Completeness of the σ-Additive Measure. Measure Theory

Józef Białas
University of Łódź

Abstract

Summary. Definitions and basic properties of a σ-additive, nonnegative measure, with values in $\overline{\mathbb{R}}$, the enlarged set of real numbers, where $\overline{\mathbb{R}}$ denotes set $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty,+\infty\}$ - by [13]. The article includs the text being a continuation of the paper [5]. Some theorems concerning basic properties of a σ-additive measure and completeness of the measure are proved.

MML Identifier: MEASURE3.

The papers [15], [14], [9], [10], [7], [8], [1], [12], [2], [11], [3], [4], [6], and [5] provide the terminology and notation for this paper. One can prove the following four propositions:
(1) For every Real number x such that $-\infty<x$ and $x<+\infty$ holds x is a real number.
(2) For every Real number x such that $x \neq-\infty$ and $x \neq+\infty$ holds x is a real number.
(3) For all functions F_{1}, F_{2} from \mathbb{N} into $\overline{\mathbb{R}}$ such that F_{1} is non-negative and F_{2} is non-negative holds if for every natural number n holds $\left(\operatorname{Ser} F_{1}\right)(n) \leq$ $\left(\right.$ Ser $\left.F_{2}\right)(n)$, then $\sum F_{1} \leq \sum F_{2}$.
(4) For all functions F_{1}, F_{2} from \mathbb{N} into $\overline{\mathbb{R}}$ such that F_{1} is non-negative and F_{2} is non-negative holds if for every natural number n holds $\left(\operatorname{Ser} F_{1}\right)(n)=$ $\left(\right.$ Ser $\left.F_{2}\right)(n)$, then $\sum F_{1}=\sum F_{2}$.
Let X be a set, and let S be a σ-field of subsets of X. A denumerable family of subsets of X is called a subfamily of S if:
(Def.1) it $\subseteq S$.
Let X be a set, and let S be a σ-field of subsets of X, and let F be a function from \mathbb{N} into S. Then $\operatorname{rng} F$ is a subfamily of S.

Let X be a set, and let S be a σ-field of subsets of X, and let A be a subfamily of S. Then $\bigcup A$ is an element of S.

Let X be a set, and let S be a σ-field of subsets of X, and let A be a subfamily of S. Then $\bigcap A$ is an element of S.

One can prove the following propositions:
(5) For every set X and for every σ-field S of subsets of X and for every σ-measure M on S and for every function F from \mathbb{N} into S and for every element A of S such that $\bigcap \operatorname{rng} F \subseteq A$ and for every element n of \mathbb{N} holds $A \subseteq F(n)$ holds $M(A)=M(\bigcap \operatorname{rng} F)$.
(6)

Let X be a set. Let S be a σ-field of subsets of X. Let G be a function from \mathbb{N} into S. Then for every function F from \mathbb{N} into S such that $G(0)=\emptyset$ and for every element n of \mathbb{N} holds $G(n+1)=F(0) \backslash F(n)$ and $F(n+1) \subseteq F(n)$ holds $\bigcup \operatorname{rng} G=F(0) \backslash \bigcap \operatorname{rng} F$.

Let X be a set. Let S be a σ-field of subsets of X. Let G be a function from \mathbb{N} into S. Then for every function F from \mathbb{N} into S such that $G(0)=\emptyset$ and for every element n of \mathbb{N} holds $G(n+1)=F(0) \backslash F(n)$ and $F(n+1) \subseteq F(n)$ holds $\bigcap \operatorname{rng} F=F(0) \backslash \bigcup \operatorname{rng} G$.
(8) Let X be a set. Let S be a σ-field of subsets of X. Let M be a σ measure on S. Let G be a function from \mathbb{N} into S. Let F be a function from \mathbb{N} into S. Suppose $M(F(0))<+\infty$ and $G(0)=\emptyset$ and for every element n of \mathbb{N} holds $G(n+1)=F(0) \backslash F(n)$ and $F(n+1) \subseteq F(n)$. Then $M(\bigcap \operatorname{rng} F)=M(F(0))-M(\bigcup \operatorname{rng} G)$.
(9) Let X be a set. Let S be a σ-field of subsets of X. Let M be a σ measure on S. Let G be a function from \mathbb{N} into S. Let F be a function from \mathbb{N} into S. Suppose $M(F(0))<+\infty$ and $G(0)=\emptyset$ and for every element n of \mathbb{N} holds $G(n+1)=F(0) \backslash F(n)$ and $F(n+1) \subseteq F(n)$. Then $M(\bigcup \operatorname{rng} G)=M(F(0))-M(\bigcap \operatorname{rng} F)$.
(10) Let X be a set. Let S be a σ-field of subsets of X. Let M be a σ measure on S. Let G be a function from \mathbb{N} into S. Let F be a function from \mathbb{N} into S. Suppose $M(F(0))<+\infty$ and $G(0)=\emptyset$ and for every element n of \mathbb{N} holds $G(n+1)=F(0) \backslash F(n)$ and $F(n+1) \subseteq F(n)$. Then $M(\bigcap \operatorname{rng} F)=M(F(0))-\sup \operatorname{rng}(M \cdot G)$.
(11) Let X be a set. Let S be a σ-field of subsets of X. Let M be a σ measure on S. Let G be a function from \mathbb{N} into S. Let F be a function from \mathbb{N} into S. Suppose $M(F(0))<+\infty$ and $G(0)=\emptyset$ and for every element n of \mathbb{N} holds $G(n+1)=F(0) \backslash F(n)$ and $F(n+1) \subseteq F(n)$. Then $\sup \operatorname{rng}(M \cdot G)$ is a real number and $M(F(0))$ is a real number and $\inf \operatorname{rng}(M \cdot F)$ is a real number.
Let X be a set. Let S be a σ-field of subsets of X. Let M be a σ measure on S. Let G be a function from \mathbb{N} into S. Let F be a function from \mathbb{N} into S. Suppose $M(F(0))<+\infty$ and $G(0)=\emptyset$ and for every element n of \mathbb{N} holds $G(n+1)=F(0) \backslash F(n)$ and $F(n+1) \subseteq F(n)$. Then $\sup \operatorname{rng}(M \cdot G)=M(F(0))-\inf \operatorname{rng}(M \cdot F)$.
(13) Let X be a set. Let S be a σ-field of subsets of X. Let M be a σ measure on S. Let G be a function from \mathbb{N} into S. Let F be a function from \mathbb{N} into S. Suppose $M(F(0))<+\infty$ and $G(0)=\emptyset$ and for every element n of \mathbb{N} holds $G(n+1)=F(0) \backslash F(n)$ and $F(n+1) \subseteq F(n)$. Then $\inf \operatorname{rng}(M \cdot F)=M(F(0))-\sup \operatorname{rng}(M \cdot G)$.
(14) For every set X and for every σ-field S of subsets of X and for every σ-measure M on S and for every function F from \mathbb{N} into S such that for every element n of \mathbb{N} holds $F(n+1) \subseteq F(n)$ and $M(F(0))<+\infty$ holds $M(\bigcap \operatorname{rng} F)=\inf \operatorname{rng}(M \cdot F)$.
(15) For every set X and for every σ-field S of subsets of X and for every measure M on S and for every family T of measureable sets of S and for every sequence F of separated subsets of S such that $T=\operatorname{rng} F$ holds $\sum(M \cdot F) \leq M(\cup T)$.
(16) For every set X and for every σ-field S of subsets of X and for every measure M on S and for every sequence F of separated subsets of S holds $\sum(M \cdot F) \leq M(\cup \operatorname{rng} F)$.
(17) For every set X and for every σ-field S of subsets of X and for every measure M on S such that for every sequence F of separated subsets of S holds $M(\cup \operatorname{rng} F) \leq \sum(M \cdot F)$ holds M is a σ-measure on S.
Let X be a set, and let S be a σ-field of subsets of X, and let M be a σ-measure on S. We say that M is complete on S if and only if:
(Def.2) for every subset A of X and for every set B such that $B \in S$ holds if $A \subseteq B$ and $M(B)=0_{\overline{\mathbb{R}}}$, then $A \in S$.
Let X be a set, and let S be a σ-field of subsets of X, and let M be a σ-measure on S. A subset of X is called a set with measure zero w.r.t. M if:
(Def.3) there exists a set B such that $B \in S$ and it $\subseteq B$ and $M(B)=0_{\bar{R}}$.
Let X be a set, and let S be a σ-field of subsets of X, and let M be a σ measure on S. The functor $\operatorname{COM}(S, M)$ yielding a non-empty family of subsets of X is defined as follows:
(Def.4) for an arbitrary A holds $A \in \operatorname{COM}(S, M)$ if and only if there exists a set B such that $B \in S$ and there exists a set C with measure zero w.r.t. M such that $A=B \cup C$.
Let X be a set, and let S be a σ-field of subsets of X, and let M be a σ measure on S, and let A be an element of $\operatorname{COM}(S, M)$. The functor MeasPart A yields a non-empty family of subsets of X and is defined as follows:
(Def.5) for an arbitrary B holds $B \in \operatorname{MeasPart} A$ if and only if $B \in S$ and $B \subseteq A$ and $A \backslash B$ is a set with measure zero w.r.t. M.

Let X be a set, and let S be a σ-field of subsets of X, and let M be a σ measure on S, and let F be a function from \mathbb{N} into $\operatorname{COM}(S, M)$, and let n be a natural number. Then $F(n)$ is an element of $\operatorname{COM}(S, M)$.

We now state four propositions:
(18)

For every set X and for every σ-field S of subsets of X and for every σ-measure M on S and for every function F from \mathbb{N} into $\operatorname{COM}(S, M)$ there exists a function G from \mathbb{N} into S such that for every element n of \mathbb{N} holds $G(n) \in \operatorname{MeasPart} F(n)$.
(19) For every set X and for every σ-field S of subsets of X and for every σ-measure M on S and for every function F from \mathbb{N} into $\operatorname{COM}(S, M)$ and for every function G from \mathbb{N} into S there exists a function H from \mathbb{N} into 2^{X} such that for every element n of \mathbb{N} holds $H(n)=F(n) \backslash G(n)$.

Let X be a set. Then for every σ-field S of subsets of X and for every σ-measure M on S and for every function F from \mathbb{N} into 2^{X} such that for every element n of \mathbb{N} holds $F(n)$ is a set with measure zero w.r.t. M there exists a function G from \mathbb{N} into S such that for every element n of \mathbb{N} holds $F(n) \subseteq G(n)$ and $M(G(n))=0_{\overline{\mathbb{R}}}$.
(21) For every set X and for every σ-field S of subsets of X and for every σ-measure M on S and for every non-empty family D of subsets of X such that for an arbitrary A holds $A \in D$ if and only if there exists a set B such that $B \in S$ and there exists a set C with measure zero w.r.t. M such that $A=B \cup C$ holds D is a σ-field of subsets of X.
Let X be a set, and let S be a σ-field of subsets of X, and let M be a σ-measure on S. Then $\operatorname{COM}(S, M)$ is a σ-field of subsets of X.

Next we state the proposition
(22) For every set X and for every σ-field S of subsets of X and for every σ measure M on S and for all sets B_{1}, B_{2} such that $B_{1} \in S$ and $B_{2} \in S$ and for all sets C_{1}, C_{2} with measure zero w.r.t. M such that $B_{1} \cup C_{1}=B_{2} \cup C_{2}$ holds $M\left(B_{1}\right)=M\left(B_{2}\right)$.
Let X be a set, and let S be a σ-field of subsets of X, and let M be a σ measure on S. The functor $\operatorname{COM}(M)$ yields a σ-measure on $\operatorname{COM}(S, M)$ and is defined by:
(Def.6) for every set B such that $B \in S$ and for every set C with measure zero w.r.t. M holds $(\operatorname{COM}(M))(B \cup C)=M(B)$.

The following proposition is true
(23) For every set X and for every σ-field S of subsets of X and for every σ-measure M on S holds $\operatorname{COM}(M)$ is complete on $\operatorname{COM}(S, M)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
[4] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
[5] Józef Białas. Several properties of the σ-additive measure. Formalized Mathematics, 2(4):493-497, 1991.
[6] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
[7] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[8] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[13] R. Sikorski. Rachunek różniczkowy i catkowy - funkcje wielu zmiennych. Biblioteka Matematyczna, PWN - Warszawa, 1968.
[14] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received February 22, 1992

