〉〉 ∈ the indices of G and f(n) = Gi,j and f is a special sequence.
Then there exists g such that g is a sequence which elements belong to
G and g is a special sequence and L̃(f) = L̃(g) and f(1) = g(1) and
f(len f) = g(len g) and len f ≤ len g.
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[4] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formal-

ized Mathematics, 1(3):529–536, 1990.
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