Products and Coproducts in Categories

Czesław Byliński Warsaw University Białystok

Summary. A product and coproduct in categories are introduced. The concepts included corresponds to that presented in [7].

MML Identifier: CAT_3.

The papers [9], [1], [2], [8], [4], [6], [3], and [5] provide the notation and terminology for this paper.

1. INDEXED FAMILIES

For simplicity we adopt the following rules: I will be a set, x, x_1, x_2, y, y_1, y_2 will be arbitrary, A will be a non-empty set, C, D will be categories, a, b, c, d will be objects of C, and $f, g, h, k, p_1, p_2, q_1, q_2, i_1, i_2, j_1, j_2$ will be morphisms of C. Let us consider I, x, A, and let F be a function from I into A. Let us assume that $x \in I$. The functor F_x yielding an element of A is defined as follows:

$$(Def.1) \quad F_x = F(x).$$

The scheme LambdaIdx deals with a set \mathcal{A} , a set \mathcal{B} , and a unary functor \mathcal{F} yielding an element of \mathcal{B} and states that:

there exists a function F from \mathcal{A} into \mathcal{B} such that for every x such that $x \in \mathcal{A}$ holds $F_x = \mathcal{F}(x)$

for all values of the parameters.

The following proposition is true

(1) For all functions F_1 , F_2 from I into A such that for every x such that $x \in I$ holds $F_{1x} = F_{2x}$ holds $F_1 = F_2$.

701

© 1991 Fondation Philippe le Hodey ISSN 0777-4028 The scheme $FuncIdx_correctn$ deals with a set \mathcal{A} , a set \mathcal{B} , and a unary functor \mathcal{F} yielding an element of \mathcal{B} and states that:

(i) there exists a function F from \mathcal{A} into \mathcal{B} such that for every x such that $x \in \mathcal{A}$ holds $F_x = \mathcal{F}(x)$,

(ii) for all functions F_1 , F_2 from \mathcal{A} into \mathcal{B} such that for every x such that $x \in \mathcal{A}$ holds $F_{1x} = \mathcal{F}(x)$ and for every x such that $x \in \mathcal{A}$ holds $F_{2x} = \mathcal{F}(x)$ holds $F_1 = F_2$

for all values of the parameters.

Let us consider A, I, and let a be an element of A. Then $I \mapsto a$ is a function from I into A.

The following proposition is true

(2) For every element a of A such that $x \in I$ holds $(I \mapsto a)_x = a$.

Let us consider x_1, x_2, y_1, y_2 . The functor $[x_1 \mapsto y_1, x_2 \mapsto y_2]$ yields a function and is defined as follows:

$$(\text{Def.2}) \quad [x_1 \longmapsto y_1, x_2 \longmapsto y_2] = (\{x_1\} \longmapsto y_1) + (\{x_2\} \longmapsto y_2).$$

The following propositions are true:

- (3) dom $[x_1 \mapsto y_1, x_2 \mapsto y_2] = \{x_1, x_2\}$ and $\operatorname{rng}[x_1 \mapsto y_1, x_2 \mapsto y_2] \subseteq \{y_1, y_2\}.$
- (4) If $x_1 \neq x_2$, then $[x_1 \mapsto y_1, x_2 \mapsto y_2](x_1) = y_1$ and $[x_1 \mapsto y_1, x_2 \mapsto y_2](x_2) = y_2$.
- (5) If $x_1 \neq x_2$, then $\operatorname{rng}[x_1 \longmapsto y_1, x_2 \longmapsto y_2] = \{y_1, y_2\}.$
- (6) $[x_1 \longmapsto y, x_2 \longmapsto y] = \{x_1, x_2\} \longmapsto y.$

Let us consider A, x_1 , x_2 , and let y_1 , y_2 be elements of A. Then $[x_1 \mapsto y_1, x_2 \mapsto y_2]$ is a function from $\{x_1, x_2\}$ into A.

The following proposition is true

(7) If $x_1 \neq x_2$, then for all elements y_1, y_2 of A holds $[x_1 \longmapsto y_1, x_2 \longmapsto y_2]_{x_1} = y_1$ and $[x_1 \longmapsto y_1, x_2 \longmapsto y_2]_{x_2} = y_2$.

2. INDEXED FAMILIES OF MORPHISMS

We now define two new functors. Let us consider C, I, and let F be a function from I into the morphisms of C. The functor dom_{κ} $F(\kappa)$ yielding a function from I into the objects of C is defined as follows:

(Def.3) for every x such that $x \in I$ holds $(\operatorname{dom}_{\kappa} F(\kappa))_x = \operatorname{dom}(F_x)$.

The functor $\operatorname{cod}_{\kappa} F(\kappa)$ yielding a function from I into the objects of C is defined by:

(Def.4) for every x such that $x \in I$ holds $(\operatorname{cod}_{\kappa} F(\kappa))_x = \operatorname{cod}(F_x)$.

We now state four propositions:

- (8) $\operatorname{dom}_{\kappa}(I \longmapsto f)(\kappa) = I \longmapsto \operatorname{dom} f.$
- (9) $\operatorname{cod}_{\kappa}(I \longmapsto f)(\kappa) = I \longmapsto \operatorname{cod} f.$
- (10) $\operatorname{dom}_{\kappa}[x_1 \longmapsto p_1, x_2 \longmapsto p_2](\kappa) = [x_1 \longmapsto \operatorname{dom} p_1, x_2 \longmapsto \operatorname{dom} p_2].$

(11) $\operatorname{cod}_{\kappa}[x_1 \longmapsto p_1, x_2 \longmapsto p_2](\kappa) = [x_1 \longmapsto \operatorname{cod} p_1, x_2 \longmapsto \operatorname{cod} p_2].$

Let us consider C, I, and let F be a function from I into the morphisms of C. The functor F^{op} yields a function from I into the morphisms of C^{op} and is defined as follows:

(Def.5) for every x such that $x \in I$ holds $(F^{\text{op}})_x = (F_x)^{\text{op}}$.

Next we state three propositions:

$$(12) \quad (I \longmapsto f)^{\rm op} = I \longmapsto f^{\rm op}.$$

(13) If $x_1 \neq x_2$, then $[x_1 \longmapsto p_1, x_2 \longmapsto p_2]^{\operatorname{op}} = [x_1 \longmapsto p_1^{\operatorname{op}}, x_2 \longmapsto p_2^{\operatorname{op}}].$

(14) For every function F from I into the morphisms of C holds $(F^{\text{op}})^{\text{op}} = F$.

Let us consider C, I, and let F be a function from I into the morphisms of C^{op} . The functor ${}^{\text{op}}F$ yielding a function from I into the morphisms of C is defined by:

(Def.6) for every x such that $x \in I$ holds $({}^{\mathrm{op}}F)_x = {}^{\mathrm{op}}(F_x)$.

The following propositions are true:

- (15) For every morphism f of C^{op} holds ${}^{\text{op}}(I \mapsto f) = I \mapsto {}^{\text{op}}f$.
- (16) If $x_1 \neq x_2$, then for all morphisms p_1 , p_2 of C^{op} holds ${}^{\text{op}}[x_1 \mapsto p_1, x_2 \mapsto p_2] = [x_1 \mapsto {}^{\text{op}}p_1, x_2 \mapsto {}^{\text{op}}p_2].$
- (17) For every function F from I into the morphisms of C holds $^{\text{op}}(F^{\text{op}}) = F$.

We now define two new functors. Let us consider C, I, and let F be a function from I into the morphisms of C, and let us consider f. The functor $F \cdot f$ yields a function from I into the morphisms of C and is defined as follows:

(Def.7) for every x such that $x \in I$ holds $(F \cdot f)_x = F_x \cdot f$.

The functor $f \cdot F$ yielding a function from I into the morphisms of C is defined by:

(Def.8) for every x such that $x \in I$ holds $(f \cdot F)_x = f \cdot F_x$.

The following four propositions are true:

(18) If
$$x_1 \neq x_2$$
, then $[x_1 \mapsto p_1, x_2 \mapsto p_2] \cdot f = [x_1 \mapsto p_1 \cdot f, x_2 \mapsto p_2 \cdot f]$.

- (19) If $x_1 \neq x_2$, then $f \cdot [x_1 \longmapsto p_1, x_2 \longmapsto p_2] = [x_1 \longmapsto f \cdot p_1, x_2 \longmapsto f \cdot p_2]$.
- (20) For every function F from I into the morphisms of C such that $\operatorname{dom}_{\kappa} F(\kappa) = I \longrightarrow \operatorname{cod} f$ holds $\operatorname{dom}_{\kappa} F \cdot f(\kappa) = I \longmapsto \operatorname{dom} f$ and $\operatorname{cod}_{\kappa} F \cdot f(\kappa) = \operatorname{cod}_{\kappa} F(\kappa)$.
- (21) For every function F from I into the morphisms of C such that $\operatorname{cod}_{\kappa} F(\kappa) = I \longmapsto \operatorname{dom} f$ holds $\operatorname{dom}_{\kappa} f \cdot F(\kappa) = \operatorname{dom}_{\kappa} F(\kappa)$

and $\operatorname{cod}_{\kappa} f \cdot F(\kappa) = I \longmapsto \operatorname{cod} f$.

Let us consider C, I, and let F, G be functions from I into the morphisms of C. The functor $F \cdot G$ yields a function from I into the morphisms of C and is defined by:

(Def.9) for every x such that $x \in I$ holds $(F \cdot G)_x = F_x \cdot G_x$.

We now state four propositions:

- (22) For all functions F, G from I into the morphisms of C such that $\operatorname{dom}_{\kappa} F(\kappa) = \operatorname{cod}_{\kappa} G(\kappa)$ holds $\operatorname{dom}_{\kappa} F \cdot G(\kappa) = \operatorname{dom}_{\kappa} G(\kappa)$ and $\operatorname{cod}_{\kappa} F \cdot G(\kappa) = \operatorname{cod}_{\kappa} F(\kappa)$.
- (23) If $x_1 \neq x_2$, then $[x_1 \longmapsto p_1, x_2 \longmapsto p_2] \cdot [x_1 \longmapsto q_1, x_2 \longmapsto q_2] = [x_1 \longmapsto p_1 \cdot q_1, x_2 \longmapsto p_2 \cdot q_2]$.
- (24) For every function F from I into the morphisms of C holds $F \cdot f = F \cdot (I \longmapsto f)$.
- (25) For every function F from I into the morphisms of C holds $f \cdot F = (I \longmapsto f) \cdot F$.

3. Retractions and coretractions

We now define two new attributes. Let us consider C. A morphism of C is retraction if:

(Def.10) there exists g such that $\operatorname{cod} g = \operatorname{dom} \operatorname{it} \operatorname{and} \operatorname{it} \cdot g = \operatorname{id}_{\operatorname{cod} \operatorname{it}}$.

A morphism of C is corretraction if:

(Def.11) there exists g such that dom g = cod it and $g \cdot \text{it} = \text{id}_{\text{dom it}}$.

The following propositions are true:

- (26) If f is retraction, then f is epi.
- (27) If f is corretraction, then f is monic.
- (28) If f is retraction and g is retraction and dom $g = \operatorname{cod} f$, then $g \cdot f$ is retraction.
- (29) If f is corretraction and g is corretraction and dom $g = \operatorname{cod} f$, then $g \cdot f$ is corretraction.
- (30) If dom $g = \operatorname{cod} f$ and $g \cdot f$ is retraction, then g is retraction.
- (31) If dom $g = \operatorname{cod} f$ and $g \cdot f$ is coretraction, then f is coretraction.
- (32) If f is retraction and f is monic, then f is invertible.
- (33) If f is corretraction and f is epi, then f is invertible.
- (34) f is invertible if and only if f is retraction and f is coretraction.
- (35) For every functor T from C to D such that f is retraction holds T(f) is retraction.
- (36) For every functor T from C to D such that f is coretraction holds T(f) is coretraction.
- (37) f is retraction if and only if f^{op} is coretraction.
- (38) f is corretraction if and only if f^{op} is retraction.

4. Morphisms determined by a terminal object

Let us consider C, a, b. Let us assume that b is a terminal object. $|_{b}a$ is a morphism from a to b.

Next we state three propositions:

- (39) If b is a terminal object, then dom $|_{b}a = a$ and cod $|_{b}a = b$.
- (40) If b is a terminal object and dom f = a and cod f = b, then $|_{b}a = f$.
- (41) For every morphism f from a to b such that b is a terminal object holds $|_{b}a = f$.

5. Morphisms determined by an iniatial object

Let us consider C, a, b. Let us assume that a is an initial object. $|^{a}b$ is a morphism from a to b.

Next we state three propositions:

- (42) If a is an initial object, then dom $|^a b = a$ and cod $|^a b = b$.
- (43) If a is an initial object and dom f = a and cod f = b, then $|^a b = f$.
- (44) For every morphism f from a to b such that a is an initial object holds $|^{a}b = f$.

6. Products

Let us consider C, a, I. A function from I into the morphisms of C is said to be a projections family from a onto I if:

(Def.12) $\operatorname{dom}_{\kappa} \operatorname{it}(\kappa) = I \longmapsto a.$

We now state several propositions:

- (45) For every projections family F from a onto I such that $x \in I$ holds $\operatorname{dom}(F_x) = a$.
- (46) For every function F from \emptyset into the morphisms of C holds F is a projections family from a onto \emptyset .
- (47) If dom f = a, then $\{y\} \mapsto f$ is a projections family from a onto $\{y\}$.
- (48) If dom $p_1 = a$ and dom $p_2 = a$, then $[x_1 \mapsto p_1, x_2 \mapsto p_2]$ is a projections family from a onto $\{x_1, x_2\}$.
- (49) For every projections family F from a onto \emptyset holds $F = \Box$.
- (50) For every projections family F from a onto I such that $\operatorname{cod} f = a$ holds $F \cdot f$ is a projections family from dom f onto I.
- (51) For every function F from I into the morphisms of C and for every projections family G from a onto I such that $\operatorname{dom}_{\kappa} F(\kappa) = \operatorname{cod}_{\kappa} G(\kappa)$ holds $F \cdot G$ is a projections family from a onto I.
- (52) For every projections family F from $\operatorname{cod} f$ onto I holds $f^{\operatorname{op}} \cdot F^{\operatorname{op}} = (F \cdot f)^{\operatorname{op}}$.

Let us consider C, a, I, and let F be a function from I into the morphisms of C. We say that a is a product w.r.t. F if and only if the conditions (Def.13) is satisfied.

- (Def.13) (i) F is a projections family from a onto I,
 - (ii) for every b and for every projections family F' from b onto I such that $\operatorname{cod}_{\kappa} F(\kappa) = \operatorname{cod}_{\kappa} F'(\kappa)$ there exists h such that $h \in \operatorname{hom}(b, a)$ and for every k such that $k \in \operatorname{hom}(b, a)$ holds for every x such that $x \in I$ holds $F_x \cdot k = F'_x$ if and only if h = k.

One can prove the following propositions:

- (53) For every projections family F from c onto I and for every projections family F' from d onto I such that c is a product w.r.t. F and d is a product w.r.t. F' and $\operatorname{cod}_{\kappa} F(\kappa) = \operatorname{cod}_{\kappa} F'(\kappa)$ holds c and d are isomorphic.
- (54) For every projections family F from c onto I such that c is a product w.r.t. F and for all x_1 , x_2 such that $x_1 \in I$ and $x_2 \in I$ holds $hom(cod(F_{x_1}), cod(F_{x_2})) \neq \emptyset$ and for every x such that $x \in I$ holds F_x is retraction.
- (55) For every function F from \emptyset into the morphisms of C holds a is a product w.r.t. F if and only if a is a terminal object.
- (56) For every projections family F from a onto I such that a is a product w.r.t. F and dom f = b and cod f = a and f is invertible holds b is a product w.r.t. $F \cdot f$.
- (57) $a \text{ is a product w.r.t. } \{y\} \longmapsto \mathrm{id}_a.$
- (58) For every projections family F from a onto I such that a is a product w.r.t. F and for every x such that $x \in I$ holds $cod(F_x)$ is a terminal object holds a is a terminal object.

Let us consider C, c, p_1 , p_2 . We say that c is a product w.r.t. p_1 and p_2 if and only if the conditions (Def.14) is satisfied.

- (Def.14) (i) $\dim p_1 = c$,
 - (ii) $\operatorname{dom} p_2 = c$,
 - (iii) for all d, f, g such that $f \in \text{hom}(d, \text{cod } p_1)$ and $g \in \text{hom}(d, \text{cod } p_2)$ there exists h such that $h \in \text{hom}(d, c)$ and for every k such that $k \in \text{hom}(d, c)$ holds $p_1 \cdot k = f$ and $p_2 \cdot k = g$ if and only if h = k.

The following propositions are true:

- (59) If $x_1 \neq x_2$, then c is a product w.r.t. p_1 and p_2 if and only if c is a product w.r.t. $[x_1 \longmapsto p_1, x_2 \longmapsto p_2]$.
- (60) Suppose hom $(c, a) \neq \emptyset$ and hom $(c, b) \neq \emptyset$. Let p_1 be a morphism from c to a. Let p_2 be a morphism from c to b. Then c is a product w.r.t. p_1 and p_2 if and only if for every d such that hom $(d, a) \neq \emptyset$ and hom $(d, b) \neq \emptyset$ holds hom $(d, c) \neq \emptyset$ and for every morphism f from d to a and for every morphism g from d to b there exists a morphism h from d to c such that for every morphism k from d to c holds $p_1 \cdot k = f$ and $p_2 \cdot k = g$ if and only if h = k.
- (61) If c is a product w.r.t. p_1 and p_2 and d is a product w.r.t. q_1 and q_2 and $\operatorname{cod} p_1 = \operatorname{cod} q_1$ and $\operatorname{cod} p_2 = \operatorname{cod} q_2$, then c and d are isomorphic.

- (62) If c is a product w.r.t. p_1 and p_2 and hom $(\operatorname{cod} p_1, \operatorname{cod} p_2) \neq \emptyset$ and hom $(\operatorname{cod} p_2, \operatorname{cod} p_1) \neq \emptyset$, then p_1 is retraction and p_2 is retraction.
- (63) If c is a product w.r.t. p_1 and p_2 and $h \in \text{hom}(c, c)$ and $p_1 \cdot h = p_1$ and $p_2 \cdot h = p_2$, then $h = \text{id}_c$.
- (64) If c is a product w.r.t. p_1 and p_2 and dom f = d and cod f = c and f is invertible, then d is a product w.r.t. $p_1 \cdot f$ and $p_2 \cdot f$.
- (65) If c is a product w.r.t. p_1 and p_2 and $\operatorname{cod} p_2$ is a terminal object, then c and $\operatorname{cod} p_1$ are isomorphic.
- (66) If c is a product w.r.t. p_1 and p_2 and $\operatorname{cod} p_1$ is a terminal object, then c and $\operatorname{cod} p_2$ are isomorphic.

7. Coproducts

Let us consider C, c, I. A function from I into the morphisms of C is said to be a injections family into c on I if:

 $(\text{Def.15}) \quad \operatorname{cod}_{\kappa} \operatorname{it}(\kappa) = I \longmapsto c.$

We now state a number of propositions:

- (67) For every injections family F into c on I such that $x \in I$ holds $cod(F_x) = c$.
- (68) For every function F from \emptyset into the morphisms of C holds F is a injections family into a on \emptyset .
- (69) If $\operatorname{cod} f = a$, then $\{y\} \longmapsto f$ is a injections family into a on $\{y\}$.
- (70) If $\operatorname{cod} p_1 = c$ and $\operatorname{cod} p_2 = c$, then $[x_1 \longmapsto p_1, x_2 \longmapsto p_2]$ is a injections family into c on $\{x_1, x_2\}$.
- (71) For every injections family F into c on \emptyset holds $F = \Box$.
- (72) For every injections family F into b on I such that dom f = b holds $f \cdot F$ is a injections family into $\operatorname{cod} f$ on I.
- (73) For every injections family F into b on I and for every function G from I into the morphisms of C such that $\operatorname{dom}_{\kappa} F(\kappa) = \operatorname{cod}_{\kappa} G(\kappa)$ holds $F \cdot G$ is a injections family into b on I.
- (74) For every function F from I into the morphisms of C holds F is a projections family from c onto I if and only if F^{op} is a injections family into c^{op} on I.
- (75) For every function F from I into the morphisms of C^{op} and for every object c of C^{op} holds F is a injections family into c on I if and only if ${}^{\text{op}}F$ is a projections family from ${}^{\text{op}}c$ onto I.
- (76) For every injections family F into dom f on I holds $F^{\text{op}} \cdot f^{\text{op}} = (f \cdot F)^{\text{op}}$.

Let us consider C, c, I, and let F be a function from I into the morphisms of C. We say that c is a coproduct w.r.t. F if and only if the conditions (Def.16) is satisfied.

- (Def.16) (i) F is a injections family into c on I,
 - (ii) for every d and for every injections family F' into d on I such that $\operatorname{dom}_{\kappa} F(\kappa) = \operatorname{dom}_{\kappa} F'(\kappa)$ there exists h such that $h \in \operatorname{hom}(c, d)$ and for every k such that $k \in \operatorname{hom}(c, d)$ holds for every x such that $x \in I$ holds $k \cdot F_x = F'_x$ if and only if h = k.

One can prove the following propositions:

- (77) For every function F from I into the morphisms of C holds c is a product w.r.t. F if and only if c^{op} is a coproduct w.r.t. F^{op} .
- (78) For every injections family F into c on I and for every injections family F' into d on I such that c is a coproduct w.r.t. F and d is a coproduct w.r.t. F' and dom_{κ} $F(\kappa) = \text{dom}_{\kappa} F'(\kappa)$ holds c and d are isomorphic.
- (79) For every injections family F into c on I such that c is a coproduct w.r.t. F and for all x_1, x_2 such that $x_1 \in I$ and $x_2 \in I$ holds $\hom(\dim(F_{x_1}), \dim(F_{x_2})) \neq \emptyset$ and for every x such that $x \in I$ holds F_x is coretraction.
- (80) For every injections family F into a on I such that a is a coproduct w.r.t. F and dom f = a and cod f = b and f is invertible holds b is a coproduct w.r.t. $f \cdot F$.
- (81) For every injections family F into a on \emptyset holds a is a coproduct w.r.t. F if and only if a is an initial object.
- (82) $a \text{ is a coproduct w.r.t. } \{y\} \longmapsto \mathrm{id}_a.$
- (83) For every injections family F into a on I such that a is a coproduct w.r.t. F and for every x such that $x \in I$ holds $\operatorname{dom}(F_x)$ is an initial object holds a is an initial object.

Let us consider C, c, i_1 , i_2 . We say that c is a coproduct w.r.t. i_1 and i_2 if and only if the conditions (Def.17) is satisfied.

(Def.17) (i) $\operatorname{cod} i_1 = c$,

- (ii) $\operatorname{cod} i_2 = c$,
- (iii) for all d, f, g such that $f \in \text{hom}(\text{dom } i_1, d)$ and $g \in \text{hom}(\text{dom } i_2, d)$ there exists h such that $h \in \text{hom}(c, d)$ and for every k such that $k \in \text{hom}(c, d)$ holds $k \cdot i_1 = f$ and $k \cdot i_2 = g$ if and only if h = k.

We now state several propositions:

- (84) c is a product w.r.t. p_1 and p_2 if and only if c^{op} is a coproduct w.r.t. p_1^{op} and p_2^{op} .
- (85) If $x_1 \neq x_2$, then c is a coproduct w.r.t. i_1 and i_2 if and only if c is a coproduct w.r.t. $[x_1 \longmapsto i_1, x_2 \longmapsto i_2]$.
- (86) If c is a coproduct w.r.t. i_1 and i_2 and d is a coproduct w.r.t. j_1 and j_2 and dom $i_1 = \text{dom } j_1$ and dom $i_2 = \text{dom } j_2$, then c and d are isomorphic.
- (87) Suppose hom $(a, c) \neq \emptyset$ and hom $(b, c) \neq \emptyset$. Let i_1 be a morphism from a to c. Let i_2 be a morphism from b to c. Then c is a coproduct w.r.t. i_1 and i_2 if and only if for every d such that hom $(a, d) \neq \emptyset$ and hom $(b, d) \neq \emptyset$ holds hom $(c, d) \neq \emptyset$ and for every morphism f from a to d and for every

morphism g from b to d there exists a morphism h from c to d such that for every morphism k from c to d holds $k \cdot i_1 = f$ and $k \cdot i_2 = g$ if and only if h = k.

- (88) If c is a coproduct w.r.t. i_1 and i_2 and hom $(\operatorname{dom} i_1, \operatorname{dom} i_2) \neq \emptyset$ and hom $(\operatorname{dom} i_2, \operatorname{dom} i_1) \neq \emptyset$, then i_1 is coretraction and i_2 is coretraction.
- (89) If c is a coproduct w.r.t. i_1 and i_2 and $h \in \text{hom}(c, c)$ and $h \cdot i_1 = i_1$ and $h \cdot i_2 = i_2$, then $h = \text{id}_c$.
- (90) If c is a coproduct w.r.t. i_1 and i_2 and dom f = c and cod f = d and f is invertible, then d is a coproduct w.r.t. $f \cdot i_1$ and $f \cdot i_2$.
- (91) If c is a coproduct w.r.t. i_1 and i_2 and dom i_2 is an initial object, then dom i_1 and c are isomorphic.
- (92) If c is a coproduct w.r.t. i_1 and i_2 and dom i_1 is an initial object, then dom i_2 and c are isomorphic.

References

- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [3] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409-420, 1990.
- [4] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [5] Czesław Byliński. Opposite categories and contravariant functors. Formalized Mathematics, 2(3):419–424, 1991.
- [6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [7] Zbigniew Semadeni and Antoni Wiweger. Wstęp do teorii kategorii i funktorów. Volume 45 of Biblioteka Matematyczna, PWN, Warszawa, 1978.
- [8] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received May 11, 1992