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Summary. We define the category of non-associative rings. The
carriers of the rings are included in a universum. The universum is a
parameter of the category.

MML Identifier: RINGCAT1.

The papers [14], [2], [15], (3], [1], [12], [7], [8], [5], [4], [13], [11], [6], [10], and [9]
provide the terminology and notation for this paper. For simplicity we follow
a convention: x, y will be arbitrary, D will be a non-empty set, U; will be a
universal class, and GG, H will be field structures. Let us consider G, H. A map
from G into H is a function from the carrier of G into the carrier of H.

Let G, Go, G3 be field structures, and let f be a map from G into G, and
let g be a map from G into G3. Then g - f is a map from G, into Gj.

Let us consider G. The functor idg yields a map from G into G and is defined
by:
(Def.1)  idg = id(the carrier of G)-
The following propositions are true:
(1)  For every scalar z of G holds idg(z) = «.
(2)  For every map f from G into H holds f -idg = f and idy - f = f.
Let us consider GG, H. A map from G into H is linear if:

(Det.2)  for all scalars z, y of G holds it(z +y) = it(x) +it(y) and for all scalars
x, y of G holds it(z - y) = it(z) - it(y) and it(lg) = 15.
We now state the proposition
(3) For all Gy, Go, G5 being field structures and for every map f from G4

into G5 and for every map ¢ from (s into G3 such that f is linear and ¢
is linear holds ¢ - f is linear.
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We consider ring morphisms structures which are systems

(a dom-map, a cod-map, a Fun),
where the dom-map, the cod-map are a ring and the Fun is a map from the
dom-map into the cod-map.

We now define three new functors. Let us consider f. The functor dom f
yields a ring and is defined by:

(Detf.3)  dom f = the dom-map of f.
The functor cod f yields a ring and is defined by:
(Def.4)  cod f = the cod-map of f.
The functor fun f yields a map from the dom-map of f into the cod-map of f
and is defined by:
(Def.5)  fun f = the Fun of f.
In the sequel G, H, Gy, G2, G3, G4 will denote rings. A ring morphisms
structure is called a morphism of rings if:
(Def.6)  funit is linear.

Let us consider G. The functor I yields a strict morphism of rings and is
defined as follows:

(Def.7)  Ig = (G,G,idg).
Let us consider GG, H. The predicate G < H 1is defined as follows:
(Def.8)  there exists a morphism F' of rings such that dom F' = G and cod F' =
H.
We now state the proposition
4 G<AG.
Let us consider G, H. Let us assume that G < H. A strict morphism of
rings is said to be a morphism from G to H if:
(Def.9)  domit = G and codit = H.

Let us consider G. Then I is a strict morphism from G to G.

We now state three propositions:

(5)  For all morphisms g, f of rings such that dom g = cod f there exist G1,
(9, G5 such that G1 < G2 and G9 < G5 and the ring morphisms structure
of g is a morphism from G5 to G3 and the ring morphisms structure of f
is a morphism from G; to Gs.

(6)  For every strict morphism F of rings holds F' is a morphism from dom F’
to cod F' and dom F' < cod F'.

(7)  For every strict morphism F of rings there exist G, H and there exists
a map f from G into H such that F' is a morphism from G to H and
F=(G,H, f) and f is linear.

Let G, F be morphisms of rings. Let us assume that dom G = cod F'. The

functor G - F' yields a strict morphism of rings and is defined by:
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(Def.10)  for all G, G2, G3 and for every map g from G5 into G5 and for every
map f from G into G2 such that the ring morphisms structure of G =
(G2,G3,g) and the ring morphisms structure of F' = (G1,Ge, f) holds
G-F= <G17G37.g'f>'

We now state two propositions:
(8) If G1 < Gy and Gy < (3, then G7 < G3.
(9)  For every morphism G from G to G3 and for every morphism F' from

G1 to Gy such that G < G and Go < G3 holds G - F is a morphism
from G7 to Gs.

Let us consider G1, G2, G3, and let G be a morphism from G5 to G3, and let
F be a morphism from G to Go. Let us assume that G; < G5 and G < Gs.
The functor F[G] yields a strict morphism from G; to Gs and is defined as
follows:

(Def.11) F[G] =G - F.

The following propositions are true:

(10)  For all strict morphisms f, g of rings such that domg = cod f there
exist GG, G2, G3 and there exists a map fy from G; into G5 and there
exists a map go from Go into G such that f = (G, G, fo) and g = (G2,
Gs,90) and g - f = (G1,G3,90 - fo)-

(11)  For all strict morphisms f, g of rings such that domg = cod f holds
dom(g - f) = dom f and cod(g - f) = cod g.

(12)  For every morphism f from Gy to G2 and for every morphism g from
G5 to 3 and for every morphism h from G3 to G4 such that G; < Gs
and Gy < Gz and G3 < Gg holds h-(g- f)=(h-g)- f.

(13)  For all strict morphisms f, g, h of rings such that dom h = cod g and
domg =cod f holds h-(g- f)=(h-g)- f.

(14) dom(Ig) = G and cod(Ig) = G and for every strict morphism f of rings
such that cod f = G holds I - f = f and for every strict morphism g of
rings such that domg = G holds g - Ig = g.

A non-empty set is said to be a non-empty set of rings if:
(Def.12)  for every element z of it holds z is a strict ring.
In the sequel V denotes a non-empty set of rings. Let us consider V. We see
that the element of V is a ring.

One can prove the following two propositions:

(15)  For every strict morphism f of rings and for every element x of {f}
holds z is a strict morphism of rings.

(16) For every morphism f from G to H and for every element = of {f}
holds z is a morphism from G to H.

A non-empty set is said to be a non-empty set of morphisms of rings if:

(Def.13)  for every element x of it holds x is a strict morphism of rings.
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Let M be a non-empty set of morphisms of rings. We see that the element
of M is a morphism of rings.
Next we state the proposition

(17)  For every strict morphism f of rings holds {f} is a non-empty set of
morphisms of rings.

Let us consider G, H. A non-empty set of morphisms of rings is called a
non-empty set of morphisms from G into H if:

(Def.14)  for every element x of it holds x is a morphism from G to H.

The following two propositions are true:

(18) D is a non-empty set of morphisms from G into H if and only if for
every element x of D holds x is a morphism from G to H.

(19)  For every morphism f from G to H holds {f} is a non-empty set of
morphisms from G into H.

Let us consider G, H. Let us assume that G < H. The functor Morphs(G, H)
yielding a non-empty set of morphisms from G into H is defined by:

(Def.15)  x € Morphs(G, H) if and only if x is a morphism from G to H.

Let us consider G, H, and let M be a non-empty set of morphisms from G
into H. We see that the element of M is a morphism from G to H.

Let us consider x, y. The predicate Py, x,y is defined by the condition
(Def.16).

(Def.16)  There exist arbitrary z1, z2, 3, x4, T5, ¢ such that x = ({(z1, 2, 3, 24),
x5, rg) and there exists a strict ring G such that y = G and x7 = the
carrier of G and zo = the addition of G and x3 = the reverse-map of G
and x4 = the zero of G and z5 = the multiplication of G and zg = the
unity of G.
We now state two propositions:
(20)  For arbitrary x, y1, y2 such that Pop 2, y1 and Pop 2, y2 holds y1 = yso.
(21)  There exists x such that x € Uy and P, z, Zs.
Let us consider U;. The functor RingObj(U;) yielding a non-empty set is
defined as follows:
(Def.17)  for every y holds y € RingObj(Uy) if and only if there exists x such that
x € Uy and Pgp, 2, 4.
We now state two propositions:
(22)  Zs € RingObj(U).
(23)  For every element z of RingObj(U;) holds x is a strict ring.
Let us consider U;. Then RingObj(U;) is a non-empty set of rings.
Let us consider V. The functor Morphs V' yielding a non-empty set of mor-
phisms of rings is defined as follows:

(Def.18)  x € Morphs V' if and only if there exist elements G, H of V' such that
G < H and zx is a morphism from G to H.
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Let us consider V', and let F' be an element of Morphs V. Then dom F' is an
element of V. Then cod F' is an element of V.

Let us consider V, and let G be an element of V. The functor 15 yields a
strict element of Morphs V' and is defined by:

(Def.19)  Ig =1g.

We now define three new functors. Let us consider V. The functor dom V'
yields a function from Morphs V into V and is defined as follows:

(Def.20)  for every element f of MorphsV holds (dom V)(f) = dom f.

The functor cod V yielding a function from MorphsV into V' is defined as fol-
lows:

(Def.21)  for every element f of MorphsV holds (cod V)(f) = cod f.

The functor Iy yields a function from V into Morphs V' and is defined by:

(Def.22)  for every element G of V holds Iy (G) = 1.

We now state two propositions:

(24)  For all elements g, f of MorphsV such that dom g = cod f there exist
elements G1, G3, G3 of V such that G; < G5 and Gy < G3 and ¢ is a
morphism from Gs to G3 and f is a morphism from G; to Gs.

(25)  For all elements g, f of MorphsV such that dom g = cod f holds g- f €
Morphs V.

Let us consider V. The functor comp V yielding a partial function from
E Morphs V, Morphs V' | to Morphs V' is defined as follows:

(Def.23)  for all elements g, f of MorphsV holds (g, f) € domcompV if and

only if dom g = cod f and for all elements g, f of MorphsV such that (g,
f) € domcomp V holds (comp V)({g, f)) =g- f.

Let us consider U;. The functor RingCat(U;) yielding a strict category struc-
ture is defined by:

(Def.24)  RingCat(U;) = (RingObj(U; ), Morphs RingObj (U7 ), dom RingObj(Uy),

cod RingObj(U1), comp RingObj(U1), Iringonj(w;))-
The following propositions are true:

(26)  For all morphisms f, g of RingCat(U;) holds (g, f) € dom (the com-
position of RingCat(U;)) if and only if dom g = cod f.

(27)  For every morphism f of RingCat(U;) and for every element f’ of
Morphs RingObj(U1)
and for every object b of RingCat(U;) and for every element b’ of RingObj(Uy)
holds f is a strict element of Morphs RingObj(U;) and f’ is a morphism
of RingCat(U;) and b is a strict element of RingObj(U;) and b’ is an
object of RingCat(Uy).

(28)  For every object b of RingCat(U7) and for every element b’ of RingObj(Uy)
such that b = b’ holds
idy = Iy
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(29)

(30)
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For every morphism f of RingCat(U;) and for every element f’ of
Morphs RingObj(Uy) such that f = f’ holds dom f = dom f” and cod f =
cod f'.

Let f, g be morphisms of RingCat(U;). Let f’, ¢ be elements of
Morphs RingObj(Uy). Suppose f = f’ and g = ¢’. Then

dom g = cod f if and only if dom ¢’ = cod f’,
dom g = cod f if and only if (¢’, f’) € dom comp RingObj(Uy),

dom f = dom g if and only if dom f/ = dom ¢/,
cod f = cod g if and only if cod f' = cod ¢'.

)
)
iii) ifdomg=codf,theng-f=g¢g -f,
)
)

Let us consider U;. Then RingCat(U;) is a strict category.
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