Real Function One-Side Differantiability

Ewa Burakowska
Warsaw University
Białystok

Beata Madras
Warsaw University
Białystok

Abstract

Summary. We define real function one-side differantiability and one-side continuity. Main properties of one-side differentiability function are proved. Connections between one-side differential and differential real function at the point are demonstrated.

MML Identifier: FDIFF_3.

The terminology and notation used in this paper have been introduced in the following papers: [17], [2], [4], [1], [11], [5], [7], [14], [18], [3], [8], [9], [10], [16], [15], [12], [13], and [6]. For simplicity we follow the rules: h, h_{1}, h_{2} are real sequences convergent to $0, c$ is a constant real sequence, f, f_{1}, f_{2} are partial functions from \mathbb{R} to $\mathbb{R}, x_{0}, r, r_{1}, g, g_{1}, g_{2}$ are real numbers, n is a natural number, and a is a sequence of real numbers. The following propositions are true:
(1) If there exists r such that $r>0$ and $\left[x_{0}-r, x_{0}\right] \subseteq \operatorname{dom} f$, then there exist h, c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every n holds $h(n)<0$.
(2) If there exists r such that $r>0$ and $\left[x_{0}, x_{0}+r\right] \subseteq \operatorname{dom} f$, then there exist h, c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every n holds $h(n)>0$.
(3) Suppose For all h, c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every n holds $h(n)<0$ holds $h^{-1}(f \cdot(h+c)-f \cdot c)$ is convergent and $\left\{x_{0}\right\} \subseteq \operatorname{dom} f$. Given h_{1}, h_{2}, c. Suppose $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}\left(h_{1}+c\right) \subseteq$ $\operatorname{dom} f$ and for every n holds $h_{1}(n)<0$ and $\operatorname{rng}\left(h_{2}+c\right) \subseteq \operatorname{dom} f$ and for every n holds $h_{2}(n)<0$. Then $\lim \left(h_{1}^{-1}\left(f \cdot\left(h_{1}+c\right)-f \cdot c\right)\right)=$ $\lim \left(h_{2}^{-1}\left(f \cdot\left(h_{2}+c\right)-f \cdot c\right)\right)$.
(4) Suppose For all h, c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every n holds $h(n)>0$ holds $h^{-1}(f \cdot(h+c)-f \cdot c)$ is convergent and $\left\{x_{0}\right\} \subseteq \operatorname{dom} f$. Given h_{1}, h_{2}, c. Suppose $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}\left(h_{1}+c\right) \subseteq$
$\operatorname{dom} f$ and $\operatorname{rng}\left(h_{2}+c\right) \subseteq \operatorname{dom} f$ and for every n holds $h_{1}(n)>0$ and for every n holds $h_{2}(n)>0$. Then $\lim \left(h_{1}^{-1}\left(f \cdot\left(h_{1}+c\right)-f \cdot c\right)\right)=$ $\lim \left(h_{2}^{-1}\left(f \cdot\left(h_{2}+c\right)-f \cdot c\right)\right)$.
We now define four new predicates. Let us consider f, x_{0}. We say that f is left continous in x_{0} if and only if:
(Def.1) $\quad x_{0} \in \operatorname{dom} f$ and for every a such that $\left.\operatorname{rng} a \subseteq\right]-\infty, x_{0}[\cap \operatorname{dom} f$ and a is convergent and $\lim a=x_{0}$ holds $f \cdot a$ is convergent and $f\left(x_{0}\right)=\lim (f \cdot a)$.
We say that f is right continous in x_{0} if and only if:
(Def.2) $\quad x_{0} \in \operatorname{dom} f$ and for every a such that rng $\left.a \subseteq\right] x_{0},+\infty[\cap \operatorname{dom} f$ and a is convergent and $\lim a=x_{0}$ holds $f \cdot a$ is convergent and $f\left(x_{0}\right)=\lim (f \cdot a)$.
We say that f is right differentiable in x_{0} if and only if the conditions (Def.3) is satisfied.
(Def.3) (i) There exists r such that $r>0$ and $\left[x_{0}, x_{0}+r\right] \subseteq \operatorname{dom} f$,
(ii) for all h, c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every n holds $h(n)>0$ holds $h^{-1}(f \cdot(h+c)-f \cdot c)$ is convergent.
We say that f is left differentiable in x_{0} if and only if the conditions (Def.4) is satisfied.
(Def.4) (i) There exists r such that $r>0$ and $\left[x_{0}-r, x_{0}\right] \subseteq \operatorname{dom} f$,
(ii) for all h, c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every n holds $h(n)<0$ holds $h^{-1}(f \cdot(h+c)-f \cdot c)$ is convergent.
One can prove the following propositions:
(5) If f is left differentiable in x_{0}, then f is left continous in x_{0}.
(6) Suppose f is left continous in x_{0} and $f\left(x_{0}\right) \neq g_{2}$ and there exists r such that $r>0$ and $\left[x_{0}-r, x_{0}\right] \subseteq \operatorname{dom} f$. Then there exists r_{1} such that $r_{1}>0$ and $\left[x_{0}-r_{1}, x_{0}\right] \subseteq \operatorname{dom} f$ and for every g such that $g \in\left[x_{0}-r_{1}, x_{0}\right]$ holds $f(g) \neq g_{2}$.
(7) If f is right differentiable in x_{0}, then f is right continous in x_{0}.
(8) Suppose f is right continous in x_{0} and $f\left(x_{0}\right) \neq g_{2}$ and there exists r such that $r>0$ and $\left[x_{0}, x_{0}+r\right] \subseteq \operatorname{dom} f$. Then there exists r_{1} such that $r_{1}>0$ and $\left[x_{0}, x_{0}+r_{1}\right] \subseteq \operatorname{dom} f$ and for every g such that $g \in\left[x_{0}, x_{0}+r_{1}\right]$ holds $f(g) \neq g_{2}$.
Let us consider x_{0}, f. Let us assume that f is left differentiable in x_{0}. The functor $f_{-}^{\prime}\left(x_{0}\right)$ yielding a real number is defined by:
(Def.5) for all h, c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every n holds $h(n)<0$ holds $f_{-}^{\prime}\left(x_{0}\right)=\lim \left(h^{-1}(f \cdot(h+c)-f \cdot c)\right)$.
Let us consider x_{0}, f. Let us assume that f is right differentiable in x_{0}. The functor $f_{+}^{\prime}\left(x_{0}\right)$ yields a real number and is defined by:
(Def.6) for all h, c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every n holds $h(n)>0$ holds $f_{+}^{\prime}\left(x_{0}\right)=\lim \left(h^{-1}(f \cdot(h+c)-f \cdot c)\right)$.
The following propositions are true:
(9) $\quad f$ is left differentiable in x_{0} and $f_{-}^{\prime}\left(x_{0}\right)=g$ if and only if the following conditions are satisfied:
(i) there exists r such that $0<r$ and $\left[x_{0}-r, x_{0}\right] \subseteq \operatorname{dom} f$,
(ii) for all h, c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every n holds $h(n)<0$ holds $h^{-1}(f \cdot(h+c)-f \cdot c)$ is convergent and $\lim \left(h^{-1}(f \cdot(h+c)-f \cdot c)\right)=g$.
(10) If f_{1} is left differentiable in x_{0} and f_{2} is left differentiable in x_{0}, then $f_{1}+f_{2}$ is left differentiable in x_{0} and $\left(f_{1}+f_{2}\right)_{-}^{\prime}\left(x_{0}\right)=f_{1}{ }_{-}\left(x_{0}\right)+f_{2}{ }_{-}\left(x_{0}\right)$.
(11) If f_{1} is left differentiable in x_{0} and f_{2} is left differentiable in x_{0}, then $f_{1}-f_{2}$ is left differentiable in x_{0} and $\left(f_{1}-f_{2}\right)_{-}^{\prime}\left(x_{0}\right)=f_{1-}^{\prime}\left(x_{0}\right)-f_{2}^{\prime}{ }_{-}\left(x_{0}\right)$.
(12) If f_{1} is left differentiable in x_{0} and f_{2} is left differentiable in x_{0}, then $f_{1} f_{2}$ is left differentiable in x_{0} and $\left(f_{1} f_{2}\right)_{-}^{\prime}\left(x_{0}\right)=f_{1-}^{\prime}\left(x_{0}\right) \cdot f_{2}\left(x_{0}\right)+$ $f_{2}{ }_{-}^{\prime}\left(x_{0}\right) \cdot f_{1}\left(x_{0}\right)$.
(13) If f_{1} is left differentiable in x_{0} and f_{2} is left differentiable in x_{0} and $f_{2}\left(x_{0}\right) \neq 0$, then $\frac{f_{1}}{f_{2}}$ is left differentiable in x_{0} and $\left(\frac{f_{1}}{f_{2}}\right)_{-}^{\prime}\left(x_{0}\right)=\frac{f_{1}{ }^{\prime}\left(x_{0}\right) \cdot f_{2}\left(x_{0}\right)-f_{2}{ }^{\prime}\left(x_{0}\right) \cdot f_{1}\left(x_{0}\right)}{f_{2}\left(x_{0}\right)^{2}}$.
(14) If f is left differentiable in x_{0} and $f\left(x_{0}\right) \neq 0$, then $\frac{1}{f}$ is left differentiable in x_{0} and $\left(\frac{1}{f}\right)_{-}^{\prime}\left(x_{0}\right)=-\frac{f_{-}^{\prime}\left(x_{0}\right)}{f\left(x_{0}\right)^{2}}$.
(15) f is right differentiable in x_{0} and $f_{+}^{\prime}\left(x_{0}\right)=g_{1}$ if and only if the following conditions are satisfied:
(i) there exists r such that $r>0$ and $\left[x_{0}, x_{0}+r\right] \subseteq \operatorname{dom} f$,
(ii) for all h, c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every n holds $h(n)>0$ holds $h^{-1}(f \cdot(h+c)-f \cdot c)$ is convergent and $\lim \left(h^{-1}(f \cdot(h+c)-f \cdot c)\right)=g_{1}$.
(16) If f_{1} is right differentiable in x_{0} and f_{2} is right differentiable in x_{0}, then $f_{1}+f_{2}$ is right differentiable in x_{0} and $\left(f_{1}+f_{2}\right)_{+}^{\prime}\left(x_{0}\right)=f_{1+}^{\prime}\left(x_{0}\right)+f_{2}^{\prime}\left(x_{0}\right)$.
If f_{1} is right differentiable in x_{0} and f_{2} is right differentiable in x_{0}, then $f_{1}-f_{2}$ is right differentiable in x_{0} and $\left(f_{1}-f_{2}\right)_{+}^{\prime}\left(x_{0}\right)=f_{1+}^{\prime}\left(x_{0}\right)-f_{2}^{\prime}{ }_{+}\left(x_{0}\right)$.
(18) If f_{1} is right differentiable in x_{0} and f_{2} is right differentiable in x_{0}, then $f_{1} f_{2}$ is right differentiable in x_{0} and $\left(f_{1} f_{2}\right)_{+}^{\prime}\left(x_{0}\right)=f_{1+}^{\prime}\left(x_{0}\right) \cdot f_{2}\left(x_{0}\right)+$ $f_{2}^{\prime}{ }_{+}^{\prime}\left(x_{0}\right) \cdot f_{1}\left(x_{0}\right)$.
(19) If f_{1} is right differentiable in x_{0} and f_{2} is right differentiable in x_{0} and $f_{2}\left(x_{0}\right) \neq 0$, then $\frac{f_{1}}{f_{2}}$ is right differentiable in x_{0} and $\left(\frac{f_{1}}{f_{2}}\right)_{+}^{\prime}\left(x_{0}\right)=$ $\frac{f_{1_{+}^{\prime}}^{\prime}\left(x_{0}\right) \cdot f_{2}\left(x_{0}\right)-f_{2_{+}^{\prime}}^{\prime}\left(x_{0}\right) \cdot f_{1}\left(x_{0}\right)}{f_{2}\left(x_{0}\right)^{2}}$.
(20) If f is right differentiable in x_{0} and $f\left(x_{0}\right) \neq 0$, then $\frac{1}{f}$ is right differentiable in x_{0} and $\left(\frac{1}{f}\right)_{+}^{\prime}\left(x_{0}\right)=-\frac{f_{+}^{\prime}\left(x_{0}\right)}{f\left(x_{0}\right)^{2}}$.
(21) If f is right differentiable in x_{0} and f is left differentiable in x_{0} and $f_{+}^{\prime}\left(x_{0}\right)=f_{-}^{\prime}\left(x_{0}\right)$, then f is differentiable in x_{0} and $f^{\prime}\left(x_{0}\right)=f_{+}^{\prime}\left(x_{0}\right)$ and $f^{\prime}\left(x_{0}\right)=f_{-}^{\prime}\left(x_{0}\right)$.
(22) If f is differentiable in x_{0}, then f is right differentiable in x_{0} and f is left differentiable in x_{0} and $f^{\prime}\left(x_{0}\right)=f_{+}^{\prime}\left(x_{0}\right)$ and $f^{\prime}\left(x_{0}\right)=f_{-}^{\prime}\left(x_{0}\right)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[6] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
[7] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[8] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[9] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[10] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
[11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[12] Jarosław Kotowicz and Konrad Raczkowski. Real function differentiability - Part II. Formalized Mathematics, 2(3):407-411, 1991.
[13] Andrzej Nẹdzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[14] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[15] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[16] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[18] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Received December 12, 1991

