Properties of Go-Board - Part III

Jarosław Kotowicz ${ }^{1}$
Warsaw University
Białystok

Yatsuka Nakamura
Shinshu University
Nagano

Summary. Two useful facts about Go-board are proved.

MML Identifier: GOBOARD3.

The terminology and notation used in this paper have been introduced in the following articles: [16], [8], [1], [5], [2], [14], [15], [17], [4], [10], [9], [3], [6], [7], [13], [11], and [12]. For simplicity we follow the rules: p, q are points of $\mathcal{E}_{\mathrm{T}}^{2}, f$, g are finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}, n, m, i, j$ are natural numbers, and G is a Go-board. One can prove the following two propositions:
(1) Suppose that
(i) for every n such that $n \in \operatorname{dom} f$ there exist i, j such that $\langle i, j\rangle \in$ the indices of G and $f(n)=G_{i, j}$,
(ii) f is one-to-one,
(iii) for every n such that $1 \leq n$ and $n \leq \operatorname{len} f-2$ holds $\mathcal{L}(f, n, n+1) \cap$ $\mathcal{L}(f, n+1, n+2)=\{f(n+1)\}$,
(iv) for all n, m such that $n-m>1$ or $m-n>1$ holds $\mathcal{L}(f, n, n+1) \cap$ $\mathcal{L}(f, m, m+1)=\emptyset$,
(v) for all n, p, q such that $1 \leq n$ and $n \leq \operatorname{len} f-1$ and $f(n)=p$ and $f(n+1)=q$ holds $p_{1}=q_{1}$ or $p_{2}=q_{2}$.
Then there exists g such that g is a sequence which elements belong to G and g is one-to-one and for every n such that $1 \leq n$ and $n \leq \operatorname{len} g-2$ holds $\mathcal{L}(g, n, n+1) \cap \mathcal{L}(g, n+1, n+2)=\{g(n+1)\}$ and for all n, m such that $n-m>1$ or $m-n>1$ holds $\mathcal{L}(g, n, n+1) \cap \mathcal{L}(g, m, m+1)=\emptyset$ and for all n, p, q such that $1 \leq n$ and $n \leq \operatorname{len} g-1$ and $g(n)=p$ and $g(n+1)=q$ holds $p_{1}=q_{1}$ or $p_{2}=q_{\mathbf{2}}$ and $\widetilde{\mathcal{L}}(f)=\widetilde{\mathcal{L}}(g)$ and $f(1)=g(1)$ and $f(\operatorname{len} f)=g(\operatorname{len} g)$ and len $f \leq \operatorname{len} g$.

[^0](2) Suppose for every n such that $n \in \operatorname{dom} f$ there exist i, j such that $\langle i, j\rangle \in$ the indices of G and $f(n)=G_{i, j}$ and f is a special sequence. Then there exists g such that g is a sequence which elements belong to G and g is a special sequence and $\widetilde{\mathcal{L}}(f)=\widetilde{\mathcal{L}}(g)$ and $f(1)=g(1)$ and $f(\operatorname{len} f)=g(\operatorname{len} g)$ and $\operatorname{len} f \leq \operatorname{len} g$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[7] Agata Darmochwat and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2}. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[10] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[11] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[12] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized Mathematics, 3(1):117-121, 1992.
[13] Yatsuka Nakamura and Jarosław Kotowicz. Connectedness conditions using polygonal arcs. Formalized Mathematics, 3(1):101-106, 1992.
[14] Beata Padlewska and Agata Darmochwat. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[15] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Received August 24, 1992

[^0]: ${ }^{1}$ This article was written during my visit at Shinshu University in 1992.

