Introduction to Go-Board - Part II

Jarosław Kotowicz ${ }^{1} \quad$ Yatsuka Nakamura
Warsaw University
Białystok
Shinshu University
Nagano

Abstract

Summary. In article we define Go-board determined by finite sequence of points from topological space $\mathcal{E}_{\mathrm{T}}^{2}$. A few facts about this notation are proved.

MML Identifier: GOBOARD2.

The papers [17], [10], [2], [6], [3], [8], [15], [16], [1], [18], [13], [5], [12], [11], [4], [7], [9], and [14] provide the notation and terminology for this paper.

1. Real Numbers Preliminaries

For simplicity we follow the rules: p, q denote points of $\mathcal{E}_{\mathrm{T}}^{2}, f, f_{1}, f_{2}, g$ denote finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}, R$ denotes a subset of \mathbb{R}, r, s denote real numbers, v, v_{1}, v_{2} denote finite sequences of elements of $\mathbb{R}, n, m, i, j, k$ denote natural numbers, and G denotes a Go-board. We now state the proposition
(1) If R is finite and $R \neq \emptyset$, then R is upper bounded and $\sup R \in R$ and R is lower bounded and $\inf R \in R$.

2. Properties of Finite Sequences of Points from $\mathcal{E}_{\text {T }}^{2}$

One can prove the following propositions:
(2) For every finite sequence f holds f is one-to-one if and only if for all n, m such that $n \in \operatorname{dom} f$ and $m \in \operatorname{dom} f$ and $n \neq m$ holds $f(n) \neq f(m)$.
(3) For every n holds $1 \leq n$ and $n \leq \operatorname{len} f-1$ if and only if $n \in \operatorname{dom} f$ and $n+1 \in \operatorname{dom} f$.

[^0](4) For every n holds $1 \leq n$ and $n \leq \operatorname{len} f-2$ if and only if $n \in \operatorname{dom} f$ and $n+1 \in \operatorname{dom} f$ and $n+2 \in \operatorname{dom} f$.
(5) The following conditions are equivalent:
(i) for all n, m such that $n-m>1$ or $m-n>1$ holds $\mathcal{L}(f, n, n+1) \cap$ $\mathcal{L}(f, m, m+1)=\emptyset$,
(ii) for all n, m such that $n-m>1$ or $m-n>1$ but $n \in \operatorname{dom} f$ and $n+1 \in \operatorname{dom} f$ and $m \in \operatorname{dom} f$ and $m+1 \in \operatorname{dom} f$ holds $\mathcal{L}(f, n, n+1) \cap$ $\mathcal{L}(f, m, m+1)=\emptyset$.
(6) Suppose that
(i) for every n such that $1 \leq n$ and $n \leq \operatorname{len} f-2$ holds $\mathcal{L}(f, n, n+1) \cap$ $\mathcal{L}(f, n+1, n+2)=\{f(n+1)\}$,
(ii) for all n, m such that $n-m>1$ or $m-n>1$ holds $\mathcal{L}(f, n, n+1) \cap$ $\mathcal{L}(f, m, m+1)=\emptyset$,
(iii) f is one-to-one,
(iv) $f(\operatorname{len} f) \in \mathcal{L}(f, i, i+1)$,
(v) $\quad i \in \operatorname{dom} f$,
(vi) $i+1 \in \operatorname{dom} f$.

Then $i+1=\operatorname{len} f$.
(7) If $k \neq 0$ and len $f=k+1$, then $\widetilde{\mathcal{L}}(f)=\widetilde{\mathcal{L}}(f \upharpoonright k) \cup \mathcal{L}(f, k, k+1)$.
(8) Suppose that
(i) $1<k$,
(ii) $\quad \operatorname{len} f=k+1$,
(iii) for every n such that $1 \leq n$ and $n \leq \operatorname{len} f-2$ holds $\mathcal{L}(f, n, n+1) \cap$ $\mathcal{L}(f, n+1, n+2)=\{f(n+1)\}$,
(iv) for all n, m such that $n-m>1$ or $m-n>1$ holds $\mathcal{L}(f, n, n+1) \cap$ $\mathcal{L}(f, m, m+1)=\emptyset$.
Then $\widetilde{\mathcal{L}}(f \upharpoonright k) \cap \mathcal{L}(f, k, k+1)=\{f(k)\}$.
(9) If len $f_{1}<n$ and $n \leq \operatorname{len}\left(f_{1} \wedge f_{2}\right)-1$ and $m=n-\operatorname{len} f_{1}$, then $\mathcal{L}\left(f_{1} \wedge\right.$ $\left.f_{2}, n, n+1\right)=\mathcal{L}\left(f_{2}, m, m+1\right)$.
(10) $\quad \widetilde{\mathcal{L}}(f) \subseteq \widetilde{\mathcal{L}}(f \wedge g)$.
(11) Suppose for all n, m such that $n-m>1$ or $m-n>1$ holds $\mathcal{L}(f, n, n+$ 1) $\cap \mathcal{L}(f, m, m+1)=\emptyset$. Then for all n, m such that $n-m>1$ or $m-n>1$ holds $\mathcal{L}(f \upharpoonright i, n, n+1) \cap \mathcal{L}(f \upharpoonright i, m, m+1)=\emptyset$.
(12) Suppose that
(i) for all n, p, q such that $1 \leq n$ and $n \leq \operatorname{len} f_{1}-1$ and $f_{1}(n)=p$ and $f_{1}(n+1)=q$ holds $p_{1}=q_{1}$ or $p_{2}=q_{\mathbf{2}}$,
(ii) for all n, p, q such that $1 \leq n$ and $n \leq \operatorname{len} f_{2}-1$ and $f_{2}(n)=p$ and $f_{2}(n+1)=q$ holds $p_{\mathbf{1}}=q_{1}$ or $p_{\mathbf{2}}=q_{\mathbf{2}}$,
(iii) for all p, q such that $f_{1}\left(\operatorname{len} f_{1}\right)=p$ and $f_{2}(1)=q$ holds $p_{\mathbf{1}}=q_{\mathbf{1}}$ or $p_{2}=q_{2}$.
Then for all n, p, q such that $1 \leq n$ and $n \leq \operatorname{len}\left(f_{1} \wedge f_{2}\right)-1$ and $\left(f_{1} \wedge f_{2}\right)(n)=p$ and $\left(f_{1} \wedge f_{2}\right)(n+1)=q$ holds $p_{\mathbf{1}}=q_{\mathbf{1}}$ or $p_{\mathbf{2}}=q_{\mathbf{2}}$.

$$
\begin{equation*}
\text { If } f \neq \varepsilon \text {, then } \mathbf{X} \text {-coordinate }(f) \neq \varepsilon \tag{13}
\end{equation*}
$$

If $f \neq \varepsilon$, then \mathbf{Y}-coordinate $(f) \neq \varepsilon$.
(15) Suppose for all n, p, q such that $n \in \operatorname{dom} f$ and $n+1 \in \operatorname{dom} f$ and $f(n)=p$ and $f(n+1)=q$ holds $p_{\mathbf{1}}=q_{1}$ or $p_{\mathbf{2}}=q_{\mathbf{2}}$. Given n. Suppose $n \in \operatorname{dom} f$ and $n+1 \in \operatorname{dom} f$. Then for all i, j, m, k such that $\langle i$, $j\rangle \in$ the indices of G and $\langle m, k\rangle \in$ the indices of G and $f(n)=G_{i, j}$ and $f(n+1)=G_{m, k}$ holds $i=m$ or $k=j$.
(16) Suppose that
(i) for every n such that $n \in \operatorname{dom} f$ there exist i, j such that $\langle i, j\rangle \in$ the indices of G and $f(n)=G_{i, j}$,
(ii) for all n, p, q such that $n \in \operatorname{dom} f$ and $n+1 \in \operatorname{dom} f$ and $f(n)=p$ and $f(n+1)=q$ holds $p_{\mathbf{1}}=q_{1}$ or $p_{\mathbf{2}}=q_{\mathbf{2}}$,
(iii) for every n such that $n \in \operatorname{dom} f$ and $n+1 \in \operatorname{dom} f$ holds $f(n) \neq$ $f(n+1)$.
Then there exists g such that g is a sequence which elements belong to G and $\widetilde{\mathcal{L}}(f)=\widetilde{\mathcal{L}}(g)$ and $g(1)=f(1)$ and $g(\operatorname{len} g)=f($ len $f)$ and len $f \leq \operatorname{len} g$.
(17) If v is increasing, then for all n, m such that $n \in \operatorname{dom} v$ and $m \in \operatorname{dom} v$ and $n \leq m$ and for all r, s such that $r=v(n)$ and $s=v(m)$ holds $r \leq s$.
(18) If v is increasing, then for all n, m such that $n \in \operatorname{dom} v$ and $m \in \operatorname{dom} v$ and $n \neq m$ holds $v(n) \neq v(m)$.
(19) If v is increasing and $v_{1}=v \upharpoonright \operatorname{Seg} n$, then v_{1} is increasing.
(20) For every v there exists v_{1} such that $\operatorname{rng} v_{1}=\operatorname{rng} v$ and len $v_{1}=$ card $\operatorname{rng} v$ and v_{1} is increasing.
(21) For all v_{1}, v_{2} such that len $v_{1}=\operatorname{len} v_{2}$ and $\operatorname{rng} v_{1}=\operatorname{rng} v_{2}$ and v_{1} is increasing and v_{2} is increasing holds $v_{1}=v_{2}$.

3. Go-Board Determined by Finite Sequence

We now define three new functors. Let v_{1}, v_{2} be increasing finite sequences of elements of \mathbb{R}. Let us assume that $v_{1} \neq \varepsilon$ and $v_{2} \neq \varepsilon$. The Go-board of v_{1}, v_{2} yields a Go-board and is defined by:
(Def.1) len the Go-board of $v_{1}, v_{2}=\operatorname{len} v_{1}$ and width the Go-board of $v_{1}, v_{2}=$ len v_{2} and for all n, m such that $\langle n, m\rangle \in$ the indices of the Go-board of v_{1}, v_{2} and for all r, s such that $v_{1}(n)=r$ and $v_{2}(m)=s$ holds (the Go-board of $\left.v_{1}, v_{2}\right)_{n, m}=[r, s]$.
Let us consider v. The functor $\operatorname{Inc}(v)$ yielding an increasing finite sequence of elements of \mathbb{R} is defined by:
(Def.2) $\quad \operatorname{rng} \operatorname{Inc}(v)=\operatorname{rng} v$ and $\operatorname{len} \operatorname{Inc}(v)=\operatorname{card} \operatorname{rng} v$.
Let us consider f. Let us assume that $f \neq \varepsilon$. The Go-board of f yielding a Go-board is defined by:
(Def.3) the Go-board of $f=$ the Go-board of $\operatorname{Inc}(\mathbf{X}$-coordinate $(f))$, $\operatorname{Inc}(\mathbf{Y}$-coordinate $(f))$.

One can prove the following propositions:
(22) If $v \neq \varepsilon$, then $\operatorname{Inc}(v) \neq \varepsilon$.

If $f \neq \varepsilon$, then len the Go-board of $f=$ card rng \mathbf{X}-coordinate (f) and width the Go-board of $f=\operatorname{card} \operatorname{rng} \mathbf{Y}$-coordinate (f).
(24) If $f \neq \varepsilon$, then for every n such that $n \in \operatorname{dom} f$ there exist i, j such that $\langle i, j\rangle \in$ the indices of the Go-board of f and $f(n)=$ (the Go-board of $f)_{i, j}$.
(25) If $f \neq \varepsilon$ and $n \in \operatorname{dom} f$ and $r=(\mathbf{X}$-coordinate $(f))(n)$ and for every m such that $m \in \operatorname{dom} f$ and for every s such that $s=(\mathbf{X}$-coordinate $(f))(m)$ holds $r \leq s$, then $f(n) \in \operatorname{rng}$ Line(the Go-board of $f, 1)$.
(26) If $f \neq \varepsilon$ and $n \in \operatorname{dom} f$ and $r=(\mathbf{X}$-coordinate $(f))(n)$ and for every m such that $m \in \operatorname{dom} f$ and for every s such that $s=(\mathbf{X}$-coordinate $(f))(m)$ holds $s \leq r$, then $f(n) \in \operatorname{rng}$ Line(the Go-board of f, len the Go-board of f).
(27) If $f \neq \varepsilon$ and $n \in \operatorname{dom} f$ and $r=(\mathbf{Y}$-coordinate $(f))(n)$ and for every m such that $m \in \operatorname{dom} f$ and for every s such that $s=(\mathbf{Y}$-coordinate $(f))(m)$ holds $r \leq s$, then $f(n) \in \operatorname{rng}\left((\text { the Go-board of } f)_{\square, 1}\right)$.
(28) If $f \neq \varepsilon$ and $n \in \operatorname{dom} f$ and $r=(\mathbf{Y}$-coordinate $(f))(n)$ and for every m such that $m \in \operatorname{dom} f$ and for every s such that $s=(\mathbf{Y}$-coordinate $(f))(m)$ holds $s \leq r$, then $f(n) \in \operatorname{rng}\left((\text { the Go-board of } f)_{\square, \text { width the Go-board of } f}\right)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[5] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[7] Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[8] Agata Darmochwat. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[9] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[11] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[12] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[13] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[14] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[15] Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[16] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[18] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Received August 24, 1992

[^0]: ${ }^{1}$ This article was written during my visit at Shinshu University in 1992.

