The de l'Hospital Theorem

Małgorzata Korolkiewicz
Warsaw University
Białystok

Abstract

Summary. List of theorems concerning the de l'Hospital Theorem. We discuss the case when both functions have the zero value at a point and when the quotient of their differentials is convergent at this point.

MML Identifier: L'HOSPIT.

The papers [21], [4], [1], [2], [17], [15], [6], [9], [16], [3], [5], [12], [13], [20], [14], [18], [19], [8], [11], [7], and [10] provide the terminology and notation for this paper. We adopt the following rules: f, g will be partial functions from \mathbb{R} to $\mathbb{R}, r, r_{1}, r_{2}, g_{1}, g_{2}, x_{0}, t$ will be real numbers, and a will be a sequence of real numbers. Next we state a number of propositions:
(1) If f is continuous in x_{0} and for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$, then f is convergent in x_{0}.
(2) f is right convergent in x_{0} and $\lim _{x_{0}+} f=t$ if and only if the following conditions are satisfied:
(i) for every r such that $x_{0}<r$ there exists t such that $t<r$ and $x_{0}<t$ and $t \in \operatorname{dom} f$,
(ii) for every a such that a is convergent and $\lim a=x_{0}$ and $\operatorname{rng} a \subseteq$ $\operatorname{dom} f \cap] x_{0},+\infty[$ holds $f \cdot a$ is convergent and $\lim (f \cdot a)=t$.
(3) $\quad f$ is left convergent in x_{0} and $\lim _{x_{0}-} f=t$ if and only if the following conditions are satisfied:
(i) for every r such that $r<x_{0}$ there exists t such that $r<t$ and $t<x_{0}$ and $t \in \operatorname{dom} f$,
(ii) for every a such that a is convergent and $\lim a=x_{0}$ and $\operatorname{rng} a \subseteq$ $\operatorname{dom} f \cap]-\infty, x_{0}[$ holds $f \cdot a$ is convergent and $\lim (f \cdot a)=t$.
(4) Suppose There exists a neighbourhood N of x_{0} such that $N \backslash\left\{x_{0}\right\} \subseteq$ $\operatorname{dom} f$. Then for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$.
(5) Given a neighbourhood N of x_{0} such that
(i) f is differentiable on N,
(ii) g is differentiable on N,
(iii) $N \backslash\left\{x_{0}\right\} \subseteq \operatorname{dom}\left(\frac{f}{g}\right)$,
(iv) $N \subseteq \operatorname{dom}\left(\frac{f_{\mid N}^{\prime}}{g_{\mid N}^{\prime}}\right)$,
(v) $f\left(x_{0}\right)=0$,
(vi) $g\left(x_{0}\right)=0$,
(vii) $\frac{f_{!N}^{\prime}}{g_{\Gamma N}^{\prime}}$ is divergent to $+\infty$ in x_{0}.

Then $\frac{f}{g}$ is divergent to $+\infty$ in x_{0}.
(6) Given a neighbourhood N of x_{0} such that
(i) f is differentiable on N,
(ii) g is differentiable on N,
(iii) $N \backslash\left\{x_{0}\right\} \subseteq \operatorname{dom}\left(\frac{f}{g}\right)$,
(iv) $N \subseteq \operatorname{dom}\left(\frac{f_{\Gamma N}^{\prime}}{g_{\Gamma N}^{\prime}}\right)$,
(v) $f\left(x_{0}\right)=0$,
(vi) $g\left(x_{0}\right)=0$,
(vii) $\frac{f_{1 N}^{\prime}}{g_{\uparrow N}^{\prime}}$ is divergent to $-\infty$ in x_{0}.

Then $\frac{f}{g}$ is divergent to $-\infty$ in x_{0}.
(7) Given r such that
(i) $r>0$,
(ii) f is differentiable on $] x_{0}, x_{0}+r[$,
(iii) g is differentiable on $] x_{0}, x_{0}+r$ [,
(iv) $] x_{0}, x_{0}+r\left[\subseteq \operatorname{dom}\left(\frac{f}{g}\right)\right.$,
(v) $\left[x_{0}, x_{0}+r\right] \subseteq \operatorname{dom}\left(\frac{f_{\mid] \mid x_{0}, x_{0}+r!}^{\prime}}{g_{[\mid] x_{0}, x_{0}+r!}^{\prime}}\right)$,
(vi) $f\left(x_{0}\right)=0$,
(vii) $g\left(x_{0}\right)=0$,
(viii) f is continuous in x_{0},
(ix) g is continuous in x_{0},
(x) $\frac{f_{\left|\left|x_{0}, x_{0}+r\right|\right.}^{\prime}}{g_{\left|\left|x_{0}, x_{0}+r\right|\right.}^{\prime}}$ is right convergent in x_{0}.

Then $\frac{f}{g}$ is right convergent in x_{0} and there exists r such that $r>0$ and $\lim _{x_{0}+}\left(\frac{f}{g}\right)=\lim _{x_{0}+}\left(\frac{f_{\left|\left|\left|x_{0}, x_{0}+r\right|\right.\right.}^{\prime}}{g_{| |] x_{0}, x_{0}+r \mid}^{\prime}}\right)$.
(8) Given r such that
(i) $r>0$,
(ii) f is differentiable on $] x_{0}-r, x_{0}[$,
(iii) g is differentiable on $] x_{0}-r, x_{0}[$,
(iv) $\quad] x_{0}-r, x_{0}\left[\subseteq \operatorname{dom}\left(\frac{f}{g}\right)\right.$,
(v) $\quad\left[x_{0}-r, x_{0}\right] \subseteq \operatorname{dom}\left(\frac{f_{| | x_{0}-r, x_{0} \mathrm{l}}^{\prime}}{g_{\mid] x_{0}-r, x_{0} \mid}^{\prime}}\right)$,
(vi) $f\left(x_{0}\right)=0$,
(vii) $g\left(x_{0}\right)=0$,
(viii) f is continuous in x_{0},
(ix) g is continuous in x_{0},
(x) $\frac{f_{!\mid}^{\prime \mid}\left|x_{0}-r, x_{0}\right|}{g_{\mathrm{I}| | x_{0}-r, x_{0} \mid}^{\prime}}$ is left convergent in x_{0}.

Then $\frac{f}{g}$ is left convergent in x_{0} and there exists r such that $r>0$ and $\lim _{x_{0}-}\left(\frac{f}{g}\right)=\lim _{x_{0}-}\left(\frac{f_{\left|| | x_{0}-r, x_{0} \mathrm{~L}\right.}^{\prime}}{g_{\mathrm{I}\left|x_{0}-r, x_{0}\right|}^{\prime}}\right)$.
(9) Given a neighbourhood N of x_{0} such that
(i) f is differentiable on N,
(ii) g is differentiable on N,
(iii) $N \backslash\left\{x_{0}\right\} \subseteq \operatorname{dom}\left(\frac{f}{g}\right)$,
(iv) $N \subseteq \operatorname{dom}\left(\frac{f_{\mid N}^{\prime}}{g_{\uparrow N}^{\prime}}\right)$,
(v) $f\left(x_{0}\right)=0$,
(vi) $g\left(x_{0}\right)=0$,
(vii) $\frac{f_{!N}^{\prime}}{g_{\lceil N}}$ is convergent in x_{0}.

Then $\frac{f}{g}$ is convergent in x_{0} and there exists a neighbourhood N of x_{0} such that $\lim _{x_{0}}\left(\frac{f}{g}\right)=\lim _{x_{0}}\left(\frac{f_{\mid N}^{\prime}}{g_{\mid N}^{\prime}}\right)$.
(10) Given a neighbourhood N of x_{0} such that
(i) f is differentiable on N,
(ii) g is differentiable on N,
(iii) $N \backslash\left\{x_{0}\right\} \subseteq \operatorname{dom}\left(\frac{f}{g}\right)$,
(iv) $N \subseteq \operatorname{dom}\left(\frac{f_{!N}^{\prime}}{g_{\mathrm{T}}^{\prime}}\right)$,
(v) $f\left(x_{0}\right)=0$,
(vi) $g\left(x_{0}\right)=0$,
(vii) $\frac{f_{!N}^{\prime}}{g_{\text {IN }}^{\prime}}$ is continuous in x_{0}.

Then $\frac{f}{g}$ is convergent in x_{0} and $\lim _{x_{0}}\left(\frac{f}{g}\right)=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)}$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[6] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[7] Jarosław Kotowicz. The limit of a real function at a point. Formalized Mathematics, 2(1):71-80, 1991.
[8] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
[9] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[10] Jarosław Kotowicz. Monotonic and continuous real function. Formalized Mathematics, 2(3):403-405, 1991.
[11] Jarosław Kotowicz. One-side limits of a real function at a point. Formalized Mathematics, 2(1):29-40, 1991.
[12] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[13] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[14] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
[15] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[16] Andrzej Nẹdzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[17] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[18] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[19] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[20] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received February 20, 1992

