Products and Coproducts in Categories

Czesław Byliński
Warsaw University
Białystok

Abstract

Summary. A product and coproduct in categories are introduced. The concepts included corresponds to that presented in [7].

MML Identifier: CAT_3.

The papers [9], [1], [2], [8], [4], [6], [3], and [5] provide the notation and terminology for this paper.

1. INDEXED FAMILIES

For simplicity we adopt the following rules: I will be a set, $x, x_{1}, x_{2}, y, y_{1}$, y_{2} will be arbitrary, A will be a non-empty set, C, D will be categories, a, b, c, d will be objects of C, and $f, g, h, k, p_{1}, p_{2}, q_{1}, q_{2}, i_{1}, i_{2}, j_{1}, j_{2}$ will be morphisms of C. Let us consider I, x, A, and let F be a function from I into A. Let us assume that $x \in I$. The functor F_{x} yielding an element of A is defined as follows:
$F_{x}=F(x)$.

The scheme $L a m b d a I d x$ deals with a set \mathcal{A}, a set \mathcal{B}, and a unary functor \mathcal{F} yielding an element of \mathcal{B} and states that:
there exists a function F from \mathcal{A} into \mathcal{B} such that for every x such that $x \in \mathcal{A}$ holds $F_{x}=\mathcal{F}(x)$
for all values of the parameters.
The following proposition is true
(1) For all functions F_{1}, F_{2} from I into A such that for every x such that $x \in I$ holds $F_{1 x}=F_{2 x}$ holds $F_{1}=F_{2}$.

The scheme FuncIdx_correctn deals with a set \mathcal{A}, a set \mathcal{B}, and a unary functor \mathcal{F} yielding an element of \mathcal{B} and states that:
(i) there exists a function F from \mathcal{A} into \mathcal{B} such that for every x such that $x \in \mathcal{A}$ holds $F_{x}=\mathcal{F}(x)$,
(ii) for all functions F_{1}, F_{2} from \mathcal{A} into \mathcal{B} such that for every x such that $x \in \mathcal{A}$ holds $F_{1 x}=\mathcal{F}(x)$ and for every x such that $x \in \mathcal{A}$ holds $F_{2 x}=\mathcal{F}(x)$ holds $F_{1}=F_{2}$
for all values of the parameters.
Let us consider A, I, and let a be an element of A. Then $I \longmapsto a$ is a function from I into A.

The following proposition is true
(2) For every element a of A such that $x \in I$ holds $(I \longmapsto a)_{x}=a$.

Let us consider $x_{1}, x_{2}, y_{1}, y_{2}$. The functor $\left[x_{1} \longmapsto y_{1}, x_{2} \longmapsto y_{2}\right]$ yields a function and is defined as follows:
(Def.2) $\quad\left[x_{1} \longmapsto y_{1}, x_{2} \longmapsto y_{2}\right]=\left(\left\{x_{1}\right\} \longmapsto y_{1}\right)+\cdot\left(\left\{x_{2}\right\} \longmapsto y_{2}\right)$.
The following propositions are true:
(3) $\quad \operatorname{dom}\left[x_{1} \longmapsto y_{1}, x_{2} \longmapsto y_{2}\right]=\left\{x_{1}, x_{2}\right\}$ and $\operatorname{rng}\left[x_{1} \longmapsto y_{1}, x_{2} \longmapsto y_{2}\right] \subseteq$ $\left\{y_{1}, y_{2}\right\}$.
(4) If $x_{1} \neq x_{2}$, then $\left[x_{1} \longmapsto y_{1}, x_{2} \longmapsto y_{2}\right]\left(x_{1}\right)=y_{1}$ and $\left[x_{1} \longmapsto y_{1}, x_{2} \longmapsto\right.$ $\left.y_{2}\right]\left(x_{2}\right)=y_{2}$.
(5) If $x_{1} \neq x_{2}$, then $\operatorname{rng}\left[x_{1} \longmapsto y_{1}, x_{2} \longmapsto y_{2}\right]=\left\{y_{1}, y_{2}\right\}$.
(6) $\quad\left[x_{1} \longmapsto y, x_{2} \longmapsto y\right]=\left\{x_{1}, x_{2}\right\} \longmapsto y$.

Let us consider A, x_{1}, x_{2}, and let y_{1}, y_{2} be elements of A. Then $\left[x_{1} \longmapsto\right.$ $\left.y_{1}, x_{2} \longmapsto y_{2}\right]$ is a function from $\left\{x_{1}, x_{2}\right\}$ into A.

The following proposition is true
(7) If $x_{1} \neq x_{2}$, then for all elements y_{1}, y_{2} of A holds $\left[x_{1} \longmapsto y_{1}, x_{2} \longmapsto\right.$ $\left.y_{2}\right]_{x_{1}}=y_{1}$ and $\left[x_{1} \longmapsto y_{1}, x_{2} \longmapsto y_{2}\right]_{x_{2}}=y_{2}$.

2. Indexed families of morphisms

We now define two new functors. Let us consider C, I, and let F be a function from I into the morphisms of C. The functor $\operatorname{dom}_{\kappa} F(\kappa)$ yielding a function from I into the objects of C is defined as follows:
(Def.3) for every x such that $x \in I$ holds $\left(\operatorname{dom}_{\kappa} F(\kappa)\right)_{x}=\operatorname{dom}\left(F_{x}\right)$.
The functor $\operatorname{cod}_{\kappa} F(\kappa)$ yielding a function from I into the objects of C is defined by:
(Def.4) for every x such that $x \in I$ holds $\left(\operatorname{cod}_{\kappa} F(\kappa)\right)_{x}=\operatorname{cod}\left(F_{x}\right)$.
We now state four propositions:

$$
\begin{align*}
& \operatorname{dom}_{\kappa}(I \longmapsto f)(\kappa)=I \longmapsto \operatorname{dom} f . \tag{8}\\
& \operatorname{cod}_{\kappa}(I \longmapsto f)(\kappa)=I \longmapsto \operatorname{cod} f . \\
& \operatorname{dom}_{\kappa}\left[x_{1} \longmapsto p_{1}, x_{2} \longmapsto p_{2}\right](\kappa)=\left[x_{1} \longmapsto \operatorname{dom} p_{1}, x_{2} \longmapsto \operatorname{dom} p_{2}\right] .
\end{align*}
$$

$$
\begin{equation*}
\operatorname{cod}_{\kappa}\left[x_{1} \longmapsto p_{1}, x_{2} \longmapsto p_{2}\right](\kappa)=\left[x_{1} \longmapsto \operatorname{cod} p_{1}, x_{2} \longmapsto \operatorname{cod} p_{2}\right] . \tag{11}
\end{equation*}
$$

Let us consider C, I, and let F be a function from I into the morphisms of C. The functor F^{op} yields a function from I into the morphisms of C^{op} and is defined as follows:
(Def.5) for every x such that $x \in I$ holds $\left(F^{\mathrm{op}}\right)_{x}=\left(F_{x}\right)^{\mathrm{op}}$.
Next we state three propositions:
(12) $\quad(I \longmapsto f)^{\mathrm{op}}=I \longmapsto f^{\mathrm{op}}$.
(13) If $x_{1} \neq x_{2}$, then $\left[x_{1} \longmapsto p_{1}, x_{2} \longmapsto p_{2}\right]^{\mathrm{op}}=\left[x_{1} \longmapsto p_{1}^{\mathrm{op}}, x_{2} \longmapsto p_{2}^{\mathrm{op}}\right]$.
(14) For every function F from I into the morphisms of C holds $\left(F^{\mathrm{op}}\right)^{\mathrm{op}}=F$.

Let us consider C, I, and let F be a function from I into the morphisms of $C^{\text {op }}$. The functor ${ }^{\text {op }} F$ yielding a function from I into the morphisms of C is defined by:
(Def.6) for every x such that $x \in I$ holds $\left({ }^{\mathrm{op}} F\right)_{x}={ }^{\mathrm{op}}\left(F_{x}\right)$.
The following propositions are true:
(15) For every morphism f of C^{op} holds ${ }^{\mathrm{op}}(I \longmapsto f)=I \longmapsto{ }^{\mathrm{op}} f$.
(16) If $x_{1} \neq x_{2}$, then for all morphisms p_{1}, p_{2} of $C^{\text {op }}$ holds ${ }^{\text {op }}\left[x_{1} \longmapsto\right.$ $\left.p_{1}, x_{2} \longmapsto p_{2}\right]=\left[x_{1} \longmapsto{ }^{\mathrm{op}} p_{1}, x_{2} \longmapsto{ }^{\mathrm{op}} p_{2}\right]$.
(17) For every function F from I into the morphisms of C holds ${ }^{\text {op }}\left(F^{\mathrm{op}}\right)=F$.

We now define two new functors. Let us consider C, I, and let F be a function from I into the morphisms of C, and let us consider f. The functor $F \cdot f$ yields a function from I into the morphisms of C and is defined as follows:
(Def.7) for every x such that $x \in I$ holds $(F \cdot f)_{x}=F_{x} \cdot f$.
The functor $f \cdot F$ yielding a function from I into the morphisms of C is defined by:
(Def.8) for every x such that $x \in I$ holds $(f \cdot F)_{x}=f \cdot F_{x}$.
The following four propositions are true:

$$
\begin{equation*}
\text { If } x_{1} \neq x_{2} \text {, then }\left[x_{1} \longmapsto p_{1}, x_{2} \longmapsto p_{2}\right] \cdot f=\left[x_{1} \longmapsto p_{1} \cdot f, x_{2} \longmapsto p_{2} \cdot f\right] \text {. } \tag{18}
\end{equation*}
$$

(19) If $x_{1} \neq x_{2}$, then $f \cdot\left[x_{1} \longmapsto p_{1}, x_{2} \longmapsto p_{2}\right]=\left[x_{1} \longmapsto f \cdot p_{1}, x_{2} \longmapsto f \cdot p_{2}\right]$.
(20) For every function F from I into the morphisms of C such that $\operatorname{dom}_{\kappa} F(\kappa)=$ $I \longmapsto \operatorname{cod} f$ holds $\operatorname{dom}_{\kappa} F \cdot f(\kappa)=I \longmapsto \operatorname{dom} f$ and $\operatorname{cod}_{\kappa} F \cdot f(\kappa)=\operatorname{cod}_{\kappa} F(\kappa)$.
(21) For every function F from I into the morphisms of C such that $\operatorname{cod}_{\kappa} F(\kappa)=$
$I \longmapsto \operatorname{dom} f$ holds
$\operatorname{dom}_{\kappa} f \cdot F(\kappa)=\operatorname{dom}_{\kappa} F(\kappa)$
and $\operatorname{cod}_{\kappa} f \cdot F(\kappa)=I \longmapsto \operatorname{cod} f$.
Let us consider C, I, and let F, G be functions from I into the morphisms of C. The functor $F \cdot G$ yields a function from I into the morphisms of C and is defined by:
(Def.9) for every x such that $x \in I$ holds $(F \cdot G)_{x}=F_{x} \cdot G_{x}$.
We now state four propositions:
(22) For all functions F, G from I into the morphisms of C such that $\operatorname{dom}_{\kappa} F(\kappa)=\operatorname{cod}_{\kappa} G(\kappa)$ holds $\operatorname{dom}_{\kappa} F \cdot G(\kappa)=\operatorname{dom}_{\kappa} G(\kappa)$ and $\operatorname{cod}_{\kappa} F$. $G(\kappa)=\operatorname{cod}_{\kappa} F(\kappa)$.
(23) If $x_{1} \neq x_{2}$, then $\left[x_{1} \longmapsto p_{1}, x_{2} \longmapsto p_{2}\right] \cdot\left[x_{1} \longmapsto q_{1}, x_{2} \longmapsto q_{2}\right]=\left[x_{1} \longmapsto\right.$ $\left.p_{1} \cdot q_{1}, x_{2} \longmapsto p_{2} \cdot q_{2}\right]$.
(24) For every function F from I into the morphisms of C holds $F \cdot f=$ $F \cdot(I \longmapsto f)$.
(25) For every function F from I into the morphisms of C holds $f \cdot F=$ $(I \longmapsto f) \cdot F$.

3. Retractions and coretractions

We now define two new attributes. Let us consider C. A morphism of C is retraction if:
(Def.10) there exists g such that $\operatorname{cod} g=\mathrm{domit}$ and it $\cdot g=\mathrm{id}_{\text {cod it }}$.
A morphism of C is coretraction if:
(Def.11) there exists g such that $\operatorname{dom} g=\operatorname{cod}$ it and $g \cdot \mathrm{it}=\mathrm{id}_{\mathrm{domit}}$.
The following propositions are true:
(26) If f is retraction, then f is epi.
(27) If f is coretraction, then f is monic.
(28) If f is retraction and g is retraction and $\operatorname{dom} g=\operatorname{cod} f$, then $g \cdot f$ is retraction.
(29) If f is coretraction and g is coretraction and $\operatorname{dom} g=\operatorname{cod} f$, then $g \cdot f$ is coretraction.
(30) If $\operatorname{dom} g=\operatorname{cod} f$ and $g \cdot f$ is retraction, then g is retraction.
(31) If $\operatorname{dom} g=\operatorname{cod} f$ and $g \cdot f$ is coretraction, then f is coretraction.
(32) If f is retraction and f is monic, then f is invertible.
(33) If f is coretraction and f is epi, then f is invertible.
(34) f is invertible if and only if f is retraction and f is coretraction.
(35) For every functor T from C to D such that f is retraction holds $T(f)$ is retraction.
(36) For every functor T from C to D such that f is coretraction holds $T(f)$ is coretraction.
(37) f is retraction if and only if $f^{o p}$ is coretraction.
(38) $\quad f$ is coretraction if and only if $f^{\text {op }}$ is retraction.

4. Morphisms determined By a terminal object

Let us consider C, a, b. Let us assume that b is a terminal object. $\left.\right|_{b} a$ is a morphism from a to b.

Next we state three propositions:
(39) If b is a terminal object, then $\left.\operatorname{dom}\right|_{b} a=a$ and $\left.\operatorname{cod}\right|_{b} a=b$.
(40) If b is a terminal object and $\operatorname{dom} f=a$ and $\operatorname{cod} f=b$, then $\left.\right|_{b} a=f$.
(41) For every morphism f from a to b such that b is a terminal object holds $\left.\right|_{b} a=f$.

5. Morphisms determined by an iniatial object

Let us consider C, a, b. Let us assume that a is an initial object. $\left.\right|^{a} b$ is a morphism from a to b.

Next we state three propositions:
(42) If a is an initial object, then $\left.\operatorname{dom}\right|^{a} b=a$ and $\left.\operatorname{cod}\right|^{a} b=b$.
(43) If a is an initial object and $\operatorname{dom} f=a$ and $\operatorname{cod} f=b$, then $\left.\right|^{a} b=f$.
(44) For every morphism f from a to b such that a is an initial object holds $\left.\right|^{a} b=f$.

6. Products

Let us consider C, a, I. A function from I into the morphisms of C is said to be a projections family from a onto I if:
(Def.12) $\quad \operatorname{dom}_{\kappa} \operatorname{it}(\kappa)=I \longmapsto a$.
We now state several propositions:
(45) For every projections family F from a onto I such that $x \in I$ holds $\operatorname{dom}\left(F_{x}\right)=a$.
(46) For every function F from \emptyset into the morphisms of C holds F is a projections family from a onto \emptyset.
(47) If $\operatorname{dom} f=a$, then $\{y\} \longmapsto f$ is a projections family from a onto $\{y\}$.
(48) If $\operatorname{dom} p_{1}=a$ and $\operatorname{dom} p_{2}=a$, then $\left[x_{1} \longmapsto p_{1}, x_{2} \longmapsto p_{2}\right]$ is a projections family from a onto $\left\{x_{1}, x_{2}\right\}$.
(49) For every projections family F from a onto \emptyset holds $F=\square$
(50) For every projections family F from a onto I such that $\operatorname{cod} f=a$ holds $F \cdot f$ is a projections family from $\operatorname{dom} f$ onto I.
(51) For every function F from I into the morphisms of C and for every projections family G from a onto I such that $\operatorname{dom}_{\kappa} F(\kappa)=\operatorname{cod}_{\kappa} G(\kappa)$ holds $F \cdot G$ is a projections family from a onto I.
(52) For every projections family F from $\operatorname{cod} f$ onto I holds $f^{\text {op }} \cdot F^{\mathrm{op}}=$ $(F \cdot f)^{\mathrm{op}}$.
Let us consider C, a, I, and let F be a function from I into the morphisms of C. We say that a is a product w.r.t. F if and only if the conditions (Def.13) is satisfied.
(Def.13) (i) $\quad F$ is a projections family from a onto I,
(ii) for every b and for every projections family F^{\prime} from b onto I such that $\operatorname{cod}_{\kappa} F(\kappa)=\operatorname{cod}_{\kappa} F^{\prime}(\kappa)$ there exists h such that $h \in \operatorname{hom}(b, a)$ and for every k such that $k \in \operatorname{hom}(b, a)$ holds for every x such that $x \in I$ holds $F_{x} \cdot k=F_{x}^{\prime}$ if and only if $h=k$.

One can prove the following propositions:
(53) For every projections family F from c onto I and for every projections family F^{\prime} from d onto I such that c is a product w.r.t. F and d is a product w.r.t. F^{\prime} and $\operatorname{cod}_{\kappa} F(\kappa)=\operatorname{cod}_{\kappa} F^{\prime}(\kappa)$ holds c and d are isomorphic.
(54) For every projections family F from c onto I such that c is a product w.r.t. F and for all x_{1}, x_{2} such that $x_{1} \in I$ and $x_{2} \in I$ holds $\operatorname{hom}\left(\operatorname{cod}\left(F_{x_{1}}\right), \operatorname{cod}\left(F_{x_{2}}\right)\right) \neq \emptyset$ and for every x such that $x \in I$ holds F_{x} is retraction.
(55) For every function F from \emptyset into the morphisms of C holds a is a product w.r.t. F if and only if a is a terminal object.
(56) For every projections family F from a onto I such that a is a product w.r.t. F and $\operatorname{dom} f=b$ and $\operatorname{cod} f=a$ and f is invertible holds b is a product w.r.t. $F \cdot f$.
(57) a is a product w.r.t. $\{y\} \longmapsto \mathrm{id}_{a}$.
(58) For every projections family F from a onto I such that a is a product w.r.t. F and for every x such that $x \in I$ holds $\operatorname{cod}\left(F_{x}\right)$ is a terminal object holds a is a terminal object.
Let us consider C, c, p_{1}, p_{2}. We say that c is a product w.r.t. p_{1} and p_{2} if and only if the conditions (Def.14) is satisfied.
(Def.14) (i) $\operatorname{dom} p_{1}=c$,
(ii) $\operatorname{dom} p_{2}=c$,
(iii) for all d, f, g such that $f \in \operatorname{hom}\left(d, \operatorname{cod} p_{1}\right)$ and $g \in \operatorname{hom}\left(d, \operatorname{cod} p_{2}\right)$ there exists h such that $h \in \operatorname{hom}(d, c)$ and for every k such that $k \in \operatorname{hom}(d, c)$ holds $p_{1} \cdot k=f$ and $p_{2} \cdot k=g$ if and only if $h=k$.

The following propositions are true:
(59) If $x_{1} \neq x_{2}$, then c is a product w.r.t. p_{1} and p_{2} if and only if c is a product w.r.t. $\left[x_{1} \longmapsto p_{1}, x_{2} \longmapsto p_{2}\right]$.
(60) Suppose hom $(c, a) \neq \emptyset$ and $\operatorname{hom}(c, b) \neq \emptyset$. Let p_{1} be a morphism from c to a. Let p_{2} be a morphism from c to b. Then c is a product w.r.t. p_{1} and p_{2} if and only if for every d such that $\operatorname{hom}(d, a) \neq \emptyset$ and $\operatorname{hom}(d, b) \neq \emptyset$ holds $\operatorname{hom}(d, c) \neq \emptyset$ and for every morphism f from d to a and for every morphism g from d to b there exists a morphism h from d to c such that for every morphism k from d to c holds $p_{1} \cdot k=f$ and $p_{2} \cdot k=g$ if and only if $h=k$.
(61) If c is a product w.r.t. p_{1} and p_{2} and d is a product w.r.t. q_{1} and q_{2} and $\operatorname{cod} p_{1}=\operatorname{cod} q_{1}$ and $\operatorname{cod} p_{2}=\operatorname{cod} q_{2}$, then c and d are isomorphic.
(62) If c is a product w.r.t. p_{1} and p_{2} and $\operatorname{hom}\left(\operatorname{cod} p_{1}, \operatorname{cod} p_{2}\right) \neq \emptyset$ and $\operatorname{hom}\left(\operatorname{cod} p_{2}, \operatorname{cod} p_{1}\right) \neq \emptyset$, then p_{1} is retraction and p_{2} is retraction.
(63) If c is a product w.r.t. p_{1} and p_{2} and $h \in \operatorname{hom}(c, c)$ and $p_{1} \cdot h=p_{1}$ and $p_{2} \cdot h=p_{2}$, then $h=\mathrm{id}_{c}$.
(64) If c is a product w.r.t. p_{1} and p_{2} and $\operatorname{dom} f=d$ and $\operatorname{cod} f=c$ and f is invertible, then d is a product w.r.t. $p_{1} \cdot f$ and $p_{2} \cdot f$.
(65) If c is a product w.r.t. p_{1} and p_{2} and $\operatorname{cod} p_{2}$ is a terminal object, then c and $\operatorname{cod} p_{1}$ are isomorphic.
(66) If c is a product w.r.t. p_{1} and p_{2} and $\operatorname{cod} p_{1}$ is a terminal object, then c and $\operatorname{cod} p_{2}$ are isomorphic.

7. Coproducts

Let us consider C, c, I. A function from I into the morphisms of C is said to be a injections family into c on I if:
(Def.15) $\operatorname{cod}_{\kappa} \operatorname{it}(\kappa)=I \longmapsto c$.
We now state a number of propositions:
(67) For every injections family F into c on I such that $x \in I$ holds $\operatorname{cod}\left(F_{x}\right)=$ c.
(68) For every function F from \emptyset into the morphisms of C holds F is a injections family into a on \emptyset.
(69) If $\operatorname{cod} f=a$, then $\{y\} \longmapsto f$ is a injections family into a on $\{y\}$.
(70) If $\operatorname{cod} p_{1}=c$ and $\operatorname{cod} p_{2}=c$, then $\left[x_{1} \longmapsto p_{1}, x_{2} \longmapsto p_{2}\right]$ is a injections family into c on $\left\{x_{1}, x_{2}\right\}$.
(71) For every injections family F into c on \emptyset holds $F=\square$.
(72) For every injections family F into b on I such that $\operatorname{dom} f=b$ holds $f \cdot F$ is a injections family into $\operatorname{cod} f$ on I.
(73) For every injections family F into b on I and for every function G from I into the morphisms of C such that $\operatorname{dom}_{\kappa} F(\kappa)=\operatorname{cod}_{\kappa} G(\kappa)$ holds $F \cdot G$ is a injections family into b on I.
(74) For every function F from I into the morphisms of C holds F is a projections family from c onto I if and only if F^{op} is a injections family into c^{op} on I.
(75) For every function F from I into the morphisms of $C^{\text {op }}$ and for every object c of $C^{\text {op }}$ holds F is a injections family into c on I if and only if ${ }^{\mathrm{op}} F$ is a projections family from ${ }^{\mathrm{op}} c$ onto I.
(76) For every injections family F into $\operatorname{dom} f$ on I holds $F^{\mathrm{op}} \cdot f^{\mathrm{op}}=(f \cdot F)^{\mathrm{op}}$.

Let us consider C, c, I, and let F be a function from I into the morphisms of C. We say that c is a coproduct w.r.t. F if and only if the conditions (Def.16) is satisfied.
(Def.16) (i) $\quad F$ is a injections family into c on I,
(ii) for every d and for every injections family F^{\prime} into d on I such that $\operatorname{dom}_{\kappa} F(\kappa)=\operatorname{dom}_{\kappa} F^{\prime}(\kappa)$ there exists h such that $h \in \operatorname{hom}(c, d)$ and for every k such that $k \in \operatorname{hom}(c, d)$ holds for every x such that $x \in I$ holds $k \cdot F_{x}=F_{x}^{\prime}$ if and only if $h=k$.
One can prove the following propositions:
(77) For every function F from I into the morphisms of C holds c is a product w.r.t. F if and only if c^{op} is a coproduct w.r.t. F^{op}.
(78) For every injections family F into c on I and for every injections family F^{\prime} into d on I such that c is a coproduct w.r.t. F and d is a coproduct w.r.t. F^{\prime} and $\operatorname{dom}_{\kappa} F(\kappa)=\operatorname{dom}_{\kappa} F^{\prime}(\kappa)$ holds c and d are isomorphic.
(79) For every injections family F into c on I such that c is a coproduct w.r.t. F and for all x_{1}, x_{2} such that $x_{1} \in I$ and $x_{2} \in I$ holds $\operatorname{hom}\left(\operatorname{dom}\left(F_{x_{1}}\right), \operatorname{dom}\left(F_{x_{2}}\right)\right) \neq \emptyset$ and for every x such that $x \in I$ holds F_{x} is coretraction.
(80) For every injections family F into a on I such that a is a coproduct w.r.t. F and $\operatorname{dom} f=a$ and $\operatorname{cod} f=b$ and f is invertible holds b is a coproduct w.r.t. $f \cdot F$.
(81) For every injections family F into a on \emptyset holds a is a coproduct w.r.t. F if and only if a is an initial object.
(82) $\quad a$ is a coproduct w.r.t. $\{y\} \longmapsto \mathrm{id}_{a}$.
(83) For every injections family F into a on I such that a is a coproduct w.r.t. F and for every x such that $x \in I$ holds $\operatorname{dom}\left(F_{x}\right)$ is an initial object holds a is an initial object.
Let us consider C, c, i_{1}, i_{2}. We say that c is a coproduct w.r.t. i_{1} and i_{2} if and only if the conditions (Def.17) is satisfied.
(Def.17) (i) $\operatorname{cod} i_{1}=c$,
(ii) $\operatorname{cod} i_{2}=c$,
(iii) for all d, f, g such that $f \in \operatorname{hom}\left(\operatorname{dom} i_{1}, d\right)$ and $g \in \operatorname{hom}\left(\operatorname{dom} i_{2}, d\right)$ there exists h such that $h \in \operatorname{hom}(c, d)$ and for every k such that $k \in$ $\operatorname{hom}(c, d)$ holds $k \cdot i_{1}=f$ and $k \cdot i_{2}=g$ if and only if $h=k$.
We now state several propositions:
(84) c is a product w.r.t. p_{1} and p_{2} if and only if c^{op} is a coproduct w.r.t. $p_{1}{ }^{\text {op }}$ and $p_{2}{ }^{\text {op }}$.
(85) If $x_{1} \neq x_{2}$, then c is a coproduct w.r.t. i_{1} and i_{2} if and only if c is a coproduct w.r.t. $\left[x_{1} \longmapsto i_{1}, x_{2} \longmapsto i_{2}\right]$.
(86) If c is a coproduct w.r.t. i_{1} and i_{2} and d is a coproduct w.r.t. j_{1} and j_{2} and $\operatorname{dom} i_{1}=\operatorname{dom} j_{1}$ and $\operatorname{dom} i_{2}=\operatorname{dom} j_{2}$, then c and d are isomorphic.
(87) $\operatorname{Suppose} \operatorname{hom}(a, c) \neq \emptyset$ and $\operatorname{hom}(b, c) \neq \emptyset$. Let i_{1} be a morphism from a to c. Let i_{2} be a morphism from b to c. Then c is a coproduct w.r.t. i_{1} and i_{2} if and only if for every d such that $\operatorname{hom}(a, d) \neq \emptyset$ and $\operatorname{hom}(b, d) \neq \emptyset$ holds $\operatorname{hom}(c, d) \neq \emptyset$ and for every morphism f from a to d and for every
morphism g from b to d there exists a morphism h from c to d such that for every morphism k from c to d holds $k \cdot i_{1}=f$ and $k \cdot i_{2}=g$ if and only if $h=k$.
(88) If c is a coproduct w.r.t. i_{1} and i_{2} and $\operatorname{hom}\left(\operatorname{dom} i_{1}, \operatorname{dom} i_{2}\right) \neq \emptyset$ and $\operatorname{hom}\left(\operatorname{dom} i_{2}, \operatorname{dom} i_{1}\right) \neq \emptyset$, then i_{1} is coretraction and i_{2} is coretraction.
(89) If c is a coproduct w.r.t. i_{1} and i_{2} and $h \in \operatorname{hom}(c, c)$ and $h \cdot i_{1}=i_{1}$ and $h \cdot i_{2}=i_{2}$, then $h=\operatorname{id}_{c}$.
(90) If c is a coproduct w.r.t. i_{1} and i_{2} and $\operatorname{dom} f=c$ and $\operatorname{cod} f=d$ and f is invertible, then d is a coproduct w.r.t. $f \cdot i_{1}$ and $f \cdot i_{2}$.
(91) If c is a coproduct w.r.t. i_{1} and i_{2} and $\operatorname{dom} i_{2}$ is an initial object, then $\operatorname{dom} i_{1}$ and c are isomorphic.
(92) If c is a coproduct w.r.t. i_{1} and i_{2} and $\operatorname{dom} i_{1}$ is an initial object, then $\operatorname{dom} i_{2}$ and c are isomorphic.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409-420, 1990.
[4] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[5] Czesław Byliński. Opposite categories and contravariant functors. Formalized Mathematics, 2(3):419-424, 1991.
[6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[7] Zbigniew Semadeni and Antoni Wiweger. Wstȩp do teorii kategorii i funktorów. Volume 45 of Biblioteka Matematyczna, PWN, Warszawa, 1978.
[8] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

