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Summary. List of theorems concerning the de l’Hospital Theorem.
We discuss the case when both functions have the zero value at a point
and when the quotient of their differentials is convergent at this point.

MML Identifier: L’HOSPIT.

The papers [21], [4], [1], [2], [17], [15], [6], [9], [16], [3], [5], [12], [13], [20], [14],
[18], [19], [8], [11], [7], and [10] provide the terminology and notation for this
paper. We adopt the following rules: f , g will be partial functions from � to

� , r, r1, r2, g1, g2, x0, t will be real numbers, and a will be a sequence of real
numbers. Next we state a number of propositions:

(1) If f is continuous in x0 and for all r1, r2 such that r1 < x0 and x0 < r2

there exist g1, g2 such that r1 < g1 and g1 < x0 and g1 ∈ dom f and
g2 < r2 and x0 < g2 and g2 ∈ dom f , then f is convergent in x0.

(2) f is right convergent in x0 and limx0
+ f = t if and only if the following

conditions are satisfied:
(i) for every r such that x0 < r there exists t such that t < r and x0 < t

and t ∈ dom f ,
(ii) for every a such that a is convergent and lim a = x0 and rng a ⊆

dom f ∩ ]x0,+∞[ holds f · a is convergent and lim(f · a) = t.

(3) f is left convergent in x0 and limx0
− f = t if and only if the following

conditions are satisfied:
(i) for every r such that r < x0 there exists t such that r < t and t < x0

and t ∈ dom f ,
(ii) for every a such that a is convergent and lim a = x0 and rng a ⊆

dom f ∩ ]−∞, x0[ holds f · a is convergent and lim(f · a) = t.

(4) Suppose There exists a neighbourhood N of x0 such that N \ {x0} ⊆
dom f . Then for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1,
g2 such that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2

and g2 ∈ dom f .
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(5) Given a neighbourhood N of x0 such that

(i) f is differentiable on N ,
(ii) g is differentiable on N ,

(iii) N \ {x0} ⊆ dom(f
g
),

(iv) N ⊆ dom(
f ′�

N

g′�
N

),

(v) f(x0) = 0,

(vi) g(x0) = 0,

(vii)
f ′�

N

g′�
N

is divergent to +∞ in x0.

Then f
g

is divergent to +∞ in x0.

(6) Given a neighbourhood N of x0 such that

(i) f is differentiable on N ,
(ii) g is differentiable on N ,

(iii) N \ {x0} ⊆ dom(f
g
),

(iv) N ⊆ dom(
f ′�

N

g′�
N

),

(v) f(x0) = 0,

(vi) g(x0) = 0,

(vii)
f ′�

N

g′�
N

is divergent to −∞ in x0.

Then f
g

is divergent to −∞ in x0.

(7) Given r such that

(i) r > 0,
(ii) f is differentiable on ]x0, x0 + r[,

(iii) g is differentiable on ]x0, x0 + r[,

(iv) ]x0, x0 + r[ ⊆ dom( f
g
),

(v) [x0, x0 + r] ⊆ dom(
f ′�

]x0,x0+r[

g′�
]x0,x0+r[

),

(vi) f(x0) = 0,
(vii) g(x0) = 0,

(viii) f is continuous in x0,
(ix) g is continuous in x0,

(x)
f ′�

]x0,x0+r[

g′�
]x0,x0+r[

is right convergent in x0.

Then f
g

is right convergent in x0 and there exists r such that r > 0 and

limx0
+(f

g
) = limx0

+(
f ′�

]x0,x0+r[

g′�
]x0,x0+r[

).

(8) Given r such that
(i) r > 0,

(ii) f is differentiable on ]x0 − r, x0[,

(iii) g is differentiable on ]x0 − r, x0[,

(iv) ]x0 − r, x0[ ⊆ dom(f
g
),
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(v) [x0 − r, x0] ⊆ dom(
f ′�

]x0−r,x0[

g′�
]x0−r,x0[

),

(vi) f(x0) = 0,
(vii) g(x0) = 0,
(viii) f is continuous in x0,
(ix) g is continuous in x0,

(x)
f ′�

]x0−r,x0[

g′�
]x0−r,x0[

is left convergent in x0.

Then f
g

is left convergent in x0 and there exists r such that r > 0 and

limx0
−(f

g
) = limx0

−(
f ′�

]x0−r,x0[

g′�
]x0−r,x0[

).

(9) Given a neighbourhood N of x0 such that
(i) f is differentiable on N ,
(ii) g is differentiable on N ,

(iii) N \ {x0} ⊆ dom(f
g
),

(iv) N ⊆ dom(
f ′�

N

g′�
N

),

(v) f(x0) = 0,
(vi) g(x0) = 0,

(vii)
f ′�

N

g′�
N

is convergent in x0.

Then f
g

is convergent in x0 and there exists a neighbourhood N of x0 such

that limx0(
f
g
) = limx0(

f ′�
N

g′�
N

).

(10) Given a neighbourhood N of x0 such that
(i) f is differentiable on N ,
(ii) g is differentiable on N ,

(iii) N \ {x0} ⊆ dom(f
g
),

(iv) N ⊆ dom(
f ′�

N

g′�
N

),

(v) f(x0) = 0,
(vi) g(x0) = 0,

(vii)
f ′�

N

g′�
N

is continuous in x0.

Then f
g

is convergent in x0 and limx0(
f
g
) = f ′(x0)

g′(x0) .
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