Introduction to Go-Board - Part I

Jarosław Kotowicz ${ }^{1}$
Warsaw University
Białystok

Yatsuka Nakamura
Shinshu University
Nagano

Abstract

Summary. In the article we introduce Go-board as some kinds of matrix which elements belong to topological space $\mathcal{E}_{\mathrm{T}}^{2}$. We define the functor of delaying column in Go-board and relation between Go-board and finite sequence of point from $\mathcal{E}_{\mathrm{T}}^{2}$. Basic facts about those notations are proved. The concept of the article is based on [16].

MML Identifier: GOBOARD1.

The notation and terminology used here have been introduced in the following papers: [17], [11], [2], [6], [3], [9], [7], [14], [15], [1], [18], [5], [12], [4], [8], [10], and [13].

1. Real Numbers Preliminaries

For simplicity we follow the rules: p denotes a point of $\mathcal{E}_{\mathrm{T}}^{2}, f, f_{1}, f_{2}, g$ denote finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}, v$ denotes a finite sequence of elements of \mathbb{R}, r, s denote real numbers, n, m, i, j, k denote natural numbers, and x is arbitrary. One can prove the following three propositions:
(1) $|r-s|=1$ if and only if $r>s$ and $r=s+1$ or $r<s$ and $s=r+1$.
(2) $|i-j|+|n-m|=1$ if and only if $|i-j|=1$ and $n=m$ or $|n-m|=1$ and $i=j$.
(3) $n>1$ if and only if there exists m such that $n=m+1$ and $m>0$.

[^0]
2. Finite Sequences Preliminaries

The scheme FinSeqDChoice concerns a non-empty set \mathcal{A}, a natural number \mathcal{B}, and a binary predicate \mathcal{P}, and states that:
there exists a finite sequence f of elements of \mathcal{A} such that len $f=\mathcal{B}$ and for every n such that $n \in \operatorname{Seg} \mathcal{B}$ holds $\mathcal{P}[n, f(n)]$ provided the parameters have the following property:

- for every n such that $n \in \operatorname{Seg} \mathcal{B}$ there exists an element d of \mathcal{A} such that $\mathcal{P}[n, d]$.
One can prove the following propositions:
(4) If $n=m+1$ and $i \in \operatorname{Seg} n$, then len $\operatorname{Sgm}(\operatorname{Seg} n \backslash\{i\})=m$.
(5) Suppose $n=m+1$ and $k \in \operatorname{Seg} n$ and $i \in \operatorname{Seg} m$. Then if $1 \leq i$ and $i<k$, then $(\operatorname{Sgm}(\operatorname{Seg} n \backslash\{k\}))(i)=i$ but if $k \leq i$ and $i \leq m$, then $(\operatorname{Sgm}(\operatorname{Seg} n \backslash\{k\}))(i)=i+1$.
(6) For every finite sequence f and for all n, m such that len $f=m+1$ and $n \in \operatorname{Seg} \operatorname{len} f$ holds $\operatorname{len}\left(f_{\mid n}\right)=m$.
(7) For every finite sequence f and for all n, m, k such that len $f=m+1$ and $n \in \operatorname{Seg} \operatorname{len} f$ and $k \in \operatorname{Seg} m$ holds $f_{\mid n}(k)=f(k)$ or $f_{\mid n}(k)=f(k+1)$.
(8) For every finite sequence f and for all n, m, k such that len $f=m+1$ and $n \in \operatorname{Seg} \operatorname{len} f$ and $1 \leq k$ and $k<n$ holds $f_{\uparrow n}(k)=f(k)$.
(9) For every finite sequence f and for all n, m, k such that len $f=m+1$ and $n \in \operatorname{Seg}$ len f and $n \leq k$ and $k \leq m$ holds $f_{\upharpoonright n}(k)=f(k+1)$.
(10) If $n \in \operatorname{dom} f$ and $m \in \operatorname{Seg} n$, then $(f \upharpoonright n)(m)=f(m)$ and $m \in \operatorname{dom} f$.

We now define four new constructions. A finite sequence of elements of \mathbb{R} is increasing if:
(Def.1) for all n, m such that $n \in$ domit and $m \in$ domit and $n<m$ and for all r, s such that $r=\operatorname{it}(n)$ and $s=\operatorname{it}(m)$ holds $r<s$.
A finite sequence is constant if:
(Def.2) for all n, m such that $n \in$ domit and $m \in \operatorname{dom}$ it holds it $(n)=\operatorname{it}(m)$.
Let us observe that there exists a finite sequence of elements of \mathbb{R} which is increasing. Note also that there exists a finite sequence of elements of \mathbb{R} which is constant.

Let us consider f. The functor \mathbf{X}-coordinate (f) yields a finite sequence of elements of \mathbb{R} and is defined by:
(Def.3) len \mathbf{X}-coordinate $(f)=\operatorname{len} f$
and for every n such that $n \in \operatorname{dom} \mathbf{X}$-coordinate (f) and for every p such that $p=f(n)$ holds $(\mathbf{X}$-coordinate $(f))(n)=p_{\mathbf{1}}$.
The functor \mathbf{Y}-coordinate (f) yielding a finite sequence of elements of \mathbb{R} is defined as follows:
(Def.4) $\quad \operatorname{len} \mathbf{Y}$-coordinate $(f)=\operatorname{len} f$
and for every n such that $n \in \operatorname{dom} \mathbf{Y}$-coordinate (f) and for every p such that $p=f(n)$ holds $(\mathbf{Y}$-coordinate $(f))(n)=p_{\mathbf{2}}$.

One can prove the following propositions:
(11) Suppose that
(i) $v \neq \varepsilon$,
(ii) $\operatorname{rng} v \subseteq \operatorname{Seg} n$,
(iii) $\quad v(\operatorname{len} v)=n$,
(iv) for every k such that $1 \leq k$ and $k \leq \operatorname{len} v-1$ and for all r, s such that $r=v(k)$ and $s=v(k+1)$ holds $|r-s|=1$ or $r=s$,
(v) $\quad i \in \operatorname{Seg} n$,
(vi) $i+1 \in \operatorname{Seg} n$,
(vii) $m \in \operatorname{dom} v$,
(viii) $v(m)=i$,
(ix) for every k such that $k \in \operatorname{dom} v$ and $v(k)=i$ holds $k \leq m$.

Then $m+1 \in \operatorname{dom} v$ and $v(m+1)=i+1$.
(12) Suppose that
(i) $v \neq \varepsilon$,
(ii) $\operatorname{rng} v \subseteq \operatorname{Seg} n$,
(iii) $v(1)=1$,
(iv) $\quad v(\operatorname{len} v)=n$,
(v) for every k such that $1 \leq k$ and $k \leq \operatorname{len} v-1$ and for all r, s such that $r=v(k)$ and $s=v(k+1)$ holds $|r-s|=1$ or $r=s$.
Then
(vi) for every i such that $i \in \operatorname{Seg} n$ there exists k such that $k \in \operatorname{dom} v$ and $v(k)=i$,
(vii) for all m, k, i, r such that $m \in \operatorname{dom} v$ and $v(m)=i$ and for every j such that $j \in \operatorname{dom} v$ and $v(j)=i$ holds $j \leq m$ and $m<k$ and $k \in \operatorname{dom} v$ and $r=v(k)$ holds $i<r$.
(13) If $i \in \operatorname{dom} f$ and $2 \leq \operatorname{len} f$, then $f(i) \in \widetilde{\mathcal{L}}(f)$.

3. Matrix Preliminaries

Next we state two propositions:
(14) For every non-empty set D and for every matrix M over D and for all i, j such that $j \in \operatorname{Seg} \operatorname{len} M$ and $i \in \operatorname{Seg}$ width M holds $M_{\square, i}(j)=$ Line $(M, j)(i)$.
(15) For every non-empty set D and for every matrix M over D and for every k such that $k \in \operatorname{Seg}$ len M holds $M(k)=\operatorname{Line}(M, k)$.
We now define several new constructions. Let T be a topological space. A matrix over T is a matrix over the carrier of T.

A matrix over $\mathcal{E}_{\mathrm{T}}^{2}$ is non-trivial if:
(Def.5) $0<$ len it and $0<$ width it.
A matrix over $\mathcal{E}_{\mathrm{T}}^{2}$ is line \mathbf{X}-constant if:
(Def.6) for every n such that $n \in \operatorname{Seg}$ len it holds \mathbf{X}-coordinate(Line(it, $n)$) is constant.
A matrix over $\mathcal{E}_{\mathrm{T}}^{2}$ is column \mathbf{Y}-constant if:
(Def.7) for every n such that $n \in \operatorname{Seg}$ width it holds \mathbf{Y}-coordinate $\left(\right.$ it $\left._{\square, n}\right)$ is constant.
A matrix over $\mathcal{E}_{\mathrm{T}}^{2}$ is line \mathbf{Y}-increasing if:
(Def.8) for every n such that $n \in \operatorname{Seg}$ len it holds \mathbf{Y}-coordinate(Line(it, $n)$) is increasing.
A matrix over $\mathcal{E}_{\mathrm{T}}^{2}$ is column \mathbf{X}-increasing if:
(Def.9) for every n such that $n \in \operatorname{Seg}$ width it holds \mathbf{X}-coordinate(it ${ }_{\square, n}$) is increasing.
One can readily verify that there exists a matrix over $\mathcal{E}_{\text {T }}^{2}$ which is non-trivial, line \mathbf{X}-constant, column \mathbf{Y}-constant, line \mathbf{Y}-increasing and column \mathbf{X}-increasing.

We now state two propositions:
(16) For every column \mathbf{X}-increasing line \mathbf{X}-constant matrix M over $\mathcal{E}_{\mathrm{T}}^{2}$ and for all x, n, m such that $x \in \operatorname{rng} \operatorname{Line}(M, n)$ and $x \in \operatorname{rng} \operatorname{Line}(M, m)$ and $n \in \operatorname{Seg}$ len M and $m \in \operatorname{Seg}$ len M holds $n=m$.
(17) For every line \mathbf{Y}-increasing column \mathbf{Y}-constant matrix M over $\mathcal{E}_{\mathrm{T}}^{2}$ and for all x, n, m such that $x \in \operatorname{rng}\left(M_{\square, n}\right)$ and $x \in \operatorname{rng}\left(M_{\square, m}\right)$ and $n \in$ Seg width M and $m \in \operatorname{Seg}$ width M holds $n=m$.

4. Basic Go-Board‘s Notation

A Go-board is a non-trivial line \mathbf{X}-constant column \mathbf{Y}-constant line \mathbf{Y}-increasing column \mathbf{X}-increasing matrix over $\mathcal{E}_{\mathrm{T}}^{2}$.

In the sequel G denotes a Go-board. The following four propositions are true:
(18) If $x=G_{m, k}$ and $x=G_{i, j}$ and $\langle m, k\rangle \in$ the indices of G and $\langle i, j\rangle \in$ the indices of G, then $m=i$ and $k=j$.
(19) If $m \in \operatorname{dom} f$ and $f(1) \in \operatorname{rng}\left(G_{\square, 1}\right)$, then $(f \upharpoonright m)(1) \in \operatorname{rng}\left(G_{\square, 1}\right)$.
(20) If $m \in \operatorname{dom} f$ and $f(m) \in \operatorname{rng}\left(G_{\square, \text { width } G}\right)$, then $(f \upharpoonright m)(\operatorname{len}(f \upharpoonright m)) \in$ $\operatorname{rng}\left(G_{\square, \text { width } G}\right)$.
(21) If $\operatorname{rng} f \cap \operatorname{rng}\left(G_{\square, i}\right)=\emptyset$ and $f(n)=G_{m, k}$ and $n \in \operatorname{dom} f$ and $m \in$ Seg len G, then $i \neq k$.
Let us consider G, i. Let us assume that $i \in \operatorname{Seg}$ width G and width $G>1$. The deleting of i-column in G yielding a Go-board is defined by:
(Def.10) len(the deleting of i-column in $G)=\operatorname{len} G$ and for every k such that $k \in \operatorname{Seg} \operatorname{len} G$ holds (the deleting of i-column in $G)(k)=\operatorname{Line}(G, k)_{\mid i}$.
One can prove the following propositions:
(22) If $i \in \operatorname{Seg}$ width G and width $G>1$ and $k \in \operatorname{Seg}$ len G, then Line(the deleting of i-column in $G, k)=\operatorname{Line}(G, k)_{\mid i}$.
(23) If $i \in \operatorname{Seg}$ width G and width $G=m+1$ and $m>0$, then width(the deleting of i-column in G) $=m$.
(24) If $i \in \operatorname{Seg}$ width G and width $G>1$, then width $G=$ width(the deleting of i-column in $G)+1$.
(25) If $i \in \operatorname{Seg}$ width G and width $G>1$ and $n \in \operatorname{Seg} \operatorname{len} G$ and $m \in$ Seg width(the deleting of i-column in G), then (the deleting of i-column in $G)_{n, m}=\operatorname{Line}(G, n)_{1 i}(m)$.
(26) If $i \in \operatorname{Seg}$ width G and width $G=m+1$ and $m>0$ and $1 \leq k$ and $k<i$, then (the deleting of i-column in $G)_{\square, k}=G_{\square, k}$ and $k \in \operatorname{Seg}$ width(the deleting of i-column in G) and $k \in \operatorname{Seg}$ width G.
(27) Suppose $i \in \operatorname{Seg}$ width G and width $G=m+1$ and $m>0$ and $i \leq k$ and $k \leq m$. Then (the deleting of i-column in $G)_{\square, k}=G_{\square, k+1}$ and $k \in \operatorname{Seg}$ width(the deleting of i-column in G) and $k+1 \in \operatorname{Seg}$ width G.
(28) If $i \in \operatorname{Seg}$ width G and width $G=m+1$ and $m>0$ and $n \in \operatorname{Seg}$ len G and $1 \leq k$ and $k<i$, then (the deleting of i-column in $G)_{n, k}=G_{n, k}$ and $k \in \operatorname{Seg}$ width G.
(29) Suppose $i \in \operatorname{Seg}$ width G and width $G=m+1$ and $m>0$ and $n \in$ Seg len G and $i \leq k$ and $k \leq m$. Then (the deleting of i-column in $G)_{n, k}=G_{n, k+1}$ and $k+1 \in \operatorname{Seg}$ width G.
(30) If width $G=m+1$ and $m>0$ and $k \in \operatorname{Seg} m$, then (the deleting of 1-column in $G)_{\square, k}=G_{\square, k+1}$ and $k \in \operatorname{Seg}$ width(the deleting of 1-column in G) and $k+1 \in \operatorname{Seg}$ width G.
(31) If width $G=m+1$ and $m>0$ and $k \in \operatorname{Seg} m$ and $n \in \operatorname{Seg}$ len G, then (the deleting of 1-column in $G)_{n, k}=G_{n, k+1}$ and $1 \in \operatorname{Seg}$ width G.
(32) If width $G=m+1$ and $m>0$ and $k \in \operatorname{Seg} m$, then (the deleting of width G-column in $G)_{\square, k}=G_{\square, k}$ and $k \in \operatorname{Seg}$ width(the deleting of width G-column in G).
(33) If width $G=m+1$ and $m>0$ and $k \in \operatorname{Seg} m$ and $n \in \operatorname{Seg} \operatorname{len} G$, then $k \in \operatorname{Seg}$ width G and (the deleting of width G-column in $G)_{n, k}=G_{n, k}$ and width $G \in \operatorname{Seg}$ width G.
(34) Suppose rng $f \cap \operatorname{rng}\left(G_{\square, i}\right)=\emptyset$ and $f(n) \in \operatorname{rng} \operatorname{Line}(G, m)$ and $n \in$ $\operatorname{dom} f$ and $i \in \operatorname{Seg}$ width G and $m \in \operatorname{Seg} \operatorname{len} G$ and width $G>1$. Then $f(n) \in \operatorname{rng}$ Line(the deleting of i-column in G, m).
Let us consider f, G. We say that f is a sequence which elements belong to G if and only if the conditions (Def.11) is satisfied.
(Def.11) (i) For every n such that $n \in \operatorname{dom} f$ there exist i, j such that $\langle i, j\rangle \in$ the indices of G and $f(n)=G_{i, j}$,
(ii) for every n such that $n \in \operatorname{dom} f$ and $n+1 \in \operatorname{dom} f$ and for all m, k, i, j such that $\langle m, k\rangle \in$ the indices of G and $\langle i, j\rangle \in$ the indices of G and $f(n)=G_{m, k}$ and $f(n+1)=G_{i, j}$ holds $|m-i|+|k-j|=1$.

One can prove the following propositions:
(35) If f is a sequence which elements belong to G and $m \in \operatorname{dom} f$, then $1 \leq \operatorname{len}(f \upharpoonright m)$ and $f \upharpoonright m$ is a sequence which elements belong to G.
(36) Suppose that
(i) for every n such that $n \in \operatorname{dom} f_{1}$ there exist i, j such that $\langle i, j\rangle \in$ the indices of G and $f_{1}(n)=G_{i, j}$,
(ii) for every n such that $n \in \operatorname{dom} f_{2}$ there exist i, j such that $\langle i, j\rangle \in$ the indices of G and $f_{2}(n)=G_{i, j}$.
Then for every n such that $n \in \operatorname{dom}\left(f_{1} \wedge f_{2}\right)$ there exist i, j such that $\langle i$, $j\rangle \in$ the indices of G and $\left(f_{1} \wedge f_{2}\right)(n)=G_{i, j}$.
(i) for every n such that $n \in \operatorname{dom} f_{1}$ and $n+1 \in \operatorname{dom} f_{1}$ and for all m, k, i, j such that $\langle m, k\rangle \in$ the indices of G and $\langle i, j\rangle \in$ the indices of G and $f_{1}(n)=G_{m, k}$ and $f_{1}(n+1)=G_{i, j}$ holds $|m-i|+|k-j|=1$,
(ii) for every n such that $n \in \operatorname{dom} f_{2}$ and $n+1 \in \operatorname{dom} f_{2}$ and for all m, k, i, j such that $\langle m, k\rangle \in$ the indices of G and $\langle i, j\rangle \in$ the indices of G and $f_{2}(n)=G_{m, k}$ and $f_{2}(n+1)=G_{i, j}$ holds $|m-i|+|k-j|=1$,
(iii) for all m, k, i, j such that $\langle m, k\rangle \in$ the indices of G and $\langle i, j\rangle \in$ the indices of G and $f_{1}\left(\operatorname{len} f_{1}\right)=G_{m, k}$ and $f_{2}(1)=G_{i, j}$ and len $f_{1} \in \operatorname{dom} f_{1}$ and $1 \in \operatorname{dom} f_{2}$ holds $|m-i|+|k-j|=1$.
Given n. Suppose $n \in \operatorname{dom}\left(f_{1} \wedge f_{2}\right)$ and $n+1 \in \operatorname{dom}\left(f_{1} \wedge f_{2}\right)$. Given m, k, i, j. Then if $\langle m, k\rangle \in$ the indices of G and $\langle i, j\rangle \in$ the indices of G and $\left(f_{1} \wedge f_{2}\right)(n)=G_{m, k}$ and $\left(f_{1} \bumpeq f_{2}\right)(n+1)=G_{i, j}$, then $|m-i|+|k-j|=1$.
If f is a sequence which elements belong to G and $i \in \operatorname{Seg}$ width G and $\operatorname{rng} f \cap \operatorname{rng}\left(G_{\square, i}\right)=\emptyset$ and width $G>1$, then f is a sequence which elements belong to the deleting of i-column in G.
(39) If f is a sequence which elements belong to G and $i \in \operatorname{dom} f$, then there exists n such that $n \in \operatorname{Seg} \operatorname{len} G$ and $f(i) \in \operatorname{rng} \operatorname{Line}(G, n)$.
(40) Suppose f is a sequence which elements belong to G and $i \in \operatorname{dom} f$ and $i+1 \in \operatorname{dom} f$ and $n \in \operatorname{Seg} \operatorname{len} G$ and $f(i) \in \operatorname{rng} \operatorname{Line}(G, n)$. Then $f(i+1) \in \operatorname{rng} \operatorname{Line}(G, n)$ or for every k such that $f(i+1) \in \operatorname{rng} \operatorname{Line}(G, k)$ and $k \in \operatorname{Seg} \operatorname{len} G$ holds $|n-k|=1$.

Suppose that
(i) $1 \leq \operatorname{len} f$,
(ii) $\quad f(\operatorname{len} f) \in \operatorname{rng} \operatorname{Line}(G$, len $G)$,
(iii) f is a sequence which elements belong to G,
(iv) $i \in \operatorname{Seg} \operatorname{len} G$,
(v) $i+1 \in \operatorname{Seg} \operatorname{len} G$,
(vi) $m \in \operatorname{dom} f$,
(vii) $\quad f(m) \in \operatorname{rng} \operatorname{Line}(G, i)$,
(viii) for every k such that $k \in \operatorname{dom} f$ and $f(k) \in \operatorname{rng} \operatorname{Line}(G, i)$ holds $k \leq m$. Then $m+1 \in \operatorname{dom} f$ and $f(m+1) \in \operatorname{rng} \operatorname{Line}(G, i+1)$.
(42) \quad Suppose $1 \leq \operatorname{len} f$ and $f(1) \in \operatorname{rng} \operatorname{Line}(G, 1)$ and $f(\operatorname{len} f) \in \operatorname{rng} \operatorname{Line}(G, \operatorname{len} G)$
and f is a sequence which elements belong to G. Then
(i) for every i such that $1 \leq i$ and $i \leq \operatorname{len} G$ there exists k such that $k \in \operatorname{dom} f$ and $f(k) \in \operatorname{rng} \operatorname{Line}(G, i)$,
(ii) for every i such that $1 \leq i$ and $i \leq \operatorname{len} G$ and $2 \leq \operatorname{len} f$ holds $\widetilde{\mathcal{L}}(f) \cap$ rng Line $(G, i) \neq \emptyset$,
(iii) for all i, j, k, m such that $1 \leq i$ and $i \leq \operatorname{len} G$ and $1 \leq j$ and $j \leq \operatorname{len} G$ and $k \in \operatorname{dom} f$ and $m \in \operatorname{dom} f$ and $f(k) \in \operatorname{rng} \operatorname{Line}(G, i)$ and for every n such that $n \in \operatorname{dom} f$ and $f(n) \in \operatorname{rng} \operatorname{Line}(G, i)$ holds $n \leq k$ and $k<m$ and $f(m) \in \operatorname{rng} \operatorname{Line}(G, j)$ holds $i<j$.
If f is a sequence which elements belong to G and $i \in \operatorname{dom} f$, then there exists n such that $n \in \operatorname{Seg}$ width G and $f(i) \in \operatorname{rng}\left(G_{\square, n}\right)$.
(44) Suppose f is a sequence which elements belong to G and $i \in \operatorname{dom} f$ and $i+1 \in \operatorname{dom} f$ and $n \in \operatorname{Seg}$ width G and $f(i) \in \operatorname{rng}\left(G_{\square, n}\right)$. Then $f(i+1) \in \operatorname{rng}\left(G_{\square, n}\right)$ or for every k such that $f(i+1) \in \operatorname{rng}\left(G_{\square, k}\right)$ and $k \in \operatorname{Seg}$ width G holds $|n-k|=1$.
(45) Suppose that
(i) $1 \leq \operatorname{len} f$,
(ii) $f(\operatorname{len} f) \in \operatorname{rng}\left(G_{\square, \text { width } G}\right)$,
(iii) f is a sequence which elements belong to G,
(iv) $i \in \operatorname{Seg}$ width G,
(v) $i+1 \in \operatorname{Seg}$ width G,
(vi) $m \in \operatorname{dom} f$,
(vii) $f(m) \in \operatorname{rng}\left(G_{\square, i}\right)$,
(viii) for every k such that $k \in \operatorname{dom} f$ and $f(k) \in \operatorname{rng}\left(G_{\square, i}\right)$ holds $k \leq m$. Then $m+1 \in \operatorname{dom} f$ and $f(m+1) \in \operatorname{rng}\left(G_{\square, i+1}\right)$.
(46) \quad Suppose $1 \leq \operatorname{len} f$ and $f(1) \in \operatorname{rng}\left(G_{\square, 1}\right)$ and $f(\operatorname{len} f) \in \operatorname{rng}\left(G_{\square, \text { width } G}\right)$ and f is a sequence which elements belong to G. Then
(i) for every i such that $1 \leq i$ and $i \leq$ width G there exists k such that $k \in \operatorname{dom} f$ and $f(k) \in \operatorname{rng}\left(G_{\square, i}\right)$,
(ii) for every i such that $1 \leq i$ and $i \leq$ width G and $2 \leq \operatorname{len} f$ holds $\widetilde{\mathcal{L}}(f) \cap \operatorname{rng}\left(G_{\square, i}\right) \neq \emptyset$,
(iii) for all i, j, k, m such that $1 \leq i$ and $i \leq$ width G and $1 \leq j$ and $j \leq$ width G and $k \in \operatorname{dom} f$ and $m \in \operatorname{dom} f$ and $f(k) \in \operatorname{rng}\left(G_{\square, i}\right)$ and for every n such that $n \in \operatorname{dom} f$ and $f(n) \in \operatorname{rng}\left(G_{\square, i}\right)$ holds $n \leq k$ and $k<m$ and $f(m) \in \operatorname{rng}\left(G_{\square, j}\right)$ holds $i<j$.
(47) Suppose that
(i) $n \in \operatorname{dom} f$,
(ii) $f(n) \in \operatorname{rng}\left(G_{\square, k}\right)$,
(iii) $k \in \operatorname{Seg}$ width G,
(iv) $f(1) \in \operatorname{rng}\left(G_{\square, 1}\right)$,
(v) f is a sequence which elements belong to G,
(vi) for every i such that $i \in \operatorname{dom} f$ and $f(i) \in \operatorname{rng}\left(G_{\square, k}\right)$ holds $n \leq i$.

Then for every i such that $i \in \operatorname{dom} f$ and $i \leq n$ and for every m such that $m \in \operatorname{Seg}$ width G and $f(i) \in \operatorname{rng}\left(G_{\square, m}\right)$ holds $m \leq k$.
(48) \quad Suppose f is a sequence which elements belong to G and $f(1) \in \operatorname{rng}\left(G_{\square, 1}\right)$ and $f(\operatorname{len} f) \in \operatorname{rng}\left(G_{\square, \text { width } G}\right)$ and width $G>1$ and $1 \leq \operatorname{len} f$. Then there exists g such that $g(1) \in \operatorname{rng}\left((\text { the deleting of width } G \text {-column in } G)_{\square, 1}\right)$ and $g(\operatorname{len} g) \in \operatorname{rng}(($ the deleting of width G-column in
$\left.G)_{\square, \text { width(the deleting of width } G-c o l u m n ~ i n ~} G\right)$)
and $1 \leq$ len g and g is a sequence which elements belong to the deleting of width G-column in G and $\operatorname{rng} g \subseteq \operatorname{rng} f$.
(49) Suppose f is a sequence which elements belong to G and $\operatorname{rng} f \cap \operatorname{rng}\left(G_{\square, 1}\right) \neq \emptyset$ and $\operatorname{rng} f \cap \operatorname{rng}\left(G_{\square, \text { width } G}\right) \neq \emptyset$.
Then there exists g such that $\operatorname{rng} g \subseteq \operatorname{rng} f$ and $g(1) \in \operatorname{rng}\left(G_{\square, 1}\right)$ and $g(\operatorname{len} g) \in \operatorname{rng}\left(G_{\square, \text { width } G}\right)$ and $1 \leq \operatorname{len} g$ and g is a sequence which elements belong to G.
(50) Suppose $k \in \operatorname{Seg} \operatorname{len} G$ and f is a sequence which elements belong to G and $f(\operatorname{len} f) \in \operatorname{rng} \operatorname{Line}(G, \operatorname{len} G)$ and $n \in \operatorname{dom} f$ and $f(n) \in$ rng Line (G, k). Then
(i) for every i such that $k \leq i$ and $i \leq \operatorname{len} G$ there exists j such that $j \in \operatorname{dom} f$ and $n \leq j$ and $f(j) \in \operatorname{rng} \operatorname{Line}(G, i)$,
(ii) for every i such that $k<i$ and $i \leq \operatorname{len} G$ there exists j such that $j \in \operatorname{dom} f$ and $n<j$ and $f(j) \in \operatorname{rng} \operatorname{Line}(G, i)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[9] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[10] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[12] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[13] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
[14] Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[15] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[16] Yukio Takeuchi and Yatsuka Nakamura. On the Jordan curve theorem. Technical Report 19804, Dept. of Information Eng., Shinshu University, 500 Wakasato, Nagano city, Japan, April 1980.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[18] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Received August 24, 1992

[^0]: ${ }^{1}$ This article was written during my visit at Shinshu University in 1992.

