The de l'Hospital Theorem

Małgorzata Korolkiewicz Warsaw University Białystok

Summary. List of theorems concerning the de l'Hospital Theorem. We discuss the case when both functions have the zero value at a point and when the quotient of their differentials is convergent at this point.

MML Identifier: L'HOSPIT.

The papers [21], [4], [1], [2], [17], [15], [6], [9], [16], [3], [5], [12], [13], [20], [14], [18], [19], [8], [11], [7], and [10] provide the terminology and notation for this paper. We adopt the following rules: f, g will be partial functions from \mathbb{R} to $\mathbb{R}, r, r_1, r_2, g_1, g_2, x_0, t$ will be real numbers, and a will be a sequence of real numbers. Next we state a number of propositions:

- (1) If f is continuous in x_0 and for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$, then f is convergent in x_0 .
- (2) f is right convergent in x_0 and $\lim_{x_0^+} f = t$ if and only if the following conditions are satisfied:
- (i) for every r such that $x_0 < r$ there exists t such that t < r and $x_0 < t$ and $t \in \text{dom } f$,
- (ii) for every a such that a is convergent and $\lim a = x_0$ and $\operatorname{rng} a \subseteq \operatorname{dom} f \cap]x_0, +\infty[$ holds $f \cdot a$ is convergent and $\lim(f \cdot a) = t$.
- (3) f is left convergent in x_0 and $\lim_{x_0^-} f = t$ if and only if the following conditions are satisfied:
- (i) for every r such that $r < x_0$ there exists t such that r < t and $t < x_0$ and $t \in \text{dom } f$,
- (ii) for every a such that a is convergent and $\lim a = x_0$ and $\operatorname{rng} a \subseteq \operatorname{dom} f \cap \left[-\infty, x_0\right[$ holds $f \cdot a$ is convergent and $\lim(f \cdot a) = t$.
- (4) Suppose There exists a neighbourhood N of x_0 such that $N \setminus \{x_0\} \subseteq \text{dom } f$. Then for all r_1, r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1, g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$.

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

Given a neighbourhood N of x_0 such that (5)(i) f is differentiable on N, g is differentiable on N, (ii) (iii) $N \setminus \{x_0\} \subseteq \operatorname{dom}(\frac{f}{q}),$ (iv) $N \subseteq \operatorname{dom}(\frac{f'_{|N|}}{g'_{|N|}}),$ $(\mathbf{v}) \quad f(x_0) = 0,$ (vi) $g(x_0) = 0,$ $\frac{f'_{1N}}{g'_{1N}}$ is divergent to $+\infty$ in x_0 . (vii) Then $\frac{f}{a}$ is divergent to $+\infty$ in x_0 . (6)Given a neighbourhood N of x_0 such that f is differentiable on N, (i) (ii) g is differentiable on N, (iii) $N \setminus \{x_0\} \subseteq \operatorname{dom}(\frac{f}{q}),$ (iv) $N \subseteq \operatorname{dom}(\frac{f'_{|N|}}{g'_{|N|}}),$ (v) $f(x_0) = 0$, (vi) $g(x_0) = 0,$ $\frac{f'_{1N}}{g'_{1N}}$ is divergent to $-\infty$ in x_0 . (vii) Then $\frac{f}{q}$ is divergent to $-\infty$ in x_0 . Given r such that (7)(i) r > 0, (ii) f is differentiable on $]x_0, x_0 + r[$, g is differentiable on $]x_0, x_0 + r[,$ (iii) $]x_0, x_0 + r[\subseteq \operatorname{dom}(\frac{f}{g}),$ (iv) $[x_0, x_0 + r] \subseteq \operatorname{dom}(\frac{f'_{[]x_0, x_0 + r[}}{g'_{]]x_0, x_0 + r[}}),$ (v) (vi) $f(x_0) = 0,$ (vii) $g(x_0) = 0,$ (viii) f is continuous in x_0 , (ix)g is continuous in x_0 , $\frac{f'_{1]x_0,x_0+r[}}{g'_{1]x_0,x_0+r[}} \text{ is right convergent in } x_0.$ (x) Then $\frac{f}{q}$ is right convergent in x_0 and there exists r such that r > 0 and $\lim_{x_0^+} \left(\frac{f}{g}\right) = \lim_{x_0^+} \left(\frac{f'_{!]x_0,x_0^+r[}}{g'_{!]x_0,x_0^+r[}}\right).$ (8)Given r such that (i) r > 0, f is differentiable on $]x_0 - r, x_0[$, (ii) (iii) g is differentiable on $]x_0 - r, x_0[,$ (iv) $]x_0 - r, x_0[\subseteq \operatorname{dom}(\frac{f}{a}),$

(v)
$$[x_0 - r, x_0] \subseteq \operatorname{dom}(\frac{f'_{!}x_0 - r, x_0[}{g'_{!}x_0 - r, x_0[}),$$

$$(vi) \quad f(x_0) = 0,$$

 $(vii) \quad g(x_0) = 0,$

- (viii) f is continuous in x_0 ,
- (ix) g is continuous in x_0 ,
- (x) $\frac{f'_{[]x_0-r,x_0[}}{g'_{[]x_0-r,x_0[}}$ is left convergent in x_0 .

Then $\frac{f}{g}$ is left convergent in x_0 and there exists r such that r > 0 and

$$\lim_{x_0^-} \left(\frac{f}{g}\right) = \lim_{x_0^-} \left(\frac{f'_{1|x_0^-, x_0[}}{g'_{1|x_0^-, x_0[}}\right).$$

(9) Given a neighbourhood N of x_0 such that

- (i) f is differentiable on N,
- (ii) g is differentiable on N,

(iii)
$$N \setminus \{x_0\} \subseteq \operatorname{dom}(\frac{f}{g}),$$

(iv)
$$N \subseteq \operatorname{dom}(\frac{f_{1N}}{g'_{1N}}),$$

(v)
$$f(x_0) = 0$$
,
(vi) $r(x_0) = 0$,

$$(vi) \quad g(x_0) = 0,$$

(vii) $\frac{f'_{1N}}{g'_{1N}}$ is convergent in x_0 .

Then $\frac{f}{q}$ is convergent in x_0 and there exists a neighbourhood N of x_0 such

that
$$\lim_{x_0}(\frac{f}{g}) = \lim_{x_0}(\frac{f'_{|N|}}{g'_{|N|}}).$$

(10) Given a neighbourhood N of x_0 such that

- (i) f is differentiable on N,
- (ii) g is differentiable on N,

(iii)
$$N \setminus \{x_0\} \subseteq \operatorname{dom}(\frac{f}{g}),$$

(iv)
$$N \subseteq \operatorname{dom}(\frac{J_{\uparrow N}}{g'_{\uparrow N}})$$

(v)
$$f(x_0) = 0,$$

$$(vi) \quad g(x_0) = 0,$$

(vii)
$$\frac{f_{1N}}{g'_{1N}}$$
 is continuous in x_0 .
Then $\frac{f}{g}$ is convergent in x_0 and $\lim_{x_0} \left(\frac{f}{g}\right) = \frac{f'(x_0)}{g'(x_0)}$.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41–46, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [5] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477–481, 1990.

- [6] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- Jarosław Kotowicz. The limit of a real function at a point. Formalized Mathematics, 2(1):71–80, 1991.
- [8] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
- Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [10] Jarosław Kotowicz. Monotonic and continuous real function. Formalized Mathematics, 2(3):403–405, 1991.
- [11] Jarosław Kotowicz. One-side limits of a real function at a point. Formalized Mathematics, 2(1):29-40, 1991.
- [12] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
- Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
- [14] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781–786, 1990.
- [15] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [16] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [17] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787–791, 1990.
- Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797–801, 1990.
- [20] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received February 20, 1992