Isomorphisms of Categories

Andrzej Trybulec
Warsaw University
Białystok

Abstract

Summary. We continue the development of the category theory basically following [12] (compare also [11]). We define the concept of isomorphic categories and prove basic facts related, e.g. that the Cartesian product of categories is associative up to the isomorphism. We introduce the composition of a functor and a transformation, and of transformation and a functor, and afterwards we define again those concepts for natural transformations. Let us observe, that we have to duplicate those concepts because of the permissiveness: if a functor F is not naturally transformable to G, then natural transformation from F to G has no fixed meaning, hence we cannot claim that the composition of it with a functor as a transformation results in a natural transformation. We define also the so called horizontal composition of transformations ([12], p.140, exercise $4.2,5(\mathrm{C})$) and prove interchange law ([11], p.44). We conclude with the definition of equivalent categories.

MML Identifier: ISOCAT_1.

The articles [16], [17], [4], [5], [3], [7], [1], [2], [10], [13], [8], [14], [6], [9], and [15] provide the notation and terminology for this paper. We adopt the following convention: A, B, C, D will denote categories, F, F_{1}, F_{2} will denote functors from A to B, and G will denote a functor from B to C. One can prove the following propositions:
(1) For all functions F, G such that F is one-to-one and G is one-to-one holds : F, G : is one-to-one.
(2) $\operatorname{rng} \pi_{1}(A \times B)=$ the morphisms of A and $\operatorname{rng} \pi_{2}(B \times A)=$ the morphisms of A.
(3) For every morphism f of A such that f is invertible holds $F(f)$ is invertible.
(4) For every functor F from A to B and for every functor G from B to A holds $F \cdot \operatorname{id}_{A}=F$ and $\operatorname{id}_{A} \cdot G=G$.
(5) For all objects a, b of A such that $\operatorname{hom}(a, b) \neq \emptyset$ and for every morphism f from a to b and for every functor F from A to B and for every functor G from B to C holds $(G \cdot F)(f)=G(F(f))$.
(6) For all objects a, b, c of A such that $\operatorname{hom}(a, b) \neq \emptyset$ and $\operatorname{hom}(b, c) \neq \emptyset$ and for every morphism f from a to b and for every morphism g from b to c and for every functor F from A to B holds $F(g \cdot f)=F(g) \cdot F(f)$.
(7) For all functors F_{1}, F_{2} from A to B such that F_{1} is transformable to F_{2} and for every transformation t from F_{1} to F_{2} and for every object a of A holds $t(a) \in \operatorname{hom}\left(F_{1}(a), F_{2}(a)\right)$.
(8) For all functors F_{1}, F_{2} from A to B and for all functors G_{1}, G_{2} from B to C such that F_{1} is transformable to F_{2} and G_{1} is transformable to G_{2} holds $G_{1} \cdot F_{1}$ is transformable to $G_{2} \cdot F_{2}$.
(9) For all functors F_{1}, F_{2} from A to B such that F_{1} is transformable to F_{2} and for every transformation t from F_{1} to F_{2} such that t is invertible and for every object a of A holds $F_{1}(a)$ and $F_{2}(a)$ are isomorphic.
Let us consider C, D. Let us observe that the mode below can be characterized by another conditions, which are equivalent to the formulas previously defining them. In accordance the mode Let us note that one can characterize the mode functor from C to D, by the following (equivalent) condition:
(Def.1) (i) for every object c of C there exists an object d of D such that $\mathrm{it}\left(\mathrm{id}_{c}\right)=\mathrm{id}_{d}$,
(ii) for every morphism f of C holds $\operatorname{it}\left(\operatorname{id}_{\operatorname{dom} f}\right)=\operatorname{id}_{\operatorname{domit}(f)}$ and $\operatorname{it}\left(\operatorname{id}_{\operatorname{cod} f}\right)=$ $\mathrm{id}_{\text {cod it }(f)}$,
(iii) for all morphisms f, g of C such that $\operatorname{dom} g=\operatorname{cod} f$ holds it $(g \cdot f)=$ $\operatorname{it}(g) \cdot \operatorname{it}(f)$.
Let us consider A. Then id_{A} is a functor from A to A. Let us consider B, C, and let F be a functor from A to B, and let G be a functor from B to C. Then $G \cdot F$ is a functor from A to C.

In the sequel o, m are arbitrary. We now state three propositions:
(10) If F is an isomorphism, then for every morphism g of B there exists a morphism f of A such that $F(f)=g$.
(11) If F is an isomorphism, then for every object b of B there exists an object a of A such that $F(a)=b$.
(12) If F is one-to-one, then $\operatorname{Obj} F$ is one-to-one.

Let us consider A, B, F. Let us assume that F is an isomorphism. The functor F^{-1} yields a functor from B to A and is defined by:
(Def.2) $\quad F^{-1}=F^{-1}$.
Let us consider A, B, F. Let us note that one can characterize the predicate F is an isomorphism by the following (equivalent) condition:
(Def.3) $\quad F$ is one-to-one and $\operatorname{rng} F=$ the morphisms of B.
Next we state several propositions:
(13) If F is an isomorphism, then F^{-1} is an isomorphism.
(17) If F is an isomorphism and G is an isomorphism, then $G \cdot F$ is an isomorphism.
In the sequel t_{1} denotes a natural transformation from F_{1} to F_{2} and t_{2} denotes a natural transformation from F to F_{2}. We now define two new predicates. Let us consider A, B. We say that A and B are isomorphic if and only if:
(Def.4) there exists a functor F from A to B such that F is an isomorphism.
We write $A \cong B$ if A and B are isomorphic.
The following propositions are true:
(18) $\quad A \cong A$.
(19) If $A \cong B$, then $B \cong A$.
(20) If $A \cong B$ and $B \cong C$, then $A \cong C$.
(24) If $A \cong B$ and $C \cong D$, then $: A, C: \cong: B, D:$.

Let us consider A, B, C, and let F_{1}, F_{2} be functors from A to B satisfying the condition: F_{1} is transformable to F_{2}. Let t be a transformation from F_{1} to F_{2}, and let G be a functor from B to C. The functor $G \cdot t$ yields a transformation from $G \cdot F_{1}$ to $G \cdot F_{2}$ and is defined as follows:
(Def.5) $\quad G \cdot t=G \cdot t$.
Let us consider A, B, C, and let G_{1}, G_{2} be functors from B to C satisfying the condition: G_{1} is transformable to G_{2}. Let F be a functor from A to B, and let t be a transformation from G_{1} to G_{2}. The functor $t \cdot F$ yielding a transformation from $G_{1} \cdot F$ to $G_{2} \cdot F$ is defined by:
(Def.6) $\quad t \cdot F=t \cdot \operatorname{Obj} F$.
We now state three propositions:
(25) For all functors G_{1}, G_{2} from B to C such that G_{1} is transformable to G_{2} and for every functor F from A to B and for every transformation t from G_{1} to G_{2} and for every object a of A holds $(t \cdot F)(a)=t(F(a))$.
(26) For all functors F_{1}, F_{2} from A to B such that F_{1} is transformable to F_{2} and for every transformation t from F_{1} to F_{2} and for every functor G from B to C and for every object a of A holds $(G \cdot t)(a)=G(t(a))$.
(27) For all functors F_{1}, F_{2} from A to B and for all functors G_{1}, G_{2} from B to C such that F_{1} is naturally transformable to F_{2} and G_{1} is naturally transformable to G_{2} holds $G_{1} \cdot F_{1}$ is naturally transformable to $G_{2} \cdot F_{2}$.
Let us consider A, B, C, and let F_{1}, F_{2} be functors from A to B satisfying the condition: F_{1} is naturally transformable to F_{2}. Let t be a natural transformation
from F_{1} to F_{2}, and let G be a functor from B to C. The functor $G \cdot t$ yielding a natural transformation from $G \cdot F_{1}$ to $G \cdot F_{2}$ is defined by:

$$
\begin{equation*}
G \cdot t=G \cdot t \tag{Def.7}
\end{equation*}
$$

Next we state the proposition
(28) For all functors F_{1}, F_{2} from A to B such that F_{1} is naturally transformable to F_{2} and for every natural transformation t from F_{1} to F_{2} and for every functor G from B to C and for every object a of A holds $(G \cdot t)(a)=G(t(a))$.
Let us consider A, B, C, and let G_{1}, G_{2} be functors from B to C satisfying the condition: G_{1} is naturally transformable to G_{2}. Let F be a functor from A to B, and let t be a natural transformation from G_{1} to G_{2}. The functor $t \cdot F$ yields a natural transformation from $G_{1} \cdot F$ to $G_{2} \cdot F$ and is defined as follows:
(Def.8) $\quad t \cdot F=t \cdot F$.
The following proposition is true
(29) For all functors G_{1}, G_{2} from B to C such that G_{1} is naturally transformable to G_{2} and for every functor F from A to B and for every natural transformation t from G_{1} to G_{2} and for every object a of A holds $(t \cdot F)(a)=t(F(a))$.
For simplicity we follow the rules: F, F_{1}, F_{2}, F_{3} are functors from A to B, G, G_{1}, G_{2}, G_{3} are functors from B to C, H, H_{1}, H_{2} are functors from C to D, s is a natural transformation from F_{1} to F_{2}, s^{\prime} is a natural transformation from F_{2} to F_{3}, t is a natural transformation from G_{1} to G_{2}, t^{\prime} is a natural transformation from G_{2} to G_{3}, and u is a natural transformation from H_{1} to H_{2}. We now state a number of propositions:
(30) If F_{1} is naturally transformable to F_{2}, then for every object a of A holds $\operatorname{hom}\left(F_{1}(a), F_{2}(a)\right) \neq \emptyset$.
(31) If F_{1} is naturally transformable to F_{2}, then for all natural transformations t_{1}, t_{2} from F_{1} to F_{2} such that for every object a of A holds $t_{1}(a)=t_{2}(a)$ holds $t_{1}=t_{2}$.
(32) If F_{1} is naturally transformable to F_{2} and F_{2} is naturally transformable to F_{3}, then $G \cdot\left(s^{\prime} \circ s\right)=G \cdot s^{\prime} \circ G \cdot s$.
(33) If G_{1} is naturally transformable to G_{2} and G_{2} is naturally transformable to G_{3}, then $\left(t^{\prime} \circ t\right) \cdot F=t^{\prime} \cdot F \circ t \cdot F$.
(34) If H_{1} is naturally transformable to H_{2}, then $(u \cdot G) \cdot F=u \cdot(G \cdot F)$.

If G_{1} is naturally transformable to G_{2}, then $(H \cdot t) \cdot F=H \cdot(t \cdot F)$.
If F_{1} is naturally transformable to F_{2}, then $(H \cdot G) \cdot s=H \cdot(G \cdot s)$.
$\mathrm{id}_{G} \cdot F=\mathrm{id}_{(G \cdot F)}$.
$G \cdot \mathrm{id}_{F}=\mathrm{id}_{(G \cdot F)}$.
If G_{1} is naturally transformable to G_{2}, then $t \cdot \mathrm{id}_{B}=t$.
If F_{1} is naturally transformable to F_{2}, then $\operatorname{id}_{B} \cdot s=s$.

Let us consider $A, B, C, F_{1}, F_{2}, G_{1}, G_{2}, s, t$. The functor $t s$ yields a natural transformation from $G_{1} \cdot F_{1}$ to $G_{2} \cdot F_{2}$ and is defined as follows:
(Def.9) $\quad t s=t \cdot F_{2}{ }^{\circ} G_{1} \cdot s$.
We now state several propositions:
(41) If F_{1} is naturally transformable to F_{2} and G_{1} is naturally transformable to G_{2}, then $t s=G_{2} \cdot s{ }^{\circ} t \cdot F_{1}$.
(42) If F_{1} is naturally transformable to F_{2}, then $\operatorname{id}_{\left(\mathrm{id}_{B}\right)} s=s$.
(43) If G_{1} is naturally transformable to G_{2}, then $t \mathrm{id}_{\left(\mathrm{id}_{B}\right)}=t$.
(44) If F_{1} is naturally transformable to F_{2} and G_{1} is naturally transformable to G_{2} and H_{1} is naturally transformable to H_{2}, then $u(t s)=(u t) s$.
(45) If G_{1} is naturally transformable to G_{2}, then $t \cdot F=t \operatorname{id}_{F}$.
(46) If F_{1} is naturally transformable to F_{2}, then $G \cdot s=\operatorname{id}_{G} s$.
(47) If F_{1} is naturally transformable to F_{2} and F_{2} is naturally transformable to F_{3} and G_{1} is naturally transformable to G_{2} and G_{2} is naturally transformable to G_{3}, then $\left(t^{\prime} \circ t\right)\left(s^{\prime} \circ s\right)=t^{\prime} s^{\prime} \circ t s$.
(48) For every functor F from A to B and for every functor G from C to D and for all functors I, J from B to C such that $I \cong J$ holds $G \cdot I \cong G \cdot J$ and $I \cdot F \cong J \cdot F$.
(49) For every functor F from A to B and for every functor G from B to A and for every functor I from A to A such that $I \cong \operatorname{id}_{A}$ holds $F \cdot I \cong F$ and $I \cdot G \cong G$.
We now define two new predicates. Let A, B be categories. We say that A is equivalent with B if and only if:
(Def.10) there exists a functor F from A to B and there exists a functor G from B to A such that $G \cdot F \cong \operatorname{id}_{A}$ and $F \cdot G \cong \operatorname{id}_{B}$.
A and B are equivalent stands for A is equivalent with B.
We now state four propositions:
(50) If $A \cong B$, then A is equivalent with B.
(51) A is equivalent with A.
(52) If A and B are equivalent, then B and A are equivalent.
(53) If A and B are equivalent and B and C are equivalent, then A and C are equivalent.
Let us consider A, B. Let us assume that A and B are equivalent. A functor from A to B is called an equivalence of A and B if:
(Def.11) there exists a functor G from B to A such that $G \cdot \mathrm{it} \cong \mathrm{id}_{A}$ and it $\cdot G \cong$ id_{B}.
Next we state several propositions:
(54) $\quad \mathrm{id}_{A}$ is an equivalence of A and A.
(55) If A and B are equivalent and B and C are equivalent, then for every equivalence F of A and B and for every equivalence G of B and C holds $G \cdot F$ is an equivalence of A and C.
(56) If A and B are equivalent, then for every equivalence F of A and B there exists an equivalence G of B and A such that $G \cdot F \cong \operatorname{id}_{A}$ and $F \cdot G \cong \operatorname{id}_{B}$.
(57) For every functor F from A to B and for every functor G from B to A such that $G \cdot F \cong \operatorname{id}_{A}$ holds F is faithful.
(58) If A and B are equivalent, then for every equivalence F of A and B holds F is full and F is faithful and for every object b of B there exists an object a of A such that b and $F(a)$ are isomorphic.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537-541, 1990.
[3] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409-420, 1990.
[7] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Czesław Bylinski. Subcategories and products of categories. Formalized Mathematics, 1(4):725-732, 1990.
[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[11] Saunders Mac Lane. Categories for the Working Mathematician. Volume 5 of Graduate Texts in Mathemaics, Springer Verlag, New York, Heidelberg, Berlin, 1971.
[12] Zbigniew Semadeni and Antoni Wiweger. Wstȩp do teorii kategorii i funktorów. Volume 45 of Biblioteka Matematyczna, PWN, Warszawa, 1978.
[13] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[14] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[15] Andrzej Trybulec. Natural transformations. Discrete categories. Formalized Mathematics, 2(4):467-474, 1991.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.

