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Summary. Some facts concerning matrices with dimention 2 × 2
are shown. Upper and lower triangular matrices, and operation of deleting
rows and columns in a matrix are introduced. Besides, we deal with sets
of permutations and the fact that all permutations of finite set constitute
a finite group is proved. Some proofs are based on [11] and [14].

MML Identifier: MATRIX 2.

The articles [17], [7], [8], [3], [15], [2], [1], [19], [18], [21], [20], [4], [13], [16], [9],
[6], [12], [10], and [5] provide the notation and terminology for this paper.

1. Some examples of matrices

For simplicity we follow a convention: x, x1, x2, y1, y2 are arbitrary, i, j, k, n, m

are natural numbers, D is a non-empty set, K is a field, s is a finite sequence,
and a, b, c, d are elements of D. The scheme SeqDEx concerns a non-empty set
A, a natural number B, and a binary predicate P, and states that:

there exists a finite sequence p of elements of A such that dom p = SegB and
for every k such that k ∈ SegB holds P[k, p(k)]
provided the following requirement is met:

• for every k such that k ∈ SegB there exists an element x of A such
that P[k, x].

Let us consider D, a, b. Then 〈a, b〉 is a finite sequence of elements of D.

Let us consider n, m, and let a be arbitrary. The functor







a . . . a
...

. . .
...

a . . . a







n×m

yielding a tabular finite sequence is defined as follows:
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(Def.1)







a . . . a
...

. . .
...

a . . . a







n×m

= n 7−→ (m 7−→ a).

Let us consider D, n, m, d. Then







d . . . d
...

. . .
...

d . . . d







n×m

is a matrix over D of

dimension n × m.

Next we state the proposition

(1) If 〈〈i, j〉〉 ∈ the indices of







a . . . a
...

. . .
...

a . . . a







n×m

, then

(







a . . . a
...

. . .
...

a . . . a







n×m

)i,j = a.

In the sequel a′, b′ are elements of the carrier of K. Next we state the
proposition

(2)







a′ . . . a′

...
. . .

...
a′ . . . a′







n×n

+







b′ . . . b′

...
. . .

...
b′ . . . b′







n×n

=







a′ + b′ . . . a′ + b′

...
. . .

...
a′ + b′ . . . a′ + b′







n×n

.

Let a, b, c, d be arbitrary. The functor

(

a b

c d

)

yielding a tabular finite

sequence is defined as follows:

(Def.2)

(

a b

c d

)

= 〈〈a, b〉, 〈c, d〉〉.

The following two propositions are true:

(3) len

(

x1 x2

y1 y2

)

= 2 and width

(

x1 x2

y1 y2

)

= 2 and the indices of
(

x1 x2

y1 y2

)

= [: Seg 2, Seg 2 :].

(4) 〈〈1, 1〉〉 ∈ the indices of

(

x1 x2

y1 y2

)

and 〈〈1, 2〉〉 ∈ the indices of
(

x1 x2

y1 y2

)

and 〈〈2, 1〉〉 ∈ the indices of

(

x1 x2

y1 y2

)

and 〈〈2, 2〉〉 ∈ the indices of
(

x1 x2

y1 y2

)

.

Let us consider D, and let a be an element of D. Then 〈a〉 is an element of
D1.
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Let us consider D, and let us consider n, and let p be an element of Dn.
Then 〈p〉 is a matrix over D of dimension 1 × n.

One can prove the following proposition

(5) 〈〈1, 1〉〉 ∈ the indices of 〈〈a〉〉 and 〈〈a〉〉1,1 = a.

Let us consider D, and let a, b, c, d be elements of D. Then

(

a b

c d

)

is a

matrix over D of dimension 2.

Next we state the proposition

(6)

(

a b

c d

)

1,1

= a and

(

a b

c d

)

1,2

= b and

(

a b

c d

)

2,1

= c and

(

a b

c d

)

2,2

= d.

Let us consider n, and let K be a field. A matrix over K of dimension n is
said to be an upper triangular matrix over K of dimension n if:

(Def.3) for all i, j such that 〈〈i, j〉〉 ∈ the indices of it holds if i > j, then
iti,j = 0K .

Let us consider n, K. A matrix over K of dimension n is said to be a lower
triangular matrix over K of dimension n if:

(Def.4) for all i, j such that 〈〈i, j〉〉 ∈ the indices of it holds if i < j, then
iti,j = 0K .

The following proposition is true

(7) For every matrix M over D such that len M = n holds M is a matrix
over D of dimension n × widthM .

2. Deleting of rows and columns in a matrix

Let us consider i, and let p be a finite sequence. Let us assume that i ∈ dom p.
The functor p � i yielding a finite sequence is defined by:

(Def.5) p � i = p · Sgm(Seg len p \ {i}).

We now state three propositions:

(8) For every finite sequence p such that len p > 0 and for every i such that
i ∈ dom p there exists m such that len p = m + 1 and len(p � i) = m.

(9) For every finite sequence p of elements of D and for every i such that
i ∈ dom p holds p � i is a finite sequence of elements of D.

(10) For every matrix M over K of dimension n × m and for every k such
that k ∈ Seg n holds M(k) = Line(M,k).

Let us consider i, and let us consider K, and let M be a matrix over K.
Let us assume that i ∈ Seg widthM . The deleting of i-column in M yielding a
matrix over K is defined as follows:

(Def.6) len(the deleting of i-column in M) = len M and for every k such that
k ∈ Seg len M holds (the deleting of i-column in M)(k) = Line(M,k) � i .



714 katarzyna jankowska

The following propositions are true:

(11) For all matrices M1, M2 over D holds M1 = M2 if and only if M1
T =

M2
T and len M1 = len M2.

(12) For every matrix M over D such that widthM > 0 holds len(M T) =
widthM and width(MT) = len M .

(13) For all matrices M1, M2 over D such that widthM1 > 0 and width M2 >

0 holds M1 = M2 if and only if M1
T = M2

T and
width(M1

T) = width(M2
T).

(14) For all matrices M1, M2 over D such that widthM1 > 0 and width M2 >

0 holds M1 = M2 if and only if M1
T = M2

T and widthM1 = widthM2.

(15) For every matrix M over D such that len M > 0 and widthM > 0 holds
(MT)T = M .

(16) For every matrix M over D and for every i such that i ∈ Seg len M

holds Line(M, i) = (MT) � ,i.

(17) For every matrix M over D and for every j such that j ∈ Seg widthM

holds Line(MT, j) = M � ,j.

(18) For every matrix M over D and for every i such that i ∈ Seg len M

holds M(i) = Line(M, i).

Let us consider i, and let us consider K, and let M be a matrix over K. Let
us assume that i ∈ Seg len M and width M > 0. The deleting of i-row in M

yields a matrix over K and is defined by:

(Def.7) (i) the deleting of i-row in M = ε if len M = 1,
(ii) width(the deleting of i-row in M) = width M and for every k such

that k ∈ Seg width M holds (the deleting of i-row in M) � ,k = (M � ,k) � i ,
otherwise.

Let us consider i, j, and let us consider n, and let us consider K, and let M

be a matrix over K of dimension n. The deleting of i-row and j-column in M

yields a matrix over K and is defined as follows:

(Def.8) (i) the deleting of i-row and j-column in M = ε if n = 1,
(ii) the deleting of i-row and j-column in M = the deleting of j-column in

the deleting of i-row in M , otherwise.

3. Sets of permutations

Let us consider n, and let q, p be permutations of Seg n. Then p · q is a
permutation of Seg n.

A set is permutational if:

(Def.9) there exists n such that for every x such that x ∈ it holds x is a per-
mutation of Seg n.

Let P be a permutational non-empty set. The functor lenP yielding a natural
number is defined as follows:
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(Def.10) there exists s such that s ∈ P and len P = len s.

Let P be a permutational non-empty set. We see that the element of P is a
permutation of Seg len P .

One can prove the following proposition

(19) For every n there exists a permutational non-empty set P such that
len P = n.

Let us consider n. The permutations of n-element set constitute a permuta-
tional non-empty set defined as follows:

(Def.11) x ∈ the permutations of n-element set if and only if x is a permutation
of Seg n.

The following propositions are true:

(20) len(the permutations of n-element set) = n.

(21) The permutations of 1-element set = {id1}.

Let us consider n, and let p be an element of the permutations of n-element
set. The functor len p yields a natural number and is defined as follows:

(Def.12) there exists a finite sequence s such that s = p and len p = len s.

We now state the proposition

(22) For every element p of the permutations of n-element set holds len p = n.

4. Group of permutations

In the sequel p, q denote elements of the permutations of n-element set. Let us
consider n. The functor An yielding a strict half group structure is defined by:

(Def.13) the carrier of An = the permutations of n-element set and for all ele-
ments q, p of the permutations of n-element set holds (the operation of
An)(q, p) = p · q.

One can prove the following propositions:

(23) idn is an element of An.

(24) p · idn = p and idn · p = p.

(25) p · p−1 = idn and p−1 · p = idn.

(26) p−1 is an element of An.

(27) p is an element of An if and only if p is an element of the permutations
of n-element set.

Let us consider n. A permutation of n element set is an element of the
permutations of n-element set.

Then An is a strict group.

We now state the proposition

(28) idn = 1An
.

Let us consider n, and let p be a permutation of Seg n. We say that p is a
transposition if and only if:
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(Def.14) there exist i, j such that i ∈ dom p and j ∈ dom p and i 6= j and p(i) = j

and p(j) = i and for every k such that k 6= i and k 6= j and k ∈ dom p

holds p(k) = k.

We now define two new predicates. Let us consider n, and let p be a permu-
tation of Seg n. We say that p is even if and only if:

(Def.15) there exists a finite sequence l of elements of the carrier of An such that
len l mod 2 = 0 and p =

∏

l and for every i such that i ∈ dom l there
exists q such that l(i) = q and q is a transposition.

p is odd stands for p is not even.

We now state the proposition

(29) idSeg n is even.

Let us consider K, n, and let x be an element of the carrier of K, and let
p be an element of the permutations of n-element set. The functor (−1)sgn(p)x

yields an element of the carrier of K and is defined by:

(Def.16) (i) (−1)sgn(p)x = x if p is even,
(ii) (−1)sgn(p)x = −x, otherwise.

Let X be a set. Let us assume that X is finite. The functor Ωf
X yields an

element of Fin X and is defined as follows:

(Def.17) Ωf
X = X.

We now state the proposition

(30) The permutations of n-element set is finite.
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[5] Czes law Byliński. Binary operations applied to finite sequences. Formalized Mathemat-

ics, 1(4):643–649, 1990.
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