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Summary. In [20] the series of real numbers were investigated.
The introduction to Banach and Hilbert Spaces ( [12,13,14]), enables us
to arrive at the concept of series in Hilbert Space. We start with the
notions: partial sums of series, sum and n-th sum of series, convergent
series (summable series), absolutely convergent series. We prove some ba-
sic theorems: the necessary condition for a series to converge, Weierstrass’
test, d’Alembert’s test, Cauchy’s test.

MML Identifier: BHSP 4.

The notation and terminology used here have been introduced in the following
articles: [5], [23], [28], [3], [4], [1], [10], [8], [9], [7], [20], [2], [29], [21], [22],
[17], [27], [26], [24], [16], [12], [13], [15], [6], [11], [14], [25], [18], and [19]. For
simplicity we adopt the following convention: X denotes a real unitary space, a,
b, r denote real numbers, s1, s2, s3 denote sequences of X, R1, R2, R3 denote
sequences of real numbers, and k, n, m denote natural numbers. The scheme
Rec Func Ex RUS deals with a real unitary space A, a point B of A, and a
binary functor F yielding a point of A and states that:

there exists a function f from � into the vectors of the vectors of A such
that f(0) = B and for every element n of � and for every point x of A such that
x = f(n) holds f(n + 1) = F(n, x)
for all values of the parameters.

Let us consider X, s1. The functor (
∑

κ

α=0 s1(α))κ∈ � yields a sequence of X

and is defined as follows:

(Def.1) (
∑

κ

α=0 s1(α))κ∈ � (0) = s1(0) and for every n holds (
∑

κ

α=0 s1(α))κ∈ � (n+
1) = (

∑

κ

α=0 s1(α))κ∈ � (n) + s1(n + 1).

Next we state several propositions:

(1) (
∑

κ

α=0 s2(α))κ∈ � + (
∑

κ

α=0 s3(α))κ∈ � = (
∑

κ

α=0(s2 + s3)(α))κ∈ � .

(2) (
∑

κ

α=0 s2(α))κ∈ � − (
∑

κ

α=0 s3(α))κ∈ � = (
∑

κ

α=0(s2 − s3)(α))κ∈ � .

(3) (
∑

κ

α=0(a · s1)(α))κ∈ � = a · (
∑

κ

α=0 s1(α))κ∈ � .
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(4) (
∑

κ

α=0(−s1)(α))κ∈ � = −(
∑

κ

α=0 s1(α))κ∈ � .

(5) a ·(
∑

κ

α=0 s2(α))κ∈ � +b ·(
∑

κ

α=0 s3(α))κ∈ � = (
∑

κ

α=0(a ·s2 +b ·s3)(α))κ∈ � .

Let us consider X, s1. We say that s1 is summable if and only if:

(Def.2) (
∑

κ

α=0 s1(α))κ∈ � is convergent.

Let us consider X, s1. Let us assume that s1 is summable. The functor
∑

s1

yielding a point of X is defined by:

(Def.3)
∑

s1 = lim((
∑

κ

α=0 s1(α))κ∈ � ).

Next we state several propositions:

(6) If s2 is summable and s3 is summable, then s2 + s3 is summable and
∑

(s2 + s3) =
∑

s2 +
∑

s3.

(7) If s2 is summable and s3 is summable, then s2 − s3 is summable and
∑

(s2 − s3) =
∑

s2 −
∑

s3.

(8) If s1 is summable, then a · s1 is summable and
∑

(a · s1) = a ·
∑

s1.

(9) If s1 is summable, then s1 is convergent and lim s1 = 0the vectors of X .

(10) If X is a Hilbert space, then s1 is summable if and only if for every r

such that r > 0 there exists k such that for all n, m such that n ≥ k and
m ≥ k holds ‖(

∑

κ

α=0 s1(α))κ∈ � (n) − (
∑

κ

α=0 s1(α))κ∈ � (m)‖ < r.

(11) If s1 is summable, then (
∑

κ

α=0 s1(α))κ∈ � is bounded.

(12) For all s1, s2 such that for every n holds s2(n) = s1(0) holds (
∑

κ

α=0(s1 ↑
1)(α))κ∈ � = (

∑

κ

α=0 s1(α))κ∈ � ↑ 1 − s2.

(13) If s1 is summable, then for every k holds s1 ↑ k is summable.

(14) If there exists k such that s1 ↑ k is summable, then s1 is summable.

Let us consider X, s1, n. The functor
∑

n

κ=0 s1(κ) yielding a point of X is
defined by:

(Def.4)
∑

n

κ=0 s1(κ) = (
∑

κ

α=0 s1(α))κ∈ � (n).

We now state several propositions:

(15)
∑

n

κ=0 s1(κ) = (
∑

κ

α=0 s1(α))κ∈ � (n).

(16)
∑0

κ=0 s1(κ) = s1(0).

(17)
∑1

κ=0 s1(κ) =
∑0

κ=0 s1(κ) + s1(1).

(18)
∑1

κ=0 s1(κ) = s1(0) + s1(1).

(19)
∑

n+1
κ=0 s1(κ) =

∑

n

κ=0 s1(κ) + s1(n + 1).

(20) s1(n + 1) =
∑

n+1
κ=0 s1(κ) −

∑

n

κ=0 s1(κ).

(21) s1(1) =
∑1

κ=0 s1(κ) −
∑0

κ=0 s1(κ).

Let us consider X, s1, n, m. The functor
∑

m

κ=n+1 s1(κ) yielding a point of
X is defined by:

(Def.5)
∑

m

κ=n+1 s1(κ) =
∑

n

κ=0 s1(κ) −
∑

m

κ=0 s1(κ).

The following propositions are true:

(22)
∑

m

κ=n+1 s1(κ) =
∑

n

κ=0 s1(κ) −
∑

m

κ=0 s1(κ).

(23)
∑0

κ=1+1 s1(κ) = s1(1).
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(24)
∑

n

κ=n+1+1 s1(κ) = s1(n + 1).

(25) If X is a Hilbert space, then s1 is summable if and only if for every r

such that r > 0 there exists k such that for all n, m such that n ≥ k and
m ≥ k holds ‖

∑

n

κ=0 s1(κ) −
∑

m

κ=0 s1(κ)‖ < r.

(26) If X is a Hilbert space, then s1 is summable if and only if for every r

such that r > 0 there exists k such that for all n, m such that n ≥ k and
m ≥ k holds ‖

∑

m

κ=n+1 s1(κ)‖ < r.

Let us consider R1, n. The functor
∑

n

κ=0 R1(κ) yields a real number and is
defined by:

(Def.6)
∑

n

κ=0 R1(κ) = (
∑

κ

α=0 R1(α))κ∈ � (n).

Let us consider R1, n, m. The functor
∑

m

κ=n+1 R1(κ) yielding a real number
is defined by:

(Def.7)
∑

m

κ=n+1 R1(κ) =
∑

n

κ=0 R1(κ) −
∑

m

κ=0 R1(κ).

Let us consider X, s1. We say that s1 is absolutely summable if and only if:

(Def.8) ‖s1‖ is summable.

The following propositions are true:

(27) If s2 is absolutely summable and s3 is absolutely summable, then s2+s3

is absolutely summable.

(28) If s1 is absolutely summable, then a · s1 is absolutely summable.

(29) If for every n holds ‖s1‖(n) ≤ R1(n) and R1 is summable, then s1 is
absolutely summable.

(30) If for every n holds s1(n) 6= 0the vectors of X and R1(n) = ‖s1(n+1)‖
‖s1(n)‖ and

R1 is convergent and limR1 < 1, then s1 is absolutely summable.

(31) If r > 0 and there exists m such that for every n such that n ≥ m holds
‖s1(n)‖ ≥ r, then s1 is not convergent or lim s1 6= 0the vectors of X .

(32) If for every n holds s1(n) 6= 0the vectors of X and there exists m such that

for every n such that n ≥ m holds ‖s1(n+1)‖
‖s1(n)‖ ≥ 1, then s1 is not summable.

(33) If for every n holds s1(n) 6= 0the vectors of X and for every n holds

R1(n) = ‖s1(n+1)‖
‖s1(n)‖ and R1 is convergent and lim R1 > 1, then s1 is not

summable.

(34) If for every n holds R1(n) = n

√

‖s1(n)‖ and R1 is convergent and
lim R1 < 1, then s1 is absolutely summable.

(35) If for every n holds R1(n) = n

√

‖s1‖(n) and there exists m such that for
every n such that n ≥ m holds R1(n) ≥ 1, then s1 is not summable.

(36) If for every n holds R1(n) = n

√

‖s1‖(n) and R1 is convergent and
lim R1 > 1, then s1 is not summable.

(37) (
∑

κ

α=0‖s1‖(α))κ∈ � is non-decreasing.

(38) For every n holds (
∑

κ

α=0‖s1‖(α))κ∈ � (n) ≥ 0.

(39) For every n holds ‖(
∑

κ

α=0 s1(α))κ∈ � (n)‖ ≤ (
∑

κ

α=0‖s1‖(α))κ∈ � (n).

(40) For every n holds ‖
∑

n

κ=0 s1(κ)‖ ≤
∑

n

κ=0‖s1‖(κ).
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(41) For all n, m holds ‖(
∑

κ

α=0 s1(α))κ∈ � (m) − (
∑

κ

α=0 s1(α))κ∈ � (n)‖ ≤
|(

∑

κ

α=0‖s1‖(α))κ∈ � (m) − (
∑

κ

α=0‖s1‖(α))κ∈ � (n)|.

(42) For all n, m holds
‖
∑

m

κ=0 s1(κ) −
∑

n

κ=0 s1(κ)‖ ≤ |
∑

m

κ=0‖s1‖(κ) −
∑

n

κ=0‖s1‖(κ)|.

(43) For all n, m holds ‖
∑

n

κ=m+1 s1(κ)‖ ≤ |
∑

n

κ=m+1‖s1‖(κ)|.

(44) If X is a Hilbert space, then if s1 is absolutely summable, then s1 is
summable.

Let us consider X, s1, R1. The functor R1 · s1 yielding a sequence of X is
defined as follows:

(Def.9) for every n holds (R1 · s1)(n) = R1(n) · s1(n).

One can prove the following propositions:

(45) R1 · (s2 + s3) = R1 · s2 + R1 · s3.

(46) (R2 + R3) · s1 = R2 · s1 + R3 · s1.

(47) (R2 R3) · s1 = R2 · (R3 · s1).

(48) (a R1) · s1 = a · (R1 · s1).

(49) R1 · −s1 = (−R1) · s1.

(50) If R1 is convergent and s1 is convergent, then R1 · s1 is convergent.

(51) If R1 is bounded and s1 is bounded, then R1 · s1 is bounded.

(52) If R1 is convergent and s1 is convergent, then R1 · s1 is convergent and
lim(R1 · s1) = limR1 · lim s1.

Let us consider R1. We say that R1 is a Cauchy sequence if and only if:

(Def.10) for every r such that r > 0 there exists k such that for all n, m such
that n ≥ k and m ≥ k holds |R1(n) − R1(m)| < r.

One can prove the following propositions:

(53) If X is a Hilbert space, then if s1 is a Cauchy sequence and R1 is a
Cauchy sequence, then R1 · s1 is a Cauchy sequence.

(54) For every n holds (
∑

κ

α=0((R1 −R1 ↑ 1) · (
∑

κ

α=0 s1(α))κ∈ � )(α))κ∈ � (n) =
(
∑

κ

α=0(R1 · s1)(α))κ∈ � (n + 1) − (R1 · (
∑

κ

α=0 s1(α))κ∈ � )(n + 1).

(55) For every n holds
(
∑

κ

α=0(R1·s1)(α))κ∈ � (n+1) = (R1·(
∑

κ

α=0 s1(α))κ∈ � )(n+1)−(
∑

κ

α=0((R1↑
1 − R1) · (

∑

κ

α=0 s1(α))κ∈ � )(α))κ∈ � (n).

(56) For every n holds
∑

n+1
κ=0(R1 · s1)(κ) = (R1 · (

∑

κ

α=0 s1(α))κ∈ � )(n + 1) −
∑

n

κ=0((R1 ↑ 1 − R1) · (
∑

κ

α=0 s1(α))κ∈ � )(κ).
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