Transpose Matrices and Groups of Permutations

Katarzyna Jankowska
Warsaw University
Białystok

Abstract

Summary. Some facts concerning matrices with dimention 2×2 are shown. Upper and lower triangular matrices, and operation of deleting rows and columns in a matrix are introduced. Besides, we deal with sets of permutations and the fact that all permutations of finite set constitute a finite group is proved. Some proofs are based on [11] and [14].

MML Identifier: MATRIX_2.

The articles [17], [7], [8], [3], [15], [2], [1], [19], [18], [21], [20], [4], [13], [16], [9], [6], [12], [10], and [5] provide the notation and terminology for this paper.

1. Some examples of matrices

For simplicity we follow a convention: $x, x_{1}, x_{2}, y_{1}, y_{2}$ are arbitrary, i, j, k, n, m are natural numbers, D is a non-empty set, K is a field, s is a finite sequence, and a, b, c, d are elements of D. The scheme SeqDEx concerns a non-empty set \mathcal{A}, a natural number \mathcal{B}, and a binary predicate \mathcal{P}, and states that:
there exists a finite sequence p of elements of \mathcal{A} such that $\operatorname{dom} p=\operatorname{Seg} \mathcal{B}$ and for every k such that $k \in \operatorname{Seg} \mathcal{B}$ holds $\mathcal{P}[k, p(k)]$
provided the following requirement is met:

- for every k such that $k \in \operatorname{Seg} \mathcal{B}$ there exists an element x of \mathcal{A} such that $\mathcal{P}[k, x]$.
Let us consider D, a, b. Then $\langle a, b\rangle$ is a finite sequence of elements of D.
Let us consider n, m, and let a be arbitrary. The functor $\left(\begin{array}{ccc}a & \ldots & a \\ \vdots & \ddots & \vdots \\ a & \ldots & a\end{array}\right)^{n \times m}$ yielding a tabular finite sequence is defined as follows:
(Def.1)

$$
\left(\begin{array}{ccc}
a & \ldots & a \\
\vdots & \ddots & \vdots \\
a & \ldots & a
\end{array}\right)^{n \times m}=n \longmapsto(m \longmapsto a)
$$

Let us consider D, n, m, d. Then $\left(\begin{array}{ccc}d & \ldots & d \\ \vdots & \ddots & \vdots \\ d & \ldots & d\end{array}\right)^{n \times m}$ is a matrix over D of dimension $n \times m$.

Next we state the proposition
(1) If $\langle i, j\rangle \in$ the indices of $\left(\begin{array}{ccc}a & \ldots & a \\ \vdots & \ddots & \vdots \\ a & \ldots & a\end{array}\right)^{n \times m}$, then

$$
\left(\left(\begin{array}{ccc}
a & \ldots & a \\
\vdots & \ddots & \vdots \\
a & \ldots & a
\end{array}\right)^{n \times m}\right)_{i, j}=a
$$

In the sequel a^{\prime}, b^{\prime} are elements of the carrier of K. Next we state the proposition
(2) $\left(\begin{array}{ccc}a^{\prime} & \ldots & a^{\prime} \\ \vdots & \ddots & \vdots \\ a^{\prime} & \ldots & a^{\prime}\end{array}\right)^{n \times n}+\left(\begin{array}{ccc}b^{\prime} & \ldots & b^{\prime} \\ \vdots & \ddots & \vdots \\ b^{\prime} & \ldots & b^{\prime}\end{array}\right)^{n \times n}=\left(\begin{array}{ccc}a^{\prime}+b^{\prime} & \ldots & a^{\prime}+b^{\prime} \\ \vdots & \ddots & \vdots \\ a^{\prime}+b^{\prime} & \ldots & a^{\prime}+b^{\prime}\end{array}\right)^{n \times n}$.

Let a, b, c, d be arbitrary. The functor $\left(\begin{array}{ll}a & b \\
c & d\end{array}\right)$ yielding a tabular finite sequence is defined as follows:

$$
\left(\begin{array}{ll}
a & b \tag{Def.2}\\
c & d
\end{array}\right)=\langle\langle a, b\rangle,\langle c, d\rangle\rangle .
$$

The following two propositions are true:
(3) $\quad \operatorname{len}\left(\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right)=2$ and width $\left(\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right)=2$ and the indices of $\left(\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right)=[: \operatorname{Seg} 2, \operatorname{Seg} 2 \mathrm{j}$.
(4) $\langle 1,1\rangle \in$ the indices of $\left(\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right)$ and $\langle 1,2\rangle \in$ the indices of $\left(\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right)$
and $\langle 2,1\rangle \in$ the indices of $\left(\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right)$ and $\langle 2,2\rangle \in$ the indices of $\left(\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right)$.
Let us consider D, and let a be an element of D. Then $\langle a\rangle$ is an element of D^{1}.

Let us consider D, and let us consider n, and let p be an element of D^{n}. Then $\langle p\rangle$ is a matrix over D of dimension $1 \times n$.

One can prove the following proposition
(5) $\langle 1,1\rangle \in$ the indices of $\langle\langle a\rangle\rangle$ and $\langle\langle a\rangle\rangle_{1,1}=a$.

Let us consider D, and let a, b, c, d be elements of D. Then $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a matrix over D of dimension 2.

Next we state the proposition

$$
\begin{align*}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)_{1,1}=a \text { and }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)_{1,2}=b \text { and }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)_{2,1}=c \text { and } \tag{6}\\
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)_{2,2}=d
\end{align*}
$$

Let us consider n, and let K be a field. A matrix over K of dimension n is said to be an upper triangular matrix over K of dimension n if:
(Def.3) for all i, j such that $\langle i, j\rangle \in$ the indices of it holds if $i>j$, then $\mathrm{it}_{i, j}=0_{K}$.
Let us consider n, K. A matrix over K of dimension n is said to be a lower triangular matrix over K of dimension n if:
(Def.4) for all i, j such that $\langle i, j\rangle \in$ the indices of it holds if $i<j$, then $\mathrm{it}_{i, j}=0_{K}$.
The following proposition is true
(7) For every matrix M over D such that len $M=n$ holds M is a matrix over D of dimension $n \times$ width M.

2. Deleting of rows and columns in A matrix

Let us consider i, and let p be a finite sequence. Let us assume that $i \in \operatorname{dom} p$. The functor $p_{\lceil i}$ yielding a finite sequence is defined by:
(Def.5) $\quad p_{\vdash i}=p \cdot \operatorname{Sgm}(\operatorname{Seg} \operatorname{len} p \backslash\{i\})$.
We now state three propositions:
(8) For every finite sequence p such that len $p>0$ and for every i such that $i \in \operatorname{dom} p$ there exists m such that len $p=m+1$ and $\operatorname{len}\left(p_{\mid i}\right)=m$.
(9) For every finite sequence p of elements of D and for every i such that $i \in \operatorname{dom} p$ holds $p_{\Gamma i}$ is a finite sequence of elements of D.
(10) For every matrix M over K of dimension $n \times m$ and for every k such that $k \in \operatorname{Seg} n$ holds $M(k)=\operatorname{Line}(M, k)$.
Let us consider i, and let us consider K, and let M be a matrix over K. Let us assume that $i \in \operatorname{Seg}$ width M. The deleting of i-column in M yielding a matrix over K is defined as follows:
(Def.6) len(the deleting of i-column in $M)=\operatorname{len} M$ and for every k such that $k \in \operatorname{Seg}$ len M holds (the deleting of i-column in $M)(k)=\operatorname{Line}(M, k)_{\uparrow i}$.

The following propositions are true:
(11) For all matrices M_{1}, M_{2} over D holds $M_{1}=M_{2}$ if and only if $M_{1}{ }^{\mathrm{T}}=$ $M_{2}{ }^{\mathrm{T}}$ and len $M_{1}=\operatorname{len} M_{2}$.
(12) For every matrix M over D such that width $M>0$ holds $\operatorname{len}\left(M^{\mathrm{T}}\right)=$ $\operatorname{width} M$ and $\operatorname{width}\left(M^{\mathrm{T}}\right)=\operatorname{len} M$.
(13) For all matrices M_{1}, M_{2} over D such that width $M_{1}>0$ and width $M_{2}>$ 0 holds $M_{1}=M_{2}$ if and only if $M_{1}{ }^{\mathrm{T}}=M_{2}{ }^{\mathrm{T}}$ and $\operatorname{width}\left(M_{1}{ }^{\mathrm{T}}\right)=\operatorname{width}\left(M_{2}{ }^{\mathrm{T}}\right)$.
(14) For all matrices M_{1}, M_{2} over D such that width $M_{1}>0$ and width $M_{2}>$ 0 holds $M_{1}=M_{2}$ if and only if $M_{1}^{\mathrm{T}}=M_{2}^{\mathrm{T}}$ and width $M_{1}=$ width M_{2}.
(15) For every matrix M over D such that len $M>0$ and width $M>0$ holds $\left(M^{\mathrm{T}}\right)^{\mathrm{T}}=M$.
(16) For every matrix M over D and for every i such that $i \in \operatorname{Seg} \operatorname{len} M$ holds Line $(M, i)=\left(M^{\mathrm{T}}\right)_{\square, i}$.
(17) For every matrix M over D and for every j such that $j \in \operatorname{Seg}$ width M holds Line $\left(M^{\mathrm{T}}, j\right)=M_{\square, j}$.
(18) For every matrix M over D and for every i such that $i \in \operatorname{Seg} \operatorname{len} M$ holds $M(i)=\operatorname{Line}(M, i)$.
Let us consider i, and let us consider K, and let M be a matrix over K. Let us assume that $i \in \operatorname{Seg}$ len M and width $M>0$. The deleting of i-row in M yields a matrix over K and is defined by:
(Def.7) (i) the deleting of i-row in $M=\varepsilon$ if len $M=1$,
(ii) width(the deleting of i-row in M) $=$ width M and for every k such that $k \in \operatorname{Seg}$ width M holds (the deleting of i-row in $M)_{\square, k}=\left(M_{\square, k}\right)_{\mid i}$, otherwise.
Let us consider i, j, and let us consider n, and let us consider K, and let M be a matrix over K of dimension n. The deleting of i-row and j-column in M yields a matrix over K and is defined as follows:
(Def.8) (i) the deleting of i-row and j-column in $M=\varepsilon$ if $n=1$,
(ii) the deleting of i-row and j-column in $M=$ the deleting of j-column in the deleting of i-row in M, otherwise.

3. Sets of permutations

Let us consider n, and let q, p be permutations of $\operatorname{Seg} n$. Then $p \cdot q$ is a permutation of $\operatorname{Seg} n$.

A set is permutational if:
(Def.9) there exists n such that for every x such that $x \in$ it holds x is a permutation of $\operatorname{Seg} n$.
Let P be a permutational non-empty set. The functor len P yielding a natural number is defined as follows:
(Def.10) there exists s such that $s \in P$ and len $P=\operatorname{len} s$.
Let P be a permutational non-empty set. We see that the element of P is a permutation of Seg len P.

One can prove the following proposition
(19) For every n there exists a permutational non-empty set P such that len $P=n$.
Let us consider n. The permutations of n-element set constitute a permutational non-empty set defined as follows:
(Def.11) $\quad x \in$ the permutations of n-element set if and only if x is a permutation of $\operatorname{Seg} n$.
The following propositions are true:
(20) len(the permutations of n-element set) $=n$.
(21) The permutations of 1-element set $=\left\{\operatorname{id}_{1}\right\}$.

Let us consider n, and let p be an element of the permutations of n-element set. The functor len p yields a natural number and is defined as follows:
(Def.12) there exists a finite sequence s such that $s=p$ and len $p=\operatorname{len} s$.
We now state the proposition
(22) For every element p of the permutations of n-element set holds len $p=n$.

4. Group of permutations

In the sequel p, q denote elements of the permutations of n-element set. Let us consider n. The functor A_{n} yielding a strict half group structure is defined by:
(Def.13) the carrier of $A_{n}=$ the permutations of n-element set and for all elements q, p of the permutations of n-element set holds (the operation of $\left.A_{n}\right)(q, p)=p \cdot q$.
One can prove the following propositions:
(23) $\quad \mathrm{id}_{n}$ is an element of A_{n}.
(24) $p \cdot \mathrm{id}_{n}=p$ and $\mathrm{id}_{n} \cdot p=p$.
(25) $p \cdot p^{-1}=\mathrm{id}_{n}$ and $p^{-1} \cdot p=\mathrm{id}_{n}$.
(26) p^{-1} is an element of A_{n}.
(27) $\quad p$ is an element of A_{n} if and only if p is an element of the permutations of n-element set.
Let us consider n. A permutation of n element set is an element of the permutations of n-element set.

Then A_{n} is a strict group.
We now state the proposition
(28) $\quad \mathrm{id}_{n}=1_{A_{n}}$.

Let us consider n, and let p be a permutation of $\operatorname{Seg} n$. We say that p is a transposition if and only if:
(Def.14) there exist i, j such that $i \in \operatorname{dom} p$ and $j \in \operatorname{dom} p$ and $i \neq j$ and $p(i)=j$ and $p(j)=i$ and for every k such that $k \neq i$ and $k \neq j$ and $k \in \operatorname{dom} p$ holds $p(k)=k$.
We now define two new predicates. Let us consider n, and let p be a permutation of $\operatorname{Seg} n$. We say that p is even if and only if:
(Def.15) there exists a finite sequence l of elements of the carrier of A_{n} such that len $l \bmod 2=0$ and $p=\Pi l$ and for every i such that $i \in \operatorname{dom} l$ there exists q such that $l(i)=q$ and q is a transposition.
p is odd stands for p is not even.
We now state the proposition
(29) $\operatorname{id}_{\operatorname{Seg} n}$ is even.

Let us consider K, n, and let x be an element of the carrier of K, and let p be an element of the permutations of n-element set. The functor $(-1)^{\operatorname{sgn}(p)} x$ yields an element of the carrier of K and is defined by:
(Def.16) (i) $(-1)^{\operatorname{sgn}(p)} x=x$ if p is even,
(ii) $(-1)^{\operatorname{sgn}(p)} x=-x$, otherwise.

Let X be a set. Let us assume that X is finite. The functor Ω_{X}^{f} yields an element of Fin X and is defined as follows:
(Def.17) $\quad \Omega_{X}^{\mathrm{f}}=X$.
We now state the proposition
(30) The permutations of n-element set is finite.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651-656, 1990.
[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[11] Thomas W. Hungerford. Algebra. Volume 73 of Graduate Texts in Mathematics, Springer-Verlag New York Inc., Seattle, Washington USA, Department of Mathematics University of Washington edition, 1974.
[12] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[14] Serge Lang. Algebra. PWN, Warszawa, 1984.
[15] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[16] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[18] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[19] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[20] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.
[21] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.

Received May 20, 1992

