Introduction to Go-Board - Part I

Jarosław Kotowicz¹ Warsaw University Białystok Yatsuka Nakamura Shinshu University Nagano

Summary. In the article we introduce Go-board as some kinds of matrix which elements belong to topological space \mathcal{E}_{T}^{2} . We define the functor of delaying column in Go-board and relation between Go-board and finite sequence of point from \mathcal{E}_{T}^{2} . Basic facts about those notations are proved. The concept of the article is based on [16].

MML Identifier: GOBOARD1.

The notation and terminology used here have been introduced in the following papers: [17], [11], [2], [6], [3], [9], [7], [14], [15], [1], [18], [5], [12], [4], [8], [10], and [13].

1. Real Numbers Preliminaries

For simplicity we follow the rules: p denotes a point of $\mathcal{E}_{\mathrm{T}}^2$, f, f_1 , f_2 , g denote finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^2$, v denotes a finite sequence of elements of \mathbb{R} , r, s denote real numbers, n, m, i, j, k denote natural numbers, and x is arbitrary. One can prove the following three propositions:

- (1) |r-s| = 1 if and only if r > s and r = s + 1 or r < s and s = r + 1.
- (2) |i-j| + |n-m| = 1 if and only if |i-j| = 1 and n = m or |n-m| = 1and i = j.
- (3) n > 1 if and only if there exists m such that n = m + 1 and m > 0.

C 1992 Fondation Philippe le Hodey ISSN 0777-4028

¹This article was written during my visit at Shinshu University in 1992.

2. FINITE SEQUENCES PRELIMINARIES

The scheme FinSeqDChoice concerns a non-empty set \mathcal{A} , a natural number \mathcal{B} , and a binary predicate \mathcal{P} , and states that:

there exists a finite sequence f of elements of \mathcal{A} such that len $f = \mathcal{B}$ and for every n such that $n \in \operatorname{Seg} \mathcal{B}$ holds $\mathcal{P}[n, f(n)]$

provided the parameters have the following property:

• for every n such that $n \in \text{Seg } \mathcal{B}$ there exists an element d of \mathcal{A} such that $\mathcal{P}[n, d]$.

One can prove the following propositions:

- (4) If n = m + 1 and $i \in \text{Seg } n$, then $\text{len Sgm}(\text{Seg } n \setminus \{i\}) = m$.
- (5) Suppose n = m + 1 and $k \in \text{Seg } n$ and $i \in \text{Seg } m$. Then if $1 \leq i$ and i < k, then $(\text{Sgm}(\text{Seg } n \setminus \{k\}))(i) = i$ but if $k \leq i$ and $i \leq m$, then $(\text{Sgm}(\text{Seg } n \setminus \{k\}))(i) = i + 1$.
- (6) For every finite sequence f and for all n, m such that len f = m+1 and $n \in \text{Seg len } f$ holds $\text{len}(f_{\uparrow n}) = m$.
- (7) For every finite sequence f and for all n, m, k such that len f = m + 1and $n \in \text{Seg len } f$ and $k \in \text{Seg } m$ holds $f_{\restriction n}(k) = f(k)$ or $f_{\restriction n}(k) = f(k+1)$.
- (8) For every finite sequence f and for all n, m, k such that len f = m + 1and $n \in \text{Seg len } f$ and $1 \leq k$ and k < n holds $f_{\uparrow n}(k) = f(k)$.
- (9) For every finite sequence f and for all n, m, k such that len f = m + 1and $n \in \text{Seg len } f$ and $n \leq k$ and $k \leq m$ holds $f_{\uparrow n}(k) = f(k+1)$.
- (10) If $n \in \text{dom } f$ and $m \in \text{Seg } n$, then $(f \upharpoonright n)(m) = f(m)$ and $m \in \text{dom } f$.

We now define four new constructions. A finite sequence of elements of $\mathbb R$ is increasing if:

(Def.1) for all n, m such that $n \in \text{dom it}$ and $m \in \text{dom it}$ and n < m and for all r, s such that r = it(n) and s = it(m) holds r < s.

A finite sequence is constant if:

(Def.2) for all n, m such that $n \in \text{dom it and } m \in \text{dom it holds it}(n) = \text{it}(m)$.

Let us observe that there exists a finite sequence of elements of \mathbb{R} which is increasing. Note also that there exists a finite sequence of elements of \mathbb{R} which is constant.

Let us consider f. The functor **X**-coordinate(f) yields a finite sequence of elements of \mathbb{R} and is defined by:

(Def.3) len **X**-coordinate(f) = len fand for every n such that $n \in \text{dom } \mathbf{X}$ -coordinate(f) and for every p such that p = f(n) holds (**X**-coordinate(f)) $(n) = p_1$.

The functor \mathbf{Y} -coordinate(f) yielding a finite sequence of elements of \mathbb{R} is defined as follows:

(Def.4) $\operatorname{len} \mathbf{Y}$ -coordinate $(f) = \operatorname{len} f$

and for every n such that $n \in \text{dom } \mathbf{Y}\text{-coordinate}(f)$ and for every p such that p = f(n) holds $(\mathbf{Y}\text{-coordinate}(f))(n) = p_2$.

One can prove the following propositions:

(11) Suppose that

- (i) $v \neq \varepsilon$,
- (ii) $\operatorname{rng} v \subseteq \operatorname{Seg} n$,
- (iii) $v(\operatorname{len} v) = n,$
- (iv) for every k such that $1 \le k$ and $k \le \ln v 1$ and for all r, s such that r = v(k) and s = v(k+1) holds |r-s| = 1 or r = s,
- (v) $i \in \operatorname{Seg} n$,
- (vi) $i+1 \in \operatorname{Seg} n$,
- (vii) $m \in \operatorname{dom} v$,
- $(\text{viii}) \quad v(m) = i,$
- (ix) for every k such that $k \in \operatorname{dom} v$ and v(k) = i holds $k \le m$. Then $m + 1 \in \operatorname{dom} v$ and v(m + 1) = i + 1.
- (12) Suppose that
 - (i) $v \neq \varepsilon$,
 - (ii) $\operatorname{rng} v \subseteq \operatorname{Seg} n$,
 - (iii) v(1) = 1,
 - (iv) $v(\operatorname{len} v) = n$,
 - (v) for every k such that $1 \le k$ and $k \le \ln v 1$ and for all r, s such that r = v(k) and s = v(k+1) holds |r-s| = 1 or r = s.
 - Then
 - (vi) for every *i* such that $i \in \text{Seg } n$ there exists *k* such that $k \in \text{dom } v$ and v(k) = i,
- (vii) for all m, k, i, r such that $m \in \operatorname{dom} v$ and v(m) = i and for every j such that $j \in \operatorname{dom} v$ and v(j) = i holds $j \leq m$ and m < k and $k \in \operatorname{dom} v$ and r = v(k) holds i < r.
- (13) If $i \in \text{dom } f$ and $2 \leq \text{len } f$, then $f(i) \in \mathcal{L}(f)$.

3. MATRIX PRELIMINARIES

Next we state two propositions:

- (14) For every non-empty set D and for every matrix M over D and for all i, j such that $j \in \text{Seg len } M$ and $i \in \text{Seg width } M$ holds $M_{\Box,i}(j) = \text{Line}(M, j)(i)$.
- (15) For every non-empty set D and for every matrix M over D and for every k such that $k \in \text{Seg len } M$ holds M(k) = Line(M, k).

We now define several new constructions. Let T be a topological space. A matrix over T is a matrix over the carrier of T.

A matrix over $\mathcal{E}_{\mathrm{T}}^2$ is non-trivial if:

(Def.5) 0 < len it and 0 < width it.

A matrix over $\mathcal{E}_{\mathrm{T}}^2$ is line **X**-constant if:

(Def.6) for every n such that $n \in \text{Seg len it holds } \mathbf{X}\text{-coordinate}(\text{Line}(\text{it}, n))$ is constant.

A matrix over \mathcal{E}_{T}^{2} is column **Y**-constant if:

(Def.7) for every n such that $n \in \text{Seg width it holds } \mathbf{Y}\text{-coordinate}(\text{it}_{\Box,n})$ is constant.

A matrix over $\mathcal{E}_{\mathrm{T}}^2$ is line **Y**-increasing if:

(Def.8) for every n such that $n \in \text{Seg len it holds } \mathbf{Y}\text{-coordinate}(\text{Line}(\text{it}, n))$ is increasing.

A matrix over \mathcal{E}^2_T is column **X**-increasing if:

(Def.9) for every n such that $n \in \text{Seg width it holds } \mathbf{X}\text{-coordinate}(\text{it}_{\Box,n})$ is increasing.

One can readily verify that there exists a matrix over \mathcal{E}_{T}^{2} which is non-trivial, line

 $\mathbf X\text{-}\mathrm{constant},\ \mathrm{column}\ \mathbf Y\text{-}\mathrm{constant},\ \mathrm{line}\ \mathbf Y\text{-}\mathrm{increasing}\ \mathrm{and}\ \mathrm{column}\ \mathbf X\text{-}\mathrm{increasing}.$

We now state two propositions:

- (16) For every column **X**-increasing line **X**-constant matrix M over $\mathcal{E}_{\mathrm{T}}^2$ and for all x, n, m such that $x \in \mathrm{rng}\operatorname{Line}(M, n)$ and $x \in \mathrm{rng}\operatorname{Line}(M, m)$ and $n \in \mathrm{Seg} \operatorname{len} M$ and $m \in \mathrm{Seg} \operatorname{len} M$ holds n = m.
- (17) For every line **Y**-increasing column **Y**-constant matrix M over $\mathcal{E}_{\mathrm{T}}^2$ and for all x, n, m such that $x \in \mathrm{rng}(M_{\Box,n})$ and $x \in \mathrm{rng}(M_{\Box,m})$ and $n \in$ Seg width M and $m \in$ Seg width M holds n = m.

4. BASIC GO-BOARD'S NOTATION

A Go-board is a non-trivial line **X**-constant column **Y**-constant line **Y**-increasing column **X**-increasing matrix over \mathcal{E}_{T}^{2} .

In the sequel G denotes a Go-board. The following four propositions are true:

- (18) If $x = G_{m,k}$ and $x = G_{i,j}$ and $\langle m, k \rangle \in$ the indices of G and $\langle i, j \rangle \in$ the indices of G, then m = i and k = j.
- (19) If $m \in \text{dom } f$ and $f(1) \in \text{rng}(G_{\Box,1})$, then $(f \upharpoonright m)(1) \in \text{rng}(G_{\Box,1})$.
- (20) If $m \in \operatorname{dom} f$ and $f(m) \in \operatorname{rng}(G_{\Box,\operatorname{width} G})$, then $(f \upharpoonright m)(\operatorname{len}(f \upharpoonright m)) \in \operatorname{rng}(G_{\Box,\operatorname{width} G})$.
- (21) If $\operatorname{rng} f \cap \operatorname{rng}(G_{\Box,i}) = \emptyset$ and $f(n) = G_{m,k}$ and $n \in \operatorname{dom} f$ and $m \in \operatorname{Seg} \operatorname{len} G$, then $i \neq k$.

Let us consider G, i. Let us assume that $i \in \text{Seg width } G$ and width G > 1. The deleting of *i*-column in G yielding a Go-board is defined by:

(Def.10) len(the deleting of *i*-column in G) = len G and for every k such that $k \in \text{Seg len } G$ holds (the deleting of *i*-column in G) $(k) = \text{Line}(G, k)_{\uparrow i}$.

One can prove the following propositions:

(22) If $i \in \text{Seg width } G$ and width G > 1 and $k \in \text{Seg len } G$, then Line(the deleting of *i*-column in G, k) = Line $(G, k)_{\uparrow i}$.

- (23) If $i \in \text{Seg width } G$ and width G = m + 1 and m > 0, then width(the deleting of *i*-column in G) = m.
- (24) If $i \in \text{Seg width } G$ and width G > 1, then width G = width(the deleting of i-column in G) + 1.
- (25) If $i \in \text{Seg width } G$ and width G > 1 and $n \in \text{Seg len } G$ and $m \in \text{Seg width}(\text{the deleting of } i\text{-column in } G)$, then (the deleting of $i\text{-column in } G)_{n,m} = \text{Line}(G, n)_{|i}(m)$.
- (26) If $i \in \text{Seg width } G$ and width G = m+1 and m > 0 and $1 \leq k$ and k < i, then (the deleting of *i*-column in $G)_{\Box,k} = G_{\Box,k}$ and $k \in \text{Seg width}(\text{the deleting of } i\text{-column in } G)$ and $k \in \text{Seg width } G$.
- (27) Suppose $i \in \text{Seg width } G$ and width G = m + 1 and m > 0 and $i \leq k$ and $k \leq m$. Then (the deleting of *i*-column in G)_{\Box,k} = $G_{\Box,k+1}$ and $k \in \text{Seg width}(\text{the deleting of } i\text{-column in } G)$ and $k + 1 \in \text{Seg width } G$.
- (28) If $i \in \text{Seg width } G$ and width G = m + 1 and m > 0 and $n \in \text{Seg len } G$ and $1 \leq k$ and k < i, then (the deleting of *i*-column in G)_{n,k} = $G_{n,k}$ and $k \in \text{Seg width } G$.
- (29) Suppose $i \in \text{Seg width } G$ and width G = m + 1 and m > 0 and $n \in \text{Seg len } G$ and $i \leq k$ and $k \leq m$. Then (the deleting of *i*-column in $G)_{n,k} = G_{n,k+1}$ and $k+1 \in \text{Seg width } G$.
- (30) If width G = m + 1 and m > 0 and $k \in \text{Seg } m$, then (the deleting of 1-column in $G)_{\Box,k} = G_{\Box,k+1}$ and $k \in \text{Seg width}(\text{the deleting of 1-column in } G)$ and $k + 1 \in \text{Seg width } G$.
- (31) If width G = m + 1 and m > 0 and $k \in \operatorname{Seg} m$ and $n \in \operatorname{Seg} \operatorname{len} G$, then (the deleting of 1-column in G)_{n,k} = $G_{n,k+1}$ and $1 \in \operatorname{Seg}$ width G.
- (32) If width G = m + 1 and m > 0 and $k \in \text{Seg } m$, then (the deleting of width *G*-column in $G)_{\Box,k} = G_{\Box,k}$ and $k \in \text{Seg width}$ (the deleting of width *G*-column in *G*).
- (33) If width G = m + 1 and m > 0 and $k \in \text{Seg } m$ and $n \in \text{Seg len } G$, then $k \in \text{Seg width } G$ and (the deleting of width G-column in G)_{n,k} = $G_{n,k}$ and width $G \in \text{Seg width } G$.
- (34) Suppose $\operatorname{rng} f \cap \operatorname{rng}(G_{\Box,i}) = \emptyset$ and $f(n) \in \operatorname{rng}\operatorname{Line}(G,m)$ and $n \in \operatorname{dom} f$ and $i \in \operatorname{Seg width} G$ and $m \in \operatorname{Seg len} G$ and width G > 1. Then $f(n) \in \operatorname{rng}\operatorname{Line}(\operatorname{the deleting of } i\operatorname{-column in } G, m).$

Let us consider f, G. We say that f is a sequence which elements belong to G if and only if the conditions (Def.11) is satisfied.

- (Def.11) (i) For every n such that $n \in \text{dom } f$ there exist i, j such that $\langle i, j \rangle \in \text{the}$ indices of G and $f(n) = G_{i,j}$,
 - (ii) for every n such that n ∈ dom f and n + 1 ∈ dom f and for all m, k,
 i, j such that ⟨m, k⟩ ∈ the indices of G and ⟨i, j⟩ ∈ the indices of G and f(n) = G_{m,k} and f(n + 1) = G_{i,j} holds |m i| + |k j| = 1.

One can prove the following propositions:

- (35) If f is a sequence which elements belong to G and $m \in \text{dom } f$, then $1 \leq \text{len}(f \upharpoonright m)$ and $f \upharpoonright m$ is a sequence which elements belong to G.
- (36) Suppose that
 - (i) for every n such that $n \in \text{dom } f_1$ there exist i, j such that $\langle i, j \rangle \in \text{the indices of } G$ and $f_1(n) = G_{i,j}$,
 - (ii) for every n such that n ∈ dom f₂ there exist i, j such that (i, j) ∈ the indices of G and f₂(n) = G_{i,j}.
 Then for every n such that n ∈ dom(f₁ ∩ f₂) there exist i, j such that (i,

Then for every n such that $n \in \operatorname{dom}(f_1 - f_2)$ there exist i, j such that $j \ge i$ the indices of G and $(f_1 \cap f_2)(n) = G_{i,j}$.

- (37) Suppose that
 - (i) for every n such that $n \in \text{dom } f_1$ and $n+1 \in \text{dom } f_1$ and for all m, k, i, j such that $\langle m, k \rangle \in \text{the indices of } G$ and $\langle i, j \rangle \in \text{the indices of } G$ and $f_1(n) = G_{m,k}$ and $f_1(n+1) = G_{i,j}$ holds |m-i| + |k-j| = 1,
 - (ii) for every n such that $n \in \text{dom } f_2$ and $n+1 \in \text{dom } f_2$ and for all m, k, i, j such that $\langle m, k \rangle \in \text{the indices of } G$ and $\langle i, j \rangle \in \text{the indices of } G$ and $f_2(n) = G_{m,k}$ and $f_2(n+1) = G_{i,j}$ holds |m-i| + |k-j| = 1,
 - (iii) for all m, k, i, j such that $\langle m, k \rangle \in$ the indices of G and $\langle i, j \rangle \in$ the indices of G and $f_1(\text{len } f_1) = G_{m,k}$ and $f_2(1) = G_{i,j}$ and $\text{len } f_1 \in \text{dom } f_1$ and $1 \in \text{dom } f_2$ holds |m i| + |k j| = 1. Given n. Suppose $n \in \text{dom}(f_1 \cap f_2)$ and $n + 1 \in \text{dom}(f_1 \cap f_2)$. Given m, k,

i, *j*. Then if $\langle m, k \rangle \in$ the indices of *G* and $\langle i, j \rangle \in$ the indices of *G* and $(f_1 \cap f_2)(n) = G_{m,k}$ and $(f_1 \cap f_2)(n+1) = G_{i,j}$, then |m-i| + |k-j| = 1.

- (38) If f is a sequence which elements belong to G and $i \in \text{Seg width } G$ and $\operatorname{rng} f \cap \operatorname{rng}(G_{\Box,i}) = \emptyset$ and width G > 1, then f is a sequence which elements belong to the deleting of *i*-column in G.
- (39) If f is a sequence which elements belong to G and $i \in \text{dom } f$, then there exists n such that $n \in \text{Seg len } G$ and $f(i) \in \text{rng Line}(G, n)$.
- (40) Suppose f is a sequence which elements belong to G and $i \in \text{dom } f$ and $i + 1 \in \text{dom } f$ and $n \in \text{Seg len } G$ and $f(i) \in \text{rng Line}(G, n)$. Then $f(i+1) \in \text{rng Line}(G, n)$ or for every k such that $f(i+1) \in \text{rng Line}(G, k)$ and $k \in \text{Seg len } G$ holds |n - k| = 1.
- (41) Suppose that
 - (i) $1 \leq \operatorname{len} f$,
 - (ii) $f(\operatorname{len} f) \in \operatorname{rng}\operatorname{Line}(G, \operatorname{len} G),$
 - (iii) f is a sequence which elements belong to G,
 - (iv) $i \in \operatorname{Seg} \operatorname{len} G$,
 - (v) $i+1 \in \operatorname{Seg} \operatorname{len} G$,
- (vi) $m \in \operatorname{dom} f$,
- (vii) $f(m) \in \operatorname{rng}\operatorname{Line}(G, i),$
- (viii) for every k such that $k \in \text{dom } f$ and $f(k) \in \text{rng Line}(G, i)$ holds $k \leq m$. Then $m + 1 \in \text{dom } f$ and $f(m + 1) \in \text{rng Line}(G, i + 1)$.
- (42) Suppose $1 \leq \text{len } f$ and $f(1) \in \text{rng Line}(G, 1)$ and $f(\text{len } f) \in \text{rng Line}(G, \text{len } G)$ and f is a sequence which elements belong to G. Then

- (i) for every *i* such that $1 \le i$ and $i \le \text{len } G$ there exists *k* such that $k \in \text{dom } f$ and $f(k) \in \text{rng Line}(G, i)$,
- (ii) for every *i* such that $1 \leq i$ and $i \leq \text{len } G$ and $2 \leq \text{len } f$ holds $\mathcal{L}(f) \cap \text{rng Line}(G, i) \neq \emptyset$,
- (iii) for all i, j, k, m such that $1 \le i$ and $i \le \text{len } G$ and $1 \le j$ and $j \le \text{len } G$ and $k \in \text{dom } f$ and $m \in \text{dom } f$ and $f(k) \in \text{rng Line}(G, i)$ and for every nsuch that $n \in \text{dom } f$ and $f(n) \in \text{rng Line}(G, i)$ holds $n \le k$ and k < mand $f(m) \in \text{rng Line}(G, j)$ holds i < j.
- (43) If f is a sequence which elements belong to G and $i \in \text{dom } f$, then there exists n such that $n \in \text{Seg width } G$ and $f(i) \in \text{rng}(G_{\Box,n})$.
- (44) Suppose f is a sequence which elements belong to G and $i \in \text{dom } f$ and $i + 1 \in \text{dom } f$ and $n \in \text{Seg width } G$ and $f(i) \in \text{rng}(G_{\Box,n})$. Then $f(i+1) \in \text{rng}(G_{\Box,n})$ or for every k such that $f(i+1) \in \text{rng}(G_{\Box,k})$ and $k \in \text{Seg width } G$ holds |n-k| = 1.
- (45) Suppose that
 - (i) $1 \leq \operatorname{len} f$,
 - (ii) $f(\operatorname{len} f) \in \operatorname{rng}(G_{\Box,\operatorname{width} G}),$
 - (iii) f is a sequence which elements belong to G,
 - (iv) $i \in \operatorname{Seg} \operatorname{width} G$,
 - (v) $i+1 \in \text{Seg width } G$,
 - (vi) $m \in \operatorname{dom} f$,
- (vii) $f(m) \in \operatorname{rng}(G_{\Box,i}),$
- (viii) for every k such that $k \in \text{dom } f$ and $f(k) \in \text{rng}(G_{\Box,i})$ holds $k \leq m$. Then $m + 1 \in \text{dom } f$ and $f(m + 1) \in \text{rng}(G_{\Box,i+1})$.
- (46) Suppose $1 \leq \text{len } f$ and $f(1) \in \text{rng}(G_{\Box,1})$ and $f(\text{len } f) \in \text{rng}(G_{\Box,\text{width } G})$ and f is a sequence which elements belong to G. Then
 - (i) for every *i* such that $1 \le i$ and $i \le \text{width } G$ there exists *k* such that $k \in \text{dom } f$ and $f(k) \in \text{rng}(G_{\Box,i})$,
 - (ii) for every *i* such that $1 \leq i$ and $i \leq \text{width } G$ and $2 \leq \text{len } f$ holds $\widetilde{\mathcal{L}}(f) \cap \operatorname{rng}(G_{\Box,i}) \neq \emptyset$,
 - (iii) for all i, j, k, m such that $1 \leq i$ and $i \leq$ width G and $1 \leq j$ and $j \leq$ width G and $k \in$ dom f and $m \in$ dom f and $f(k) \in \operatorname{rng}(G_{\Box,i})$ and for every n such that $n \in$ dom f and $f(n) \in \operatorname{rng}(G_{\Box,i})$ holds $n \leq k$ and k < m and $f(m) \in \operatorname{rng}(G_{\Box,j})$ holds i < j.
- (47) Suppose that
 - (i) $n \in \operatorname{dom} f$,
 - (ii) $f(n) \in \operatorname{rng}(G_{\Box,k}),$
 - (iii) $k \in \operatorname{Seg} \operatorname{width} G$,
 - (iv) $f(1) \in \operatorname{rng}(G_{\Box,1}),$
 - (v) f is a sequence which elements belong to G,
 - (vi) for every *i* such that $i \in \text{dom } f$ and $f(i) \in \text{rng}(G_{\Box,k})$ holds $n \leq i$. Then for every *i* such that $i \in \text{dom } f$ and $i \leq n$ and for every *m* such that $m \in \text{Seg width } G$ and $f(i) \in \text{rng}(G_{\Box,m})$ holds $m \leq k$.

(48)Suppose f is a sequence which elements belong to G and $f(1) \in \operatorname{rng}(G_{\Box,1})$ and $f(\operatorname{len} f) \in \operatorname{rng}(G_{\Box,\operatorname{width} G})$ and width G > 1 and $1 \leq \operatorname{len} f$. Then there exists g such that $g(1) \in \operatorname{rng}((\text{the deleting of width } G\text{-column in } G)_{\Box,1})$ and $g(\operatorname{len} g) \in \operatorname{rng}((\operatorname{the deleting of width} G\operatorname{-column in}))$ $(G)_{\Box, \text{width}(\text{the deleting of width } G-\text{column in } G)})$

and $1 \leq \text{len } g$ and g is a sequence which elements belong to the deleting of width G-column in G and rng $g \subseteq$ rng f.

- (49)Suppose f is a sequence which elements belong to G and $\operatorname{rng} f \cap \operatorname{rng}(G_{\Box,1}) \neq \emptyset$ and $\operatorname{rng} f \cap \operatorname{rng}(G_{\Box,\operatorname{width} G}) \neq \emptyset$. Then there exists g such that $\operatorname{rng} g \subseteq \operatorname{rng} f$ and $g(1) \in \operatorname{rng}(G_{\Box,1})$ and $g(\operatorname{len} g) \in \operatorname{rng}(G_{\Box,\operatorname{width} G})$ and $1 \leq \operatorname{len} g$ and g is a sequence which elements belong to G.
- (50)Suppose $k \in \text{Seglen} G$ and f is a sequence which elements belong to G and $f(\operatorname{len} f) \in \operatorname{rngLine}(G, \operatorname{len} G)$ and $n \in \operatorname{dom} f$ and $f(n) \in$ $\operatorname{rng}\operatorname{Line}(G,k)$. Then
 - for every i such that $k \leq i$ and $i \leq \operatorname{len} G$ there exists j such that (i) $j \in \text{dom } f \text{ and } n \leq j \text{ and } f(j) \in \text{rng Line}(G, i),$
 - for every i such that k < i and $i \leq \operatorname{len} G$ there exists j such that (ii) $j \in \text{dom } f \text{ and } n < j \text{ and } f(j) \in \text{rng Line}(G, i).$

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2]Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math*ematics*, 1(1):41–46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite [3] sequences. Formalized Mathematics, 1(1):107–114, 1990.
- Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-[4] 485, 1991.
- Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formal-[5] ized Mathematics, 1(3):529-536, 1990.
- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [7]1990.
- Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991. [8]
- Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990. [9]
- Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line seg-[10]ments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
- Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, [11] 1(1):35-40, 1990.
- [12]Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
- [13]Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711–717, 1991.
- Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. [14]Formalized Mathematics, 1(1):223–230, 1990.
- [15]Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.

- [16] Yukio Takeuchi and Yatsuka Nakamura. On the Jordan curve theorem. Technical Report 19804, Dept. of Information Eng., Shinshu University, 500 Wakasato, Nagano city, Japan, April 1980.
- [17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [18] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.

Received August 24, 1992