
FORMALIZED MATHEMATICS

Vol.2,No.5, November–December 1991

Université Catholique de Louvain

Similarity of Formulae

Agata Darmochwa l

Warsaw University

Andrzej Trybulec

Warsaw University

Bia lystok

Summary. The main objective of the paper is to define the con-
cept of the similarity of formulas. We mean by similar formulas the two
formulas that differs only in the names of bound variables. Some authors
(compare [16]) call such formulas congruent. We use the word similar
following [14,12,15]. The concept is unjustfully neglected in many logi-
cal handbooks. It is intuitively quite clear, however the exact definition
is not simple. As far as we know, only W.A.Pogorzelski and T.Prucnal
[15] define it in the precise way. We follow basically the Pogorzelski’s
definition (compare [14]). We define renumaration of bound variables
and we say that two formulas are similar if after renumaration are equal.
Therefore we need a rule of chosing bound variables independent of the
original choice. Quite obvious solution is to use consecutively variables
xk+1, xk+2, . . ., where k is the maximal index of free variable occurring in
the formula. Therefore after the renumaration we get the new formula in
which different quantifiers bind different variables. It is the reason that
the result of renumaration applied to a formula ϕ we call ϕ with variables
separated.

MML Identifier: CQC SIM1.

The notation and terminology used in this paper are introduced in the following
articles: [23], [27], [20], [24], [19], [13], [5], [6], [18], [3], [10], [26], [21], [11],
[2], [25], [22], [8], [17], [1], [9], [4], and [7]. One can prove the following four
propositions:

(1) For arbitrary x, y and for every function f holds (f +· ({x} 7−→ y)) ◦

{x} = {y}.

(2) For all sets K, L and for arbitrary x, y and for every function f holds
(f +· (L 7−→ y)) ◦ K ⊆ f ◦ K ∪ {y}.

(3) For arbitrary x, y and for every function g and for every set A holds
(g +· ({x} 7−→ y)) ◦ (A \ {x}) = g ◦ (A \ {x}).

(4) For arbitrary x, y and for every function g and for every set A such
that y /∈ g ◦ (A \ {x}) holds (g +· ({x} 7−→ y)) ◦ (A \ {x}) = (g +· ({x} 7−→
y)) ◦ A \ {y}.

635
c© 1991 Fondation Philippe le Hodey

ISSN 0777–4028

636 agata darmochwa l and andrzej trybulec

For simplicity we follow the rules: p, q, r, s denote elements of CQC-WFF , x
denotes an element of BoundVar , i, k, l, m, n denote elements of � , l1 denotes
a variables list of k, and P denotes a k-ary predicate symbol. The following
propositions are true:

(5) If p is atomic, then there exist k, P , l1 such that p = P [l1].

(6) If p is negative, then there exists q such that p = ¬q.

(7) If p is conjunctive, then there exist q, r such that p = q ∧ r.

(8) If p is universal, then there exist x, q such that p = ∀xq.

(9) For every non-empty set D and for every finite sequence l of elements
of D holds rng l = {l(i) : 1 ≤ i ∧ i ≤ len l}.

In this article we present several logical schemes. The scheme NUBFuncExD

deals with a non-empty set A, a non-empty set B, and a binary predicate P,
and states that:

there exists a function f from A into B such that for every element e of A
holds P[e, f(e)]

provided the parameters satisfy the following condition:

• for every element e of A there exists an element u of B such that
P[e, u].

The scheme NUBFuncEx2D deals with a non-empty set A, a non-empty set
B, a non-empty set C, and a ternary predicate P, and states that:

there exists a function f from [:A, B :] into C such that for every element x
of A and for every element y of B holds P[x, y, f(〈〈x, y〉〉)]
provided the parameters meet the following condition:

• for every element x of A and for every element y of B there exists
an element u of C such that P[x, y, u].

The scheme QC Func ExN deals with a non-empty set A, an element B of
A, a unary functor F yielding an element of A, a binary functor G yielding
an element of A, a ternary functor H yielding an element of A, and a binary
functor I yielding an element of A and states that:

there exists a function F from WFF into A such that for every element p of
WFF and for all elements d1, d2 of A holds if p = VERUM, then F (p) = B but
if p is atomic, then F (p) = F(p) but if p is negative and d1 = F (Arg(p)),
then F (p) = G(d1, p) but if p is conjunctive and d1 = F (LeftArg(p)) and
d2 = F (RightArg(p)), then F (p) = H(d1, d2, p) but if p is universal and d1 =
F (Scope(p)), then F (p) = I(d1, p)

for all values of the parameters.

The scheme CQCF2 Func Ex deals with a non-empty set A, a non-empty set
B, an element C of BA, a ternary functor F yielding an element of BA, a binary
functor G yielding an element of BA, a 4-ary functor H yielding an element of
BA, and a ternary functor I yielding an element of BA and states that:

there exists a function F from CQC-WFF into BA such that F (VERUM) =
C and for every k and for every variables list l of k and for every k-ary predicate
symbol P holds F (P [l]) = F(k, P, l) and for all r, s, x and for all functions f ,

similarity of formulae 637

g from A into B such that f = F (r) and g = F (s) holds F (¬r) = G(f, r) and
F (r ∧ s) = H(f, g, r, s) and F (∀xr) = I(x, f, r)
for all values of the parameters.

The scheme CQCF2 FUniq concerns a non-empty set A, a non-empty set B,
a function C from CQC-WFF into BA, a function D from CQC-WFF into BA,
a function E from A into B, a ternary functor F yielding a function from A
into B, a binary functor G yielding a function from A into B, a 4-ary functor H
yielding a function from A into B, and a ternary functor I yielding a function
from A into B and states that:

C = D
provided the parameters meet the following requirements:

• C(VERUM) = E ,
• for all k, l1, P holds C(P [l1]) = F(k, P, l1),
• Given r, s, x. Then for all functions f , g from A into B such that

f = C(r) and g = C(s) holds C(¬r) = G(f, r) and C(r ∧ s) = H(f,
g, r, s) and C(∀xr) = I(x, f, r),

• D(VERUM) = E ,
• for all k, l1, P holds D(P [l1]) = F(k, P, l1),
• Given r, s, x. Then for all functions f , g from A into B such that

f = D(r) and g = D(s) holds D(¬r) = G(f, r) and D(r∧ s) = H(f,
g, r, s) and D(∀xr) = I(x, f, r).

We now state four propositions:

(10) p is a subformula of ¬p.

(11) p is a subformula of p ∧ q and q is a subformula of p ∧ q.

(12) p is a subformula of ∀xp.

(13) For every variables list l of k and for every i such that 1 ≤ i and i ≤ len l
holds l(i) ∈ BoundVar.

Let D be a non-empty set, and let f be a function from D into CQC-WFF .
The functor NEG(f) yielding an element of CQC-WFFD is defined as follows:

(Def.1) for every element a of D and for every element p of CQC-WFF such
that p = f(a) holds (NEG(f))(a) = ¬p.

In the sequel f , h will denote elements of BoundVarBoundVar and K will
denote a finite subset of BoundVar . Let f , g be functions from

[: � , BoundVarBoundVar :] into CQC-WFF , and let n be a natural number.

The functor CON(f, g, n) yields an element of CQC-WFF[: � ,BoundVarBoundVar :]

and is defined by:

(Def.2) for all k, h, p, q such that p = f(〈〈k, h〉〉) and q = g(〈〈k + n, h〉〉) holds
(CON(f, g, n))(〈〈k, h〉〉) = p ∧ q.

Let f be a function from [: � , BoundVarBoundVar :] into CQC-WFF , and
let x be a bound variable. The functor UNIV(x, f) yielding an element of

CQC-WFF[: � ,BoundVarBoundVar :] is defined by:

(Def.3) for all k, h, p such that p = f(〈〈k + 1, h +· ({x} 7−→ xk)〉〉) holds
(UNIV(x, f))(〈〈k, h〉〉) = ∀xk

p.

638 agata darmochwa l and andrzej trybulec

Let us consider k, and let l be a variables list of k, and let f be an element
of BoundVarBoundVar . Then f · l is a variables list of k.

Let us consider k, and let P be a k-ary predicate symbol, and let l be a
variables list of k. The functor ATOM(P, l) yields an element of

CQC-WFF[: � ,BoundVarBoundVar :]

and is defined as follows:

(Def.4) for all n, h holds (ATOM(P, l))(〈〈n, h〉〉) = P [h · l].

Let us consider p. The number of quantifiers in p yields an element of � and
is defined by the condition (Def.5).

(Def.5) There exists a function F from CQC-WFF into � such that the number
of quantifiers in p = F (p) and for all r, s, x, k and for every variables
list l of k and for every k-ary predicate symbol P and for all elements r ′,
s′ of � such that r′ = F (r) and s′ = F (s) holds F (VERUM) = 0 and
F (P [l]) = 0 and F (¬r) = r′ and F (r ∧ s) = r′ + s′ and F (∀xr) = r′ + 1.

Let f be a function from CQC-WFF into

CQC-WFF[: � ,BoundVarBoundVar :] ,

and let x be an element of CQC-WFF . Then f(x) is an element of CQC-WFF[: � ,BoundVarBoundVar :]

The function Renum from CQC-WFF into CQC-WFF[: � ,BoundVarBoundVar :] is
defined by the conditions (Def.6).

(Def.6) (i) Renum(VERUM) = [: � , BoundVarBoundVar :] 7−→ VERUM,
(ii) for every k and for every variables list l of k and for every k-ary

predicate symbol P holds Renum(P [l]) = ATOM(P, l),
(iii) for all r, s, x and for all functions f , g from [: � , BoundVarBoundVar :]

into CQC-WFF such that f = Renum(r) and g = Renum(s) holds
Renum(¬r) = NEG(f) and Renum(r ∧ s) = CON(f, g, the number of
quantifiers in r) and Renum(∀xr) = UNIV(x, f).

Let us consider p, k, f . The functor Renumk,f (p) yields an element of
CQC-WFF and is defined by:

(Def.7) Renumk,f (p) = Renum(p)(〈〈k, f〉〉).

Next we state several propositions:

(14) The number of quantifiers in VERUM = 0.

(15) The number of quantifiers in P [l1] = 0.

(16) The number of quantifiers in ¬p = the number of quantifiers in p.

(17) The number of quantifiers in p ∧ q = (the number of quantifiers in
p) + (the number of quantifiers in q).

(18) The number of quantifiers in ∀xp = (the number of quantifiers in p)+1.

Let A be a non-empty subset of � . The functor minA yields a natural
number and is defined by:

(Def.8) minA ∈ A and for every k such that k ∈ A holds min A ≤ k.

We now state two propositions:

similarity of formulae 639

(19) For all non-empty subsets A, B of � such that A ⊆ B holds min B ≤
minA.

(20) For every element p of WFF holds snb(p) is finite.

The scheme MaxFinDomElem concerns a non-empty set A, a set B, and a
binary predicate P, and states that:

there exists an element x of A such that x ∈ B and for every element y of A
such that y ∈ B holds P[x, y]
provided the parameters meet the following requirements:

• B is finite and B 6= ∅ and B ⊆ A,
• for all elements x, y of A holds P[x, y] or P[y, x],
• for all elements x, y, z of A such that P[x, y] and P[y, z] holds P[x,

z].
Let us consider p. The functor NBI(p) yielding a non-empty subset of � is

defined as follows:

(Def.9) NBI(p) = {k :
∧

i[k ≤ i ⇒ xi /∈ snb(p)]}.

Let us consider p. The functor |• : p| � yielding a natural number is defined
as follows:

(Def.10) |• : p| � = min NBI(p).

Next we state several propositions:

(21) |• : p| � = 0 if and only if p is closed.

(22) If xi ∈ snb(p), then i < |• : p| � .

(23) |• : VERUM | � = 0.

(24) |• : ¬p| � = |• : p| � .

(25) |• : p| � ≤ |• : p ∧ q| � and |• : q| � ≤ |• : p ∧ q| � .

Let C be a non-empty set, and let D be a non-empty subset of C. Then idD

is an element of DD.

Let us consider p. The functor p with variables separated yielding an element
of CQC-WFF is defined as follows:

(Def.11) p with variables separated = Renum|•:p| ,idBoundVar
(p).

The following proposition is true

(26) VERUM with variables separated = VERUM.

The scheme CQCInd deals with a unary predicate P, and states that:
for every r holds P[r]

provided the following requirements are met:
• P[VERUM],
• for every k and for every variables list l of k and for every k-ary

predicate symbol P holds P[P [l]],
• for every r such that P[r] holds P[¬r],
• for all r, s such that P[r] and P[s] holds P[r ∧ s],
• for all r, x such that P[r] holds P[∀xr].
We now state four propositions:

640 agata darmochwa l and andrzej trybulec

(27) P [l1] with variables separated = P [l1].

(28) If p is atomic, then p with variables separated = p.

(29) ¬p with variables separated = ¬(p with variables separated).

(30) If p is negative and q = Arg(p), then p with variables separated =
¬(q with variables separated).

Let us consider p, and let X be a subset of [: CQC-WFF, � , Fin BoundVar,
BoundVarBoundVar :]. We say that X is closed w.r.t. p if and only if the conditions
(Def.12) is satisfied.

(Def.12) (i) 〈〈p, |• : p| � , ∅BoundVar, idBoundVar〉〉 ∈ X,
(ii) for all q, k, K, f such that 〈〈¬q, k,K, f〉〉 ∈ X holds 〈〈q, k,K, f〉〉 ∈ X,
(iii) for all q, r, k, K, f such that 〈〈q∧r, k,K, f〉〉 ∈ X holds 〈〈q, k,K, f〉〉 ∈ X

and 〈〈r, k + the number of quantifiers in q,K, f〉〉 ∈ X,
(iv) for all q, x, k, K, f such that 〈〈∀xq, k,K, f〉〉 ∈ X holds 〈〈q, k + 1,K ∪

{x}, f +· ({x} 7−→ xk)〉〉 ∈ X.

Let D be a non-empty set, and let x be an element of D. Then {x} is an
element of Fin D.

Let us consider p. The functor Quadruplesp yields a subset of [: CQC-WFF,

� , Fin BoundVar, BoundVarBoundVar :] and is defined by:

(Def.13) Quadruplesp is closed w.r.t. p and for every subset D of [: CQC-WFF,

� , Fin BoundVar, BoundVarBoundVar :] such that D is closed w.r.t. p holds
Quadruplesp ⊆ D.

One can prove the following propositions:

(31) 〈〈p, |• : p| � , ∅BoundVar, idBoundVar〉〉 ∈ Quadruplesp.

(32) For all q, k, K, f such that 〈〈¬q, k,K, f〉〉 ∈ Quadruplesp holds
〈〈q, k,K, f〉〉 ∈ Quadruplesp.

(33) For all q, r, k, K, f such that 〈〈q ∧ r, k,K, f〉〉 ∈ Quadruplesp holds
〈〈q, k,K, f〉〉 ∈ Quadruplesp and 〈〈r, k + the number of quantifiers in
q,K, f〉〉 ∈ Quadruplesp.

(34) For all q, x, k, K, f such that 〈〈∀xq, k,K, f〉〉 ∈ Quadruplesp holds
〈〈q, k + 1,K ∪ {x}, f +· ({x} 7−→ xk)〉〉 ∈ Quadruplesp.

(35) Suppose 〈〈q, k,K, f〉〉 ∈ Quadruplesp. Then
(i) 〈〈q, k,K, f〉〉 = 〈〈p, |• : p| � , ∅BoundVar, idBoundVar〉〉, or
(ii) 〈〈¬q, k,K, f〉〉 ∈ Quadruplesp, or
(iii) there exists r such that 〈〈q ∧ r, k,K, f〉〉 ∈ Quadruplesp, or
(iv) there exist r, l such that k = l + the number of quantifiers in r and

〈〈r ∧ q, l,K, f〉〉 ∈ Quadruplesp, or
(v) there exist x, l, h such that l + 1 = k and h +· ({x} 7−→ xl) = f but

〈〈∀xq, l,K, h〉〉 ∈ Quadruplesp or 〈〈∀xq, l,K \ {x}, h〉〉 ∈ Quadruplesp.

The scheme Sep regression deals with an element A of CQC-WFF, and a
4-ary predicate P, and states that:

for all q, k, K, f such that 〈〈q, k,K, f〉〉 ∈ QuadruplesA holds P[q, k,K, f]
provided the following conditions are met:

similarity of formulae 641

• P[A, |• : A| � , ∅BoundVar, idBoundVar],
• for all q, k, K, f such that 〈〈¬q, k,K, f〉〉 ∈ QuadruplesA and P[¬q,

k,K, f] holds P[q, k,K, f],
• for all q, r, k, K, f such that 〈〈q ∧ r, k,K, f〉〉 ∈ QuadruplesA

and P[q ∧ r, k,K, f] holds P[q, k,K, f] and P[r, k + the number of
quantifiers in q,K, f],

• for all q, x, k, K, f such that 〈〈∀xq, k,K, f〉〉 ∈ QuadruplesA and
P[∀xq, k,K, f] holds P[q, k + 1,K ∪ {x}, f +· ({x} 7−→ xk)].

We now state a number of propositions:

(36) For all q, k, K, f such that 〈〈q, k,K, f〉〉 ∈ Quadruplesp holds q is a
subformula of p.

(37) QuadruplesVERUM = {〈〈VERUM, 0, ∅BoundVar , idBoundVar〉〉}.

(38) For every k and for every variables list l of k and for every k-ary pred-
icate symbol P holds
QuadruplesP [l] = {〈〈P [l], |• : P [l]| � , ∅BoundVar, idBoundVar〉〉}.

(39) For all q, k, K, f such that 〈〈q, k,K, f〉〉 ∈ Quadruplesp holds snb(q) ⊆
snb(p) ∪ K.

(40) If 〈〈q,m,K, f〉〉 ∈ Quadruplesp and xi ∈ f ◦ K, then i < m.

(41) If 〈〈q,m,K, f〉〉 ∈ Quadruplesp, then xm /∈ f ◦ K.

(42) If 〈〈q,m,K, f〉〉 ∈ Quadruplesp and xi ∈ f ◦ snb(p), then i < m.

(43) If 〈〈q,m,K, f〉〉 ∈ Quadruplesp and xi ∈ f ◦ snb(q), then i < m.

(44) If 〈〈q,m,K, f〉〉 ∈ Quadruplesp, then xm /∈ f ◦ snb(q).

(45) snb(p) = snb(p with variables separated).

(46) |• : p| � = |• : p with variables separated | � .

Let us consider p, q. We say that p and q are similar if and only if:

(Def.14) p with variables separated = q with variables separated.

One can prove the following propositions:

(47) p and p are similar.

(48) If p and q are similar, then q and p are similar.

(49) If p and q are similar and q and r are similar, then p and r are similar.

References

[1] Grzegorz Bancerek. Connectives and subformulae of the first order language. Formalized
Mathematics, 1(3):451–458, 1990.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-
ematics, 1(1):41–46, 1990.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[4] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–
676, 1990.

[5] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,
1(1):55–65, 1990.

[6] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

642 agata darmochwa l and andrzej trybulec

[7] Czes law Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[8] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[9] Czes law Byliński and Grzegorz Bancerek. Variables in formulae of the first order lan-

guage. Formalized Mathematics, 1(3):459–469, 1990.
[10] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[12] W lodzimierz Lesisz and Witold A. Pogorzelski. A simplified definition of the notion of

similarity between formulas of the first order predicate calculus. Reports on Mathematical
Logic, (7):63–69, 1976.

[13] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[14] Witold A. Pogorzelski. Klasyczny Rachunek Predykatów. PWN, Warszawa, 1981.
[15] Witold A. Pogorzelski and Tadeusz Prucnal. The substitution rule for predicate letters

in the first-order predicate calculus. Reports on Mathematical Logic, (5):77–90, 1975.
[16] Helena Rasiowa and Roman Sikorski. The Mathematics of Metamathematics. Volume 41

of Monografie Matematyczne, PWN, Warszawa, 1968.
[17] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics,

1(2):303–311, 1990.
[18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[20] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[21] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,

1(3):495–500, 1990.
[22] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics,

1(2):369–376, 1990.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[24] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.
[25] Andrzej Trybulec and Czes law Byliński. Some properties of real numbers. Formalized

Mathematics, 1(3):445–449, 1990.
[26] Andrzej Trybulec and Agata Darmochwa l. Boolean domains. Formalized Mathematics,

1(1):187–190, 1990.
[27] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received November 22, 1991

