Introduction to Go-Board - Part II

Jarosław Kotowicz¹ Warsaw University Białystok Yatsuka Nakamura Shinshu University Nagano

Summary. In article we define Go-board determined by finite sequence of points from topological space \mathcal{E}_T^2 . A few facts about this notation are proved.

MML Identifier: GOBOARD2.

The papers [17], [10], [2], [6], [3], [8], [15], [16], [1], [18], [13], [5], [12], [11], [4], [7], [9], and [14] provide the notation and terminology for this paper.

1. Real Numbers Preliminaries

For simplicity we follow the rules: p, q denote points of $\mathcal{E}_{\mathrm{T}}^2$, f, f_1, f_2, g denote finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^2$, R denotes a subset of \mathbb{R} , r, s denote real numbers, v, v_1, v_2 denote finite sequences of elements of \mathbb{R} , n, m, i, j, k denote natural numbers, and G denotes a Go-board. We now state the proposition

(1) If R is finite and $R \neq \emptyset$, then R is upper bounded and $\sup R \in R$ and R is lower bounded and $\inf R \in R$.

2. Properties of Finite Sequences of Points from \mathcal{E}_T^2

One can prove the following propositions:

- (2) For every finite sequence f holds f is one-to-one if and only if for all n, m such that $n \in \text{dom } f$ and $m \in \text{dom } f$ and $n \neq m$ holds $f(n) \neq f(m)$.
- (3) For every n holds $1 \le n$ and $n \le \text{len } f 1$ if and only if $n \in \text{dom } f$ and $n + 1 \in \text{dom } f$.

¹This article was written during my visit at Shinshu University in 1992.

C 1992 Fondation Philippe le Hodey ISSN 0777-4028

- (4) For every *n* holds $1 \le n$ and $n \le \text{len } f 2$ if and only if $n \in \text{dom } f$ and $n+1 \in \text{dom } f$ and $n+2 \in \text{dom } f$.
- (5) The following conditions are equivalent:
- (i) for all n, m such that n m > 1 or m n > 1 holds $\mathcal{L}(f, n, n + 1) \cap \mathcal{L}(f, m, m + 1) = \emptyset$,
- (ii) for all n, m such that n m > 1 or m n > 1 but $n \in \text{dom } f$ and $n + 1 \in \text{dom } f$ and $m \in \text{dom } f$ and $m + 1 \in \text{dom } f$ holds $\mathcal{L}(f, n, n + 1) \cap \mathcal{L}(f, m, m + 1) = \emptyset$.
- (6) Suppose that
- (i) for every n such that $1 \le n$ and $n \le \text{len } f 2$ holds $\mathcal{L}(f, n, n+1) \cap \mathcal{L}(f, n+1, n+2) = \{f(n+1)\},\$
- (ii) for all n, m such that n m > 1 or m n > 1 holds $\mathcal{L}(f, n, n + 1) \cap \mathcal{L}(f, m, m + 1) = \emptyset$,
- (iii) f is one-to-one,
- (iv) $f(\operatorname{len} f) \in \mathcal{L}(f, i, i+1),$
- (v) $i \in \operatorname{dom} f$,
- (vi) $i+1 \in \text{dom } f$. Then i+1 = len f.
- (7) If $k \neq 0$ and len f = k + 1, then $\widetilde{\mathcal{L}}(f) = \widetilde{\mathcal{L}}(f \upharpoonright k) \cup \mathcal{L}(f, k, k + 1)$.
- (8) Suppose that
- (i) 1 < k,
- (ii) len f = k + 1,
- (iii) for every n such that $1 \le n$ and $n \le \text{len } f 2$ holds $\mathcal{L}(f, n, n+1) \cap \mathcal{L}(f, n+1, n+2) = \{f(n+1)\},\$
- (iv) for all n, m such that n m > 1 or m n > 1 holds $\mathcal{L}(f, n, n + 1) \cap \mathcal{L}(f, m, m + 1) = \emptyset$.

Then $\mathcal{L}(f \upharpoonright k) \cap \mathcal{L}(f, k, k+1) = \{f(k)\}.$

- (9) If len $f_1 < n$ and $n \le \text{len}(f_1 \cap f_2) 1$ and $m = n \text{len} f_1$, then $\mathcal{L}(f_1 \cap f_2, n, n+1) = \mathcal{L}(f_2, m, m+1)$.
- (10) $\widetilde{\mathcal{L}}(f) \subseteq \widetilde{\mathcal{L}}(f \cap g).$
- (11) Suppose for all n, m such that n-m > 1 or m-n > 1 holds $\mathcal{L}(f, n, n+1) \cap \mathcal{L}(f, m, m+1) = \emptyset$. Then for all n, m such that n-m > 1 or m-n > 1 holds $\mathcal{L}(f \upharpoonright i, n, n+1) \cap \mathcal{L}(f \upharpoonright i, m, m+1) = \emptyset$.
- (12) Suppose that
 - (i) for all n, p, q such that $1 \le n$ and $n \le \operatorname{len} f_1 1$ and $f_1(n) = p$ and $f_1(n+1) = q$ holds $p_1 = q_1$ or $p_2 = q_2$,
 - (ii) for all n, p, q such that $1 \le n$ and $n \le \text{len } f_2 1$ and $f_2(n) = p$ and $f_2(n+1) = q$ holds $p_1 = q_1$ or $p_2 = q_2$,
 - (iii) for all p, q such that $f_1(\text{len } f_1) = p$ and $f_2(1) = q$ holds $p_1 = q_1$ or $p_2 = q_2$.

Then for all n, p, q such that $1 \leq n$ and $n \leq \text{len}(f_1 \cap f_2) - 1$ and $(f_1 \cap f_2)(n) = p$ and $(f_1 \cap f_2)(n+1) = q$ holds $p_1 = q_1$ or $p_2 = q_2$.

(13) If $f \neq \varepsilon$, then **X**-coordinate $(f) \neq \varepsilon$.

- (14) If $f \neq \varepsilon$, then **Y**-coordinate $(f) \neq \varepsilon$.
- (15) Suppose for all n, p, q such that $n \in \text{dom } f$ and $n+1 \in \text{dom } f$ and f(n) = p and f(n+1) = q holds $p_1 = q_1$ or $p_2 = q_2$. Given n. Suppose $n \in \text{dom } f$ and $n+1 \in \text{dom } f$. Then for all i, j, m, k such that $\langle i, j \rangle \in \text{the indices of } G$ and $\langle m, k \rangle \in \text{the indices of } G$ and $f(n) = G_{i,j}$ and $f(n+1) = G_{m,k}$ holds i = m or k = j.
- (16) Suppose that
 - (i) for every n such that $n \in \text{dom } f$ there exist i, j such that $\langle i, j \rangle \in \text{the indices of } G$ and $f(n) = G_{i,j}$,
 - (ii) for all n, p, q such that $n \in \text{dom } f$ and $n+1 \in \text{dom } f$ and f(n) = pand f(n+1) = q holds $p_1 = q_1$ or $p_2 = q_2$,
 - (iii) for every n such that $n \in \text{dom } f$ and $n+1 \in \text{dom } f$ holds $f(n) \neq f(n+1)$.

Then there exists g such that g is a sequence which elements belong to G and $\widetilde{\mathcal{L}}(f) = \widetilde{\mathcal{L}}(g)$ and g(1) = f(1) and $g(\operatorname{len} g) = f(\operatorname{len} f)$ and $\operatorname{len} f \leq \operatorname{len} g$.

- (17) If v is increasing, then for all n, m such that $n \in \operatorname{dom} v$ and $m \in \operatorname{dom} v$ and $n \leq m$ and for all r, s such that r = v(n) and s = v(m) holds $r \leq s$.
- (18) If v is increasing, then for all n, m such that $n \in \operatorname{dom} v$ and $m \in \operatorname{dom} v$ and $n \neq m$ holds $v(n) \neq v(m)$.
- (19) If v is increasing and $v_1 = v \upharpoonright \text{Seg } n$, then v_1 is increasing.
- (20) For every v there exists v_1 such that $\operatorname{rng} v_1 = \operatorname{rng} v$ and $\operatorname{len} v_1 = \operatorname{card} \operatorname{rng} v$ and v_1 is increasing.
- (21) For all v_1 , v_2 such that $\operatorname{len} v_1 = \operatorname{len} v_2$ and $\operatorname{rng} v_1 = \operatorname{rng} v_2$ and v_1 is increasing and v_2 is increasing holds $v_1 = v_2$.

3. GO-BOARD DETERMINED BY FINITE SEQUENCE

We now define three new functors. Let v_1 , v_2 be increasing finite sequences of elements of \mathbb{R} . Let us assume that $v_1 \neq \varepsilon$ and $v_2 \neq \varepsilon$. The Go-board of v_1 , v_2 yields a Go-board and is defined by:

(Def.1) len the Go-board of $v_1, v_2 = \text{len } v_1$ and width the Go-board of $v_1, v_2 = \text{len } v_2$ and for all n, m such that $\langle n, m \rangle \in$ the indices of the Go-board of v_1, v_2 and for all r, s such that $v_1(n) = r$ and $v_2(m) = s$ holds (the Go-board of $v_1, v_2_{n,m} = [r, s]$.

Let us consider v. The functor Inc(v) yielding an increasing finite sequence of elements of \mathbb{R} is defined by:

(Def.2) $\operatorname{rng}\operatorname{Inc}(v) = \operatorname{rng} v$ and $\operatorname{len}\operatorname{Inc}(v) = \operatorname{card}\operatorname{rng} v$.

Let us consider f. Let us assume that $f \neq \varepsilon$. The Go-board of f yielding a Go-board is defined by:

(Def.3) the Go-board of f = the Go-board of $Inc(\mathbf{X}-coordinate(f))$, $Inc(\mathbf{Y}-coordinate(f))$. One can prove the following propositions:

- (22) If $v \neq \varepsilon$, then $\operatorname{Inc}(v) \neq \varepsilon$.
- (23) If $f \neq \varepsilon$, then len the Go-board of $f = \operatorname{card} \operatorname{rng} \mathbf{X}$ -coordinate(f) and width the Go-board of $f = \operatorname{card} \operatorname{rng} \mathbf{Y}$ -coordinate(f).
- (24) If $f \neq \varepsilon$, then for every *n* such that $n \in \text{dom } f$ there exist *i*, *j* such that $\langle i, j \rangle \in \text{the indices of the Go-board of } f$ and $f(n) = (\text{the Go-board of } f)_{i,j}$.
- (25) If $f \neq \varepsilon$ and $n \in \text{dom } f$ and $r = (\mathbf{X}\text{-coordinate}(f))(n)$ and for every m such that $m \in \text{dom } f$ and for every s such that $s = (\mathbf{X}\text{-coordinate}(f))(m)$ holds $r \leq s$, then $f(n) \in \text{rng Line}(\text{the Go-board of } f, 1)$.
- (26) If $f \neq \varepsilon$ and $n \in \text{dom } f$ and $r = (\mathbf{X}\text{-coordinate}(f))(n)$ and for every m such that $m \in \text{dom } f$ and for every s such that $s = (\mathbf{X}\text{-coordinate}(f))(m)$ holds $s \leq r$, then $f(n) \in \text{rng Line}(\text{the Go-board of } f, \text{len the Go-board of } f)$.
- (27) If $f \neq \varepsilon$ and $n \in \text{dom } f$ and $r = (\mathbf{Y}\text{-coordinate}(f))(n)$ and for every m such that $m \in \text{dom } f$ and for every s such that $s = (\mathbf{Y}\text{-coordinate}(f))(m)$ holds $r \leq s$, then $f(n) \in \text{rng}((\text{the Go-board of } f)_{\Box,1}).$
- (28) If $f \neq \varepsilon$ and $n \in \text{dom } f$ and $r = (\mathbf{Y}\text{-coordinate}(f))(n)$ and for every m such that $m \in \text{dom } f$ and for every s such that $s = (\mathbf{Y}\text{-coordinate}(f))(m)$ holds $s \leq r$, then $f(n) \in \text{rng}((\text{the Go-board of } f)_{\Box, \text{width the Go-board of } f}).$

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41–46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [9] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [12] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
- [13] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477–481, 1990.
- Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part I. Formalized Mathematics, 3(1):107–115, 1992.
- [15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.

- [16] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [18] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.

Received August 24, 1992