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Summary. The concept of context-free grammar and of deriv-
ability in grammar are introduced. Moreover, the language (set of finite
sequences of symbols) generated by grammar and some grammars are
defined. The notion convenient to prove facts on language generated by
grammar with exchange of symbols on grammar of union and concatena-
tion of languages is included.

MML Identifier: LANG1.

The notation and terminology used here have been introduced in the following
papers: [9], [7], [1], [8], [10], [11], [4], [2], [6], [5], and [3]. We consider context-free
grammars which are systems

〈symbols, a initial symbol, rules〉,
where the symbols constitute a non-empty set, the initial symbol is an element
of the symbols, and the rules constitute a relation between the symbols and
(the symbols)∗.

We now define two new modes. Let G be a context-free grammar. A symbol
of G is an element of the symbols of G.

A string of G is an element of (the symbols of G)∗.

Let D be a non-empty set, and let p, q be elements of D∗. Then p 
 q is an
element of D∗.

Let D be a non-empty set. Then εD is an element of D∗. Let d be an element
of D. Then 〈d〉 is an element of D∗. Let e be an element of D. Then 〈d, e〉 is
an element of D∗.

In the sequel G will denote a context-free grammar, s will denote a symbol
of G, and n, m will denote strings of G. Let us consider G, s, n. The predicate
s ⇒ n is defined as follows:

(Def.1) 〈〈s, n〉〉 ∈ the rules of G.

We now define two new functors. Let us consider G. The terminals of G

yields a set and is defined as follows:
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(Def.2) the terminals of G = {s : ¬
∨

n s ⇒ n}.

The nonterminals of G yielding a set is defined as follows:

(Def.3) the nonterminals of G = {s :
∨

n s ⇒ n}.

Next we state the proposition

(1) (The terminals of G) ∪ (the nonterminals of G) = the symbols of G.

Let us consider G, n, m. The predicate n ⇒ m is defined by:

(Def.4) there exist strings n1, n2, n3 of G and there exists s such that n =
n1 
 〈s〉 
 n2 and m = n1 
 n3 
 n2 and s ⇒ n3.

In the sequel n1, n2, n3 denote strings of G. One can prove the following
four propositions:

(2) If s ⇒ n, then n1 
 〈s〉 
 n2 ⇒ n1 
 n 
 n2.

(3) If s ⇒ n, then 〈s〉 ⇒ n.

(4) If 〈s〉 ⇒ n, then s ⇒ n.

(5) If n1 ⇒ n2, then n 
 n1 ⇒ n 
 n2 and n1 
 n ⇒ n2 
 n.

Let us consider G, n, m. The predicate n ⇒∗ m is defined by the condition
(Def.5).

(Def.5) There exists a finite sequence p such that len p ≥ 1 and p(1) = n and
p(len p) = m and for every natural number i such that i ≥ 1 and i < len p

there exist strings a, b of G such that p(i) = a and p(i+1) = b and a ⇒ b.

The following three propositions are true:

(6) n ⇒∗ n.

(7) If n ⇒ m, then n ⇒∗ m.

(8) If n2 ⇒∗ n1 and n3 ⇒∗ n2, then n3 ⇒∗ n1.

Let us consider G. The language generated by G yielding a set is defined by:

(Def.6) the language generated by
G = {a : rng a ⊆
the terminals of G∧ 〈the initial symbol of G〉 ⇒∗ a}, where a ranges over
elements of (the symbols of G)∗.

Next we state the proposition

(9) n ∈ the language generated by G if and only if rngn ⊆ the terminals of
G and 〈the initial symbol of G〉 ⇒∗ n.

Let a be arbitrary. Then {a} is a non-empty set. Let b be arbitrary. Then
{a, b} is a non-empty set.

Let D, E be non-empty sets, and let a be an element of [:D, E :]. Then {a}
is a relation between D and E. Let b be an element of [: D, E :]. Then {a, b} is
a relation between D and E.

We now define three new functors. Let a be arbitrary. The functor {a ⇒ ε}
yielding a strict context-free grammar is defined by:

(Def.7) the symbols of {a ⇒ ε} = {a} and the rules of {a ⇒ ε} = {〈〈a, ε〉〉}.
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Let b be arbitrary. The functor {a ⇒ b} yielding a strict context-free grammar
is defined as follows:

(Def.8) the symbols of {a ⇒ b} = {a, b} and the initial symbol of {a ⇒ b} = a

and the rules of {a ⇒ b} = {〈〈a, 〈b〉〉〉}.

The functor

{

a ⇒ ba

a ⇒ ε

}

yields a strict context-free grammar and is defined by:

(Def.9) the symbols of

{

a ⇒ ba

a ⇒ ε

}

= {a, b} and the initial symbol of

{

a ⇒ ba

a ⇒ ε

}

=

a and the rules of
{

a ⇒ ba

a ⇒ ε

}

= {〈〈a, 〈b, a〉〉〉, 〈〈a, ε〉〉}.

Let D be a non-empty set. The total grammar over D yields a strict context-
free grammar and is defined as follows:

(Def.10) the symbols of the total grammar over D = D ∪ {D} and the initial
symbol of the total grammar over D = D and the rules of the total
grammar over D = {〈〈D, 〈d,D〉〉〉 : d = d} ∪ {〈〈D, ε〉〉}, where d ranges over
elements of D.

In the sequel a, b are arbitrary and D denotes a non-empty set. Next we
state several propositions:

(10) The terminals of {a ⇒ ε} = ∅.

(11) The language generated by {a ⇒ ε} = {ε}.

(12) If a 6= b, then the terminals of {a ⇒ b} = {b}.

(13) If a 6= b, then the language generated by {a ⇒ b} = {〈b〉}.

(14) If a 6= b, then the terminals of

{

a ⇒ ba

a ⇒ ε

}

= {b}.

(15) If a 6= b, then the language generated by

{

a ⇒ ba

a ⇒ ε

}

= {b}∗.

(16) The terminals of the total grammar over D = D.

(17) The language generated by the total grammar over D = D∗.

We now define two new attributes. A context-free grammar is efective if:

(Def.11) the language generated by it is non-empty and the initial symbol of
it ∈ the nonterminals of it and for every symbol s of it such that s ∈ the
terminals of it there exists a string p of it such that p ∈ the language
generated by it and s ∈ rng p.

A context-free grammar is finite if:

(Def.12) the rules of it is finite.

Let G be an efective context-free grammar. Then the nonterminals of G is a
non-empty subset of the symbols of G.

Let X be a set, and let Y be a non-empty set, and let f be a function from
X into Y . Then graph f is a relation between X and Y .
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Let X, Y be non-empty sets, and let p be a finite sequence of elements of X,
and let f be a function from X into Y . Then f · p is an element of Y ∗.

Let X, Y be non-empty sets, and let f be a function from X into Y . The
functor f ∗ yielding a function from X∗ into Y ∗ is defined as follows:

(Def.13) for every element p of X∗ holds f ∗(p) = f · p.

Let R be a binary relation. The functor R∗ yielding a binary relation is
defined by the condition (Def.14).

(Def.14) Let x, y be arbitrary. Then 〈〈x, y〉〉 ∈ R∗ if and only if the following
conditions are satisfied:

(i) x ∈ field R,
(ii) y ∈ field R,
(iii) there exists a finite sequence p such that len p ≥ 1 and p(1) = x and

p(len p) = y and for every natural number i such that i ≥ 1 and i < len p

holds 〈〈p(i), p(i + 1)〉〉 ∈ R.

In the sequel R is a binary relation. We now state the proposition

(18) R ⊆ R∗.

Let X be a non-empty set, and let R be a binary relation on X. Then R∗ is
a binary relation on X.

Let G be a context-free grammar, and let X be a non-empty set, and let f

be a function from the symbols of G into X. The functor G(f) yielding a strict
context-free grammar is defined by:

(Def.15) G(f) = 〈X, f(the initial symbol of G), (graph f) � · the rules of G ·
graph(f ∗)〉.

The following proposition is true

(19) For all non-empty sets D1, D2 such that D1 ⊆ D2 holds D1
∗ ⊆ D2

∗.
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[5] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[6] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[8] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[10] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.



context-free grammar - part 1 687

[11] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

Received February 21, 1992


