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Summary. Definitions and basic properties of a σ-additive, non-

negative measure, with values in � , the enlarged set of real numbers,

where � denotes set � = � ∪ {−∞, +∞} - by [13]. The article includs
the text being a continuation of the paper [5]. Some theorems concerning
basic properties of a σ-additive measure and completeness of the measure
are proved.

MML Identifier: MEASURE3.

The papers [15], [14], [9], [10], [7], [8], [1], [12], [2], [11], [3], [4], [6], and [5] provide
the terminology and notation for this paper. One can prove the following four
propositions:

(1) For every Real number x such that −∞ < x and x < +∞ holds x is a
real number.

(2) For every Real number x such that x 6= −∞ and x 6= +∞ holds x is a
real number.

(3) For all functions F1, F2 from � into � such that F1 is non-negative and
F2 is non-negative holds if for every natural number n holds (Ser F1)(n) ≤
(Ser F2)(n), then

∑
F1 ≤

∑
F2.

(4) For all functions F1, F2 from � into � such that F1 is non-negative and
F2 is non-negative holds if for every natural number n holds (Ser F1)(n) =
(Ser F2)(n), then

∑
F1 =

∑
F2.

Let X be a set, and let S be a σ-field of subsets of X. A denumerable family
of subsets of X is called a subfamily of S if:

(Def.1) it ⊆ S.

Let X be a set, and let S be a σ-field of subsets of X, and let F be a function
from � into S. Then rng F is a subfamily of S.
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Let X be a set, and let S be a σ-field of subsets of X, and let A be a subfamily
of S. Then

⋃
A is an element of S.

Let X be a set, and let S be a σ-field of subsets of X, and let A be a subfamily
of S. Then

⋂
A is an element of S.

One can prove the following propositions:

(5) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for every function F from � into S and for every
element A of S such that

⋂
rng F ⊆ A and for every element n of � holds

A ⊆ F (n) holds M(A) = M(
⋂

rng F ).

(6) Let X be a set. Let S be a σ-field of subsets of X. Let G be a function
from � into S. Then for every function F from � into S such that
G(0) = ∅ and for every element n of � holds G(n + 1) = F (0) \F (n) and
F (n + 1) ⊆ F (n) holds

⋃
rng G = F (0) \

⋂
rng F .

(7) Let X be a set. Let S be a σ-field of subsets of X. Let G be a function
from � into S. Then for every function F from � into S such that
G(0) = ∅ and for every element n of � holds G(n + 1) = F (0) \F (n) and
F (n + 1) ⊆ F (n) holds

⋂
rng F = F (0) \

⋃
rng G.

(8) Let X be a set. Let S be a σ-field of subsets of X. Let M be a σ-
measure on S. Let G be a function from � into S. Let F be a function
from � into S. Suppose M(F (0)) < +∞ and G(0) = ∅ and for every
element n of � holds G(n+1) = F (0)\F (n) and F (n+1) ⊆ F (n). Then
M(

⋂
rng F ) = M(F (0)) − M(

⋃
rng G).

(9) Let X be a set. Let S be a σ-field of subsets of X. Let M be a σ-
measure on S. Let G be a function from � into S. Let F be a function
from � into S. Suppose M(F (0)) < +∞ and G(0) = ∅ and for every
element n of � holds G(n+1) = F (0)\F (n) and F (n+1) ⊆ F (n). Then
M(

⋃
rng G) = M(F (0)) − M(

⋂
rng F ).

(10) Let X be a set. Let S be a σ-field of subsets of X. Let M be a σ-
measure on S. Let G be a function from � into S. Let F be a function
from � into S. Suppose M(F (0)) < +∞ and G(0) = ∅ and for every
element n of � holds G(n+1) = F (0)\F (n) and F (n+1) ⊆ F (n). Then
M(

⋂
rng F ) = M(F (0)) − sup rng(M · G).

(11) Let X be a set. Let S be a σ-field of subsets of X. Let M be a σ-
measure on S. Let G be a function from � into S. Let F be a function
from � into S. Suppose M(F (0)) < +∞ and G(0) = ∅ and for every
element n of � holds G(n + 1) = F (0) \ F (n) and F (n + 1) ⊆ F (n).
Then sup rng(M ·G) is a real number and M(F (0)) is a real number and
inf rng(M · F ) is a real number.

(12) Let X be a set. Let S be a σ-field of subsets of X. Let M be a σ-
measure on S. Let G be a function from � into S. Let F be a function
from � into S. Suppose M(F (0)) < +∞ and G(0) = ∅ and for every
element n of � holds G(n+1) = F (0)\F (n) and F (n+1) ⊆ F (n). Then
sup rng(M · G) = M(F (0)) − inf rng(M · F ).
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(13) Let X be a set. Let S be a σ-field of subsets of X. Let M be a σ-
measure on S. Let G be a function from � into S. Let F be a function
from � into S. Suppose M(F (0)) < +∞ and G(0) = ∅ and for every
element n of � holds G(n+1) = F (0)\F (n) and F (n+1) ⊆ F (n). Then
inf rng(M · F ) = M(F (0)) − sup rng(M · G).

(14) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for every function F from � into S such that for
every element n of � holds F (n + 1) ⊆ F (n) and M(F (0)) < +∞ holds
M(

⋂
rng F ) = inf rng(M · F ).

(15) For every set X and for every σ-field S of subsets of X and for every
measure M on S and for every family T of measureable sets of S and for
every sequence F of separated subsets of S such that T = rng F holds
∑

(M · F ) ≤ M(
⋃

T ).

(16) For every set X and for every σ-field S of subsets of X and for every
measure M on S and for every sequence F of separated subsets of S holds
∑

(M · F ) ≤ M(
⋃

rng F ).

(17) For every set X and for every σ-field S of subsets of X and for every
measure M on S such that for every sequence F of separated subsets of
S holds M(

⋃
rng F ) ≤

∑
(M · F ) holds M is a σ-measure on S.

Let X be a set, and let S be a σ-field of subsets of X, and let M be a
σ-measure on S. We say that M is complete on S if and only if:

(Def.2) for every subset A of X and for every set B such that B ∈ S holds if
A ⊆ B and M(B) = 0 � , then A ∈ S.

Let X be a set, and let S be a σ-field of subsets of X, and let M be a
σ-measure on S. A subset of X is called a set with measure zero w.r.t. M if:

(Def.3) there exists a set B such that B ∈ S and it ⊆ B and M(B) = 0 � .

Let X be a set, and let S be a σ-field of subsets of X, and let M be a σ-
measure on S. The functor COM(S,M) yielding a non-empty family of subsets
of X is defined as follows:

(Def.4) for an arbitrary A holds A ∈ COM(S,M) if and only if there exists a
set B such that B ∈ S and there exists a set C with measure zero w.r.t.
M such that A = B ∪ C.

Let X be a set, and let S be a σ-field of subsets of X, and let M be a σ-
measure on S, and let A be an element of COM(S,M). The functor MeasPartA
yields a non-empty family of subsets of X and is defined as follows:

(Def.5) for an arbitrary B holds B ∈ MeasPartA if and only if B ∈ S and
B ⊆ A and A \ B is a set with measure zero w.r.t. M .

Let X be a set, and let S be a σ-field of subsets of X, and let M be a σ-
measure on S, and let F be a function from � into COM(S,M), and let n be a
natural number. Then F (n) is an element of COM(S,M).

We now state four propositions:
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(18) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for every function F from � into COM(S,M)
there exists a function G from � into S such that for every element n of

� holds G(n) ∈ MeasPartF (n).

(19) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for every function F from � into COM(S,M) and
for every function G from � into S there exists a function H from � into
2X such that for every element n of � holds H(n) = F (n) \ G(n).

(20) Let X be a set. Then for every σ-field S of subsets of X and for every
σ-measure M on S and for every function F from � into 2X such that
for every element n of � holds F (n) is a set with measure zero w.r.t. M

there exists a function G from � into S such that for every element n of
� holds F (n) ⊆ G(n) and M(G(n)) = 0 � .

(21) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for every non-empty family D of subsets of X

such that for an arbitrary A holds A ∈ D if and only if there exists a set
B such that B ∈ S and there exists a set C with measure zero w.r.t. M

such that A = B ∪ C holds D is a σ-field of subsets of X.

Let X be a set, and let S be a σ-field of subsets of X, and let M be a
σ-measure on S. Then COM(S,M) is a σ-field of subsets of X.

Next we state the proposition

(22) For every set X and for every σ-field S of subsets of X and for every σ-
measure M on S and for all sets B1, B2 such that B1 ∈ S and B2 ∈ S and
for all sets C1, C2 with measure zero w.r.t. M such that B1∪C1 = B2∪C2

holds M(B1) = M(B2).

Let X be a set, and let S be a σ-field of subsets of X, and let M be a σ-
measure on S. The functor COM(M) yields a σ-measure on COM(S,M) and
is defined by:

(Def.6) for every set B such that B ∈ S and for every set C with measure zero
w.r.t. M holds (COM(M))(B ∪ C) = M(B).

The following proposition is true

(23) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S holds COM(M) is complete on COM(S,M).
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[10] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
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