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Summary. Continuation of [13]. The fact that the unit square
is compact is shown in the beginning of the article. Next the notion
of simple closed curve is introduced. It is proved that any simple closed
curve can be divided into two independent parts which are homeomorphic
to unit interval

�
.

MML Identifier: TOPREAL2.

The notation and terminology used here have been introduced in the following
articles: [22], [21], [14], [1], [24], [20], [6], [7], [18], [4], [8], [23], [17], [25], [11],
[16], [9], [19], [2], [5], [15], [3], [10], [12], and [13]. We follow the rules: p1, p2,
q1, q2 will denote points of E2

T
and P , Q, P1, P2 will denote subsets of E2

T
. The

following propositions are true:

(1) If p1 6= p2 and p1 ∈ � E2 and p2 ∈ � E2, then there exist P1, P2 such that
P1 is an arc from p1 to p2 and P2 is an arc from p1 to p2 and � E2 = P1∪P2

and P1 ∩ P2 = {p1, p2}.

(2) � E2 is compact.

(3) For every map f from (E2

T
) � Q into (E2

T
) � P such that f is a homeo-

morphism and Q is an arc from q1 to q2 and P 6= ∅ and for all p1, p2 such
that p1 = f(q1) and p2 = f(q2) holds P is an arc from p1 to p2.

Let us consider P . We say that P is a simple closed curve if and only if:

(Def.1) P 6= ∅ and there exists a map f from (E 2

T
) ��� E2 into (E2

T
) � P such that

f is a homeomorphism.

Next we state two propositions:

(4) If P is a simple closed curve, then there exist p1, p2 such that p1 6= p2

and p1 ∈ P and p2 ∈ P .

(5) P is a simple closed curve if and only if the following conditions are
satisfied:
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(i) there exist p1, p2 such that p1 6= p2 and p1 ∈ P and p2 ∈ P ,
(ii) for all p1, p2 such that p1 6= p2 and p1 ∈ P and p2 ∈ P there exist P1,

P2 such that P1 is an arc from p1 to p2 and P2 is an arc from p1 to p2 and
P = P1 ∪ P2 and P1 ∩ P2 = {p1, p2}.
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