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Summary. We continue the development of the category theory
basically following [12] (compare also [11]). We define the concept of iso-
morphic categories and prove basic facts related, e.g. that the Cartesian
product of categories is associative up to the isomorphism. We introduce
the composition of a functor and a transformation, and of transforma-
tion and a functor, and afterwards we define again those concepts for
natural transformations. Let us observe, that we have to duplicate those
concepts because of the permissiveness: if a functor F is not naturally
transformable to G, then natural transformation from F to G has no fixed
meaning, hence we cannot claim that the composition of it with a func-
tor as a transformation results in a natural transformation. We define
also the so called horizontal composition of transformations ([12], p.140,
exercise 4.2,5(C)) and prove interchange law ([11], p.44). We conclude
with the definition of equivalent categories.

MML Identifier: ISOCAT 1.

The articles [16], [17], [4], [5], [3], [7], [1], [2], [10], [13], [8], [14], [6], [9], and [15]
provide the notation and terminology for this paper. We adopt the following
convention: A, B, C, D will denote categories, F , F1, F2 will denote functors
from A to B, and G will denote a functor from B to C. One can prove the
following propositions:

(1) For all functions F , G such that F is one-to-one and G is one-to-one
holds [:F, G :] is one-to-one.

(2) rng π1(A × B) = the morphisms of A and rng π2(B × A) = the mor-
phisms of A.

(3) For every morphism f of A such that f is invertible holds F (f) is
invertible.

(4) For every functor F from A to B and for every functor G from B to A

holds F · idA = F and idA · G = G.
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(5) For all objects a, b of A such that hom(a, b) 6= ∅ and for every morphism
f from a to b and for every functor F from A to B and for every functor
G from B to C holds (G · F )(f) = G(F (f)).

(6) For all objects a, b, c of A such that hom(a, b) 6= ∅ and hom(b, c) 6= ∅
and for every morphism f from a to b and for every morphism g from b

to c and for every functor F from A to B holds F (g · f) = F (g) · F (f).

(7) For all functors F1, F2 from A to B such that F1 is transformable to F2

and for every transformation t from F1 to F2 and for every object a of A

holds t(a) ∈ hom(F1(a), F2(a)).

(8) For all functors F1, F2 from A to B and for all functors G1, G2 from B

to C such that F1 is transformable to F2 and G1 is transformable to G2

holds G1 · F1 is transformable to G2 · F2.

(9) For all functors F1, F2 from A to B such that F1 is transformable to
F2 and for every transformation t from F1 to F2 such that t is invertible
and for every object a of A holds F1(a) and F2(a) are isomorphic.

Let us consider C, D. Let us observe that the mode below can be charac-
terized by another conditions, which are equivalent to the formulas previously
defining them. In accordance the mode Let us note that one can characterize
the mode functor from C to D, by the following (equivalent) condition:

(Def.1) (i) for every object c of C there exists an object d of D such that
it(idc) = idd,

(ii) for every morphism f of C holds it(iddom f ) = iddom it(f) and it(idcod f ) =
idcod it(f),

(iii) for all morphisms f , g of C such that dom g = cod f holds it(g · f) =
it(g) · it(f).

Let us consider A. Then idA is a functor from A to A. Let us consider B,
C, and let F be a functor from A to B, and let G be a functor from B to C.
Then G · F is a functor from A to C.

In the sequel o, m are arbitrary. We now state three propositions:

(10) If F is an isomorphism, then for every morphism g of B there exists a
morphism f of A such that F (f) = g.

(11) If F is an isomorphism, then for every object b of B there exists an
object a of A such that F (a) = b.

(12) If F is one-to-one, then ObjF is one-to-one.

Let us consider A, B, F . Let us assume that F is an isomorphism. The
functor F−1 yields a functor from B to A and is defined by:

(Def.2) F−1 = F−1.

Let us consider A, B, F . Let us note that one can characterize the predicate
F is an isomorphism by the following (equivalent) condition:

(Def.3) F is one-to-one and rng F = the morphisms of B.

Next we state several propositions:

(13) If F is an isomorphism, then F−1 is an isomorphism.
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(14) If F is an isomorphism, then (ObjF )−1 = Obj(F−1).

(15) If F is an isomorphism, then (F−1)−1 = F .

(16) If F is an isomorphism, then F · F−1 = idB and F−1 · F = idA.

(17) If F is an isomorphism and G is an isomorphism, then G · F is an
isomorphism.

In the sequel t1 denotes a natural transformation from F1 to F2 and t2 denotes
a natural transformation from F to F2. We now define two new predicates. Let
us consider A, B. We say that A and B are isomorphic if and only if:

(Def.4) there exists a functor F from A to B such that F is an isomorphism.

We write A ∼= B if A and B are isomorphic.

The following propositions are true:

(18) A ∼= A.

(19) If A ∼= B, then B ∼= A.

(20) If A ∼= B and B ∼= C, then A ∼= C.

(21) [: ˙�
(o,m), A :] ∼= A.

(22) [:A, B :] ∼= [: B, A :].

(23) [: [: A, B :], C :] ∼= [: A, [:B, C :] :].

(24) If A ∼= B and C ∼= D, then [:A, C :] ∼= [: B, D :].

Let us consider A, B, C, and let F1, F2 be functors from A to B satisfying
the condition: F1 is transformable to F2. Let t be a transformation from F1 to
F2, and let G be a functor from B to C. The functor G·t yields a transformation
from G · F1 to G · F2 and is defined as follows:

(Def.5) G · t = G · t.

Let us consider A, B, C, and let G1, G2 be functors from B to C satisfying
the condition: G1 is transformable to G2. Let F be a functor from A to B,
and let t be a transformation from G1 to G2. The functor t · F yielding a
transformation from G1 · F to G2 · F is defined by:

(Def.6) t · F = t · ObjF .

We now state three propositions:

(25) For all functors G1, G2 from B to C such that G1 is transformable to
G2 and for every functor F from A to B and for every transformation t

from G1 to G2 and for every object a of A holds (t · F )(a) = t(F (a)).

(26) For all functors F1, F2 from A to B such that F1 is transformable to
F2 and for every transformation t from F1 to F2 and for every functor G

from B to C and for every object a of A holds (G · t)(a) = G(t(a)).

(27) For all functors F1, F2 from A to B and for all functors G1, G2 from
B to C such that F1 is naturally transformable to F2 and G1 is naturally
transformable to G2 holds G1 · F1 is naturally transformable to G2 · F2.

Let us consider A, B, C, and let F1, F2 be functors from A to B satisfying the
condition: F1 is naturally transformable to F2. Let t be a natural transformation
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from F1 to F2, and let G be a functor from B to C. The functor G · t yielding
a natural transformation from G · F1 to G · F2 is defined by:

(Def.7) G · t = G · t.

Next we state the proposition

(28) For all functors F1, F2 from A to B such that F1 is naturally trans-
formable to F2 and for every natural transformation t from F1 to F2

and for every functor G from B to C and for every object a of A holds
(G · t)(a) = G(t(a)).

Let us consider A, B, C, and let G1, G2 be functors from B to C satisfying
the condition: G1 is naturally transformable to G2. Let F be a functor from A

to B, and let t be a natural transformation from G1 to G2. The functor t · F
yields a natural transformation from G1 · F to G2 · F and is defined as follows:

(Def.8) t · F = t · F .

The following proposition is true

(29) For all functors G1, G2 from B to C such that G1 is naturally trans-
formable to G2 and for every functor F from A to B and for every nat-
ural transformation t from G1 to G2 and for every object a of A holds
(t · F )(a) = t(F (a)).

For simplicity we follow the rules: F , F1, F2, F3 are functors from A to B,
G, G1, G2, G3 are functors from B to C, H, H1, H2 are functors from C to
D, s is a natural transformation from F1 to F2, s′ is a natural transformation
from F2 to F3, t is a natural transformation from G1 to G2, t′ is a natural
transformation from G2 to G3, and u is a natural transformation from H1 to
H2. We now state a number of propositions:

(30) If F1 is naturally transformable to F2, then for every object a of A holds
hom(F1(a), F2(a)) 6= ∅.

(31) If F1 is naturally transformable to F2, then for all natural transfor-
mations t1, t2 from F1 to F2 such that for every object a of A holds
t1(a) = t2(a) holds t1 = t2.

(32) If F1 is naturally transformable to F2 and F2 is naturally transformable
to F3, then G · (s′ ◦ s) = G · s′ ◦ G · s.

(33) If G1 is naturally transformable to G2 and G2 is naturally transformable
to G3, then (t′ ◦ t) · F = t′ · F ◦ t · F .

(34) If H1 is naturally transformable to H2, then (u · G) · F = u · (G · F ).

(35) If G1 is naturally transformable to G2, then (H · t) · F = H · (t · F ).

(36) If F1 is naturally transformable to F2, then (H · G) · s = H · (G · s).

(37) idG · F = id(G·F ).

(38) G · idF = id(G·F ).

(39) If G1 is naturally transformable to G2, then t · idB = t.

(40) If F1 is naturally transformable to F2, then idB · s = s.
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Let us consider A, B, C, F1, F2, G1, G2, s, t. The functor t s yields a natural
transformation from G1 · F1 to G2 · F2 and is defined as follows:

(Def.9) t s = t · F2
◦ G1 · s.

We now state several propositions:

(41) If F1 is naturally transformable to F2 and G1 is naturally transformable
to G2, then t s = G2 · s ◦ t · F1.

(42) If F1 is naturally transformable to F2, then id(idB) s = s.

(43) If G1 is naturally transformable to G2, then t id(idB) = t.

(44) If F1 is naturally transformable to F2 and G1 is naturally transformable
to G2 and H1 is naturally transformable to H2, then u (t s) = (u t) s.

(45) If G1 is naturally transformable to G2, then t · F = t idF .

(46) If F1 is naturally transformable to F2, then G · s = idG s.

(47) If F1 is naturally transformable to F2 and F2 is naturally transformable
to F3 and G1 is naturally transformable to G2 and G2 is naturally trans-
formable to G3, then (t′ ◦ t) (s′ ◦ s) = t′ s′ ◦ t s.

(48) For every functor F from A to B and for every functor G from C to D

and for all functors I, J from B to C such that I ∼= J holds G · I ∼= G · J
and I · F ∼= J · F .

(49) For every functor F from A to B and for every functor G from B to A

and for every functor I from A to A such that I ∼= idA holds F · I ∼= F

and I · G ∼= G.

We now define two new predicates. Let A, B be categories. We say that A

is equivalent with B if and only if:

(Def.10) there exists a functor F from A to B and there exists a functor G from
B to A such that G · F ∼= idA and F · G ∼= idB.

A and B are equivalent stands for A is equivalent with B.

We now state four propositions:

(50) If A ∼= B, then A is equivalent with B.

(51) A is equivalent with A.

(52) If A and B are equivalent, then B and A are equivalent.

(53) If A and B are equivalent and B and C are equivalent, then A and C

are equivalent.

Let us consider A, B. Let us assume that A and B are equivalent. A functor
from A to B is called an equivalence of A and B if:

(Def.11) there exists a functor G from B to A such that G · it ∼= idA and it ·G ∼=
idB.

Next we state several propositions:

(54) idA is an equivalence of A and A.

(55) If A and B are equivalent and B and C are equivalent, then for every
equivalence F of A and B and for every equivalence G of B and C holds
G · F is an equivalence of A and C.
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(56) If A and B are equivalent, then for every equivalence F of A and B

there exists an equivalence G of B and A such that G · F ∼= idA and
F · G ∼= idB.

(57) For every functor F from A to B and for every functor G from B to A

such that G · F ∼= idA holds F is faithful.

(58) If A and B are equivalent, then for every equivalence F of A and B

holds F is full and F is faithful and for every object b of B there exists
an object a of A such that b and F (a) are isomorphic.
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