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Summary. In the first section the lattice of subsets of distinct set
is introduced. The join and meet operations are, respectively, union and
intersection of sets, and the ordering relation is inclusion. It is shown that
this lattice is Boolean, i.e. distributive and complimentary. The socond
section introduced the poset generated in a distinct lattice by its ordering
relation. Besides, it is proved that posets which have l.u.b.’s and g.l.b.’s
for every two elements generate lattices with the same ordering relations.
In the last section the concept of complete lattice is introduced and dis-
cussed. Finally, the fact that the function f from subsets of distinct set
yielding elements of this set is a infinite union of some complete lattice, if
f yields an element a for singleton {a} and f(f◦X) = f(

⊔
X) for every

subset X, is proved. Some concepts and proofs are based on [6] and [7].

MML Identifier: LATTICE3.

The notation and terminology used here are introduced in the following articles:
[10], [8], [13], [4], [5], [3], [17], [14], [15], [1], [9], [2], [16], [11], and [12].

1. Boolean lattice of subsets

Let X be a non-empty set, and let x, y be elements of X. Then {x, y} is a
non-empty subset of X.

Let X be a set, and let x, y be elements of 2X . Then x∪ y is a subset of X.
Then x ∩ y is a subset of X.

Let X be a set. The lattice of subsets of X yields a strict lattice structure
and is defined by:

(Def.1) the carrier of the lattice of subsets of X = 2X and for all elements
Y , Z of 2X holds (the join operation of the lattice of subsets of X)(Y,

Z) = Y ∪ Z and (the meet operation of the lattice of subsets of X)(Y,

Z) = Y ∩ Z.
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In the sequel X will denote a set and x, y will denote elements of the lattice
of subsets of X. The following propositions are true:

(1) x ⊔ y = x ∪ y and x ⊓ y = x ∩ y.

(2) x ⊑ y if and only if x ⊆ y.

Let us consider X. Then the lattice of subsets of X is a strict lattice.

In the sequel x will denote an element of the lattice of subsets of X. The
following propositions are true:

(3) The lattice of subsets of X is a lower bound lattice and
⊥the lattice of subsets of X = ∅.

(4) The lattice of subsets of X is an upper bound lattice and
⊤the lattice of subsets of X = X.

Let us consider X. Then the lattice of subsets of X is a strict Boolean lattice.

Next we state the proposition

(5) For every element x of the lattice of subsets of X holds xc = X \ x.

2. Correspondence between lattices and posets

Let L be a lattice. Then LattRel(L) is an order in the carrier of L.

Let L be a lattice. The functor Poset(L) yields a strict poset and is defined
as follows:

(Def.2) Poset(L) = 〈the carrier of L,LattRel(L)〉.

Next we state the proposition

(6) For all lattices L1, L2 such that Poset(L1) = Poset(L2) holds the lattice
structure of L1 = the lattice structure of L2.

Let L be a lattice, and let p be an element of L. The functor p· yields an
element of Poset(L) and is defined as follows:

(Def.3) p· = p.

Let L be a lattice, and let p be an element of Poset(L). The functor ·p

yielding an element of L is defined as follows:

(Def.4) ·p = p.

In the sequel L is a lattice, p, q are elements of L, and p′ is an element of
Poset(L). We now state the proposition

(7) p ⊑ q if and only if p· ≤ q·.

Let X be a set, and let O be an order in X. Then O � is an order in X.

Let A be a poset. The functor A � yields a strict poset and is defined as
follows:

(Def.5) A � = 〈the carrier of A, (the order of A) � 〉.
In the sequel A will be a poset and a, b, c will be elements of A. One can

prove the following proposition

(8) (A � ) � = the poset of A.
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Let A be a poset, and let a be an element of A. The functor a � yielding an
element of A � is defined as follows:

(Def.6) a � = a.

Let A be a poset, and let a be an element of A � . The functor � a yielding
an element of A is defined by:

(Def.7) � a = a.

One can prove the following proposition

(9) a ≤ b if and only if b � ≤ a � .

We now define four new predicates. Let A be a poset, and let X be a set,
and let a be an element of A. The predicate a ≤ X is defined as follows:

(Def.8) for every element b of A such that b ∈ X holds a ≤ b.

We write X ≥ a if a ≤ X. The predicate X ≤ a is defined by:

(Def.9) for every element b of A such that b ∈ X holds b ≤ a.

We write a ≥ X if and only if X ≤ a.

We now define two new attributes. A poset has l.u.b.’s if:

(Def.10) for every elements x, y of it there exists an element z of it such that
x ≤ z and y ≤ z and for every element z ′ of it such that x ≤ z′ and y ≤ z′

holds z ≤ z′.

A poset has g.l.b.’s if:

(Def.11) for every elements x, y of it there exists an element z of it such that
z ≤ x and z ≤ y and for every element z ′ of it such that z′ ≤ x and z′ ≤ y

holds z′ ≤ z.

We now state two propositions:

(10) A has l.u.b.’s if and only if A � has g.l.b.’s.

(11) For every lattice L holds Poset(L) has l.u.b.’s and g.l.b.’s.

A poset is complete if:

(Def.12) for every set X there exists an element a of it such that X ≤ a and for
every element b of it such that X ≤ b holds a ≤ b.

Next we state the proposition

(12) If A is complete, then A has l.u.b.’s and g.l.b.’s.

Let A be a poset satisfying the condition: A has l.u.b.’s. Let a, b be elements
of A. The functor a ⊔ b yielding an element of A is defined as follows:

(Def.13) a ≤ a ⊔ b and b ≤ a ⊔ b and for every element c of A such that a ≤ c

and b ≤ c holds a ⊔ b ≤ c.

Let A be a poset satisfying the condition: A has g.l.b.’s. Let a, b be elements
of A. The functor a ⊓ b yields an element of A and is defined as follows:

(Def.14) a ⊓ b ≤ a and a ⊓ b ≤ b and for every element c of A such that c ≤ a

and c ≤ b holds c ≤ a ⊓ b.
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For simplicity we follow a convention: V denotes a poset with l.u.b.’s, u1,
u2, u3 denote elements of V , N denotes a poset with g.l.b.’s, n1, n2, n3 denote
elements of N , K denotes a poset with l.u.b.’s and g.l.b.’s, and k1, k2 denote
elements of K. The following propositions are true:

(13) u1 ⊔ u2 = u2 ⊔ u1.

(14) (u1 ⊔ u2) ⊔ u3 = u1 ⊔ (u2 ⊔ u3).

(15) n1 ⊓ n2 = n2 ⊓ n1.

(16) (n1 ⊓ n2) ⊓ n3 = n1 ⊓ (n2 ⊓ n3).

(17) k1 ⊓ k2 ⊔ k2 = k2.

(18) k1 ⊓ (k1 ⊔ k2) = k1.

(19) For every A being a poset with l.u.b.’s and g.l.b.’s there exists a strict
lattice L such that the poset of A = Poset(L).

Let us consider A satisfying the condition: A has l.u.b.’s and g.l.b.’s. The
functor � A yields a strict lattice and is defined as follows:

(Def.15) the poset of A = Poset( � A).

The following proposition is true

(20) LattRel(L) � = LattRel(L◦) and Poset(L) � = Poset(L◦).

3. Complete lattices

Let L be a lattice structure. A subset of L is a subset of the carrier of L.

We now define four new predicates. Let L be a lattice structure, and let p

be an element of L, and let X be a set. The predicate p ⊑ X is defined by:

(Def.16) for every element q of L such that q ∈ X holds p ⊑ q.

We write X ⊒ p if p ⊑ X. The predicate X ⊑ p is defined by:

(Def.17) for every element q of L such that q ∈ X holds q ⊑ p.

We write p ⊒ X if X ⊑ p.

We now state two propositions:

(21) For every lattice L and for all elements p, q, r of L holds p ⊑ {q, r} if
and only if p ⊑ q ⊓ r.

(22) For every lattice L and for all elements p, q, r of L holds p ⊒ {q, r} if
and only if q ⊔ r ⊑ p.

We now define three new attributes. A lattice structure is complete if:

(Def.18) for every set X there exists an element p of it such that X ⊑ p and for
every element r of it such that X ⊑ r holds p ⊑ r.

A lattice structure is
⊔

-distributive if it satisfies the condition (Def.19).

(Def.19) Given X. Let a, b, c be elements of it. Then if X ⊑ a and for every
element d of it such that X ⊑ d holds a ⊑ d and {b ⊓ a′ : a′ ∈ X} ⊑ c,
where a′ ranges over elements of it and for every element d of it such that
{b ⊓ a′ : a′ ∈ X} ⊑ d, where a′ ranges over elements of it holds c ⊑ d,
then b ⊓ a ⊑ c.
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A lattice structure is ⌈−⌉-distributive if it satisfies the condition (Def.20).

(Def.20) Given X. Let a, b, c be elements of it. Then if X ⊒ a and for every
element d of it such that X ⊒ d holds d ⊑ a and {b ⊔ a′ : a′ ∈ X} ⊒ c,
where a′ ranges over elements of it and for every element d of it such that
{b ⊔ a′ : a′ ∈ X} ⊒ d, where a′ ranges over elements of it holds d ⊑ c,
then c ⊑ b ⊔ a.

We now state several propositions:

(23) For every Boolean lattice B and for every element a of B holds X ⊑ a

if and only if {bc : b ∈ X} ⊒ ac, where b ranges over elements of B.

(24) For every Boolean lattice B and for every element a of B holds X ⊒ a

if and only if {bc : b ∈ X} ⊑ ac, where b ranges over elements of B.

(25) The lattice of subsets of X is complete.

(26) The lattice of subsets of X is
⊔

-distributive.

(27) The lattice of subsets of X is ⌈−⌉-distributive.

Next we state four propositions:

(28) p ⊑ X if and only if p· ≤ X.

(29) p′ ≤ X if and only if ·p′ ⊑ X.

(30) X ⊑ p if and only if X ≤ p·.

(31) X ≤ p′ if and only if X ⊑ ·p′.

Let A be a complete poset. Then � A is a complete strict lattice.

Let L be a lattice structure satisfying the condition: L is a complete lattice.
Let X be a set. The functor

⊔
L X yields an element of L and is defined by:

(Def.21) X ⊑
⊔

L X and for every element r of L such that X ⊑ r holds
⊔

L X ⊑
r.

Let L be a lattice structure, and let X be a set. The functor ⌈−⌉LX yielding
an element of L is defined as follows:

(Def.22) ⌈−⌉LX =
⊔

L{p : p ⊑ X}, where p ranges over elements of L.

We now define two new functors. Let L be a lattice structure, and let X

be a subset of L. We introduce the functor
⊔

X as a synonym of
⊔

L X. We
introduce the functor ⌈−⌉X as a synonym of ⌈−⌉LX.

We adopt the following rules: C denotes a complete lattice, a, b, c denote
elements of C, and X, Y denote sets. Next we state a number of propositions:

(32)
⊔

C{a ⊓ b : b ∈ X} ⊑ a ⊓
⊔

C X.

(33) C is
⊔

-distributive if and only if for all X, a holds a⊓
⊔

C X ⊑
⊔

C{a⊓b :
b ∈ X}.

(34) a = ⌈−⌉CX if and only if a ⊑ X and for every b such that b ⊑ X holds
b ⊑ a.

(35) a ⊔ ⌈−⌉CX ⊑ ⌈−⌉C{a ⊔ b : b ∈ X}.

(36) C is ⌈−⌉-distributive if and only if for all X, a holds ⌈−⌉C{a⊔b : b ∈ X} ⊑
a ⊔ ⌈−⌉CX.
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(37)
⊔

C X = ⌈−⌉C{a : a ⊒ X}.

(38) If a ∈ X, then a ⊑
⊔

C X and ⌈−⌉CX ⊑ a.

(39) If X ⊑ a, then
⊔

C X ⊑ a.

(40) If a ⊑ X, then a ⊑ ⌈−⌉CX.

(41) If a ∈ X and X ⊑ a, then
⊔

C X = a.

(42) If a ∈ X and a ⊑ X, then ⌈−⌉CX = a.

(43)
⊔
{a} = a and ⌈−⌉{a} = a.

(44) a ⊔ b =
⊔
{a, b} and a ⊓ b = ⌈−⌉{a, b}.

(45) a =
⊔

C{b : b ⊑ a} and a = ⌈−⌉C{c : a ⊑ c}.

(46) If X ⊆ Y , then
⊔

C X ⊑
⊔

C Y and ⌈−⌉CY ⊑ ⌈−⌉CX.

(47)
⊔

C X =
⊔

C{a :
∨

b[a ⊑ b∧ b ∈ X]} and ⌈−⌉CX = ⌈−⌉C{b :
∨

a[a ⊑ b∧ a ∈
X]}.

(48) If for every a such that a ∈ X there exists b such that a ⊑ b and b ∈ Y ,
then

⊔
C X ⊑

⊔
C Y .

(49) If X ⊆ 2the carrier of C , then
⊔

C

⋃
X =

⊔
C{

⊔
Y : Y ∈ X}, where Y

ranges over subsets of C.

(50) C is a lower bound lattice and ⊥C =
⊔

C ∅.

(51) C is an upper bound lattice and ⊤C =
⊔

C (the carrier of C).

(52) If C is an implicative lattice, then a ⇒ b =
⊔

C{c : a ⊓ c ⊑ b}.

(53) If C is an implicative lattice, then C is
⊔

-distributive.

(54) For every complete
⊔

-distributive lattice D and for every element a of
D holds a ⊓

⊔
D X =

⊔
D{a ⊓ b1 : b1 ∈ X}, where b1 ranges over elements

of D and
⊔

D X ⊓ a =
⊔

D{b2 ⊓ a : b2 ∈ X}, where b2 ranges over elements
of D.

(55) For every complete ⌈−⌉-distributive lattice D and for every element a of
D holds a⊔ ⌈−⌉DX = ⌈−⌉D{a ⊔ b1 : b1 ∈ X}, where b1 ranges over elements
of D and ⌈−⌉DX ⊔a = ⌈−⌉D{b2 ⊔a : b2 ∈ X}, where b2 ranges over elements
of D.

In this article we present several logical schemes. The scheme SingleFraenkel

deals with a constant A, a non-empty set B, and a unary predicate P, and states
that:

{A : P[a]} = {A}, where a ranges over elements of B
provided the parameters meet the following requirement:

• there exists an element a of B such that P[a].
The scheme FuncFraenkel deals with a non-empty set A, a non-empty set B,

a unary functor F yielding an element of B, a function C, and a unary predicate
P, and states that:

C ◦ {F(x) : P[x]} = {C(F(x)) : P[x]}, where x ranges over elements of A,
and x ranges over elements of A
provided the parameters satisfy the following condition:

• B ⊆ dom C.
The following proposition is true
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(56) Let D be a non-empty set. Let f be a function from 2D into D. Then
if for every element a of D holds f({a}) = a and for every subset X of 2D

holds f(f ◦X) = f(
⋃

X), then there exists a complete strict lattice L such
that the carrier of L = D and for every subset X of L holds

⊔
X = f(X).
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