Series in Banach and Hilbert Spaces

Elżbieta Kraszewska
Warsaw University
Białystok

Jan Popiołek
Warsaw University
Białystok

Abstract

Summary. In [20] the series of real numbers were investigated. The introduction to Banach and Hilbert Spaces ($[12,13,14]$), enables us to arrive at the concept of series in Hilbert Space. We start with the notions: partial sums of series, sum and n-th sum of series, convergent series (summable series), absolutely convergent series. We prove some basic theorems: the necessary condition for a series to converge, Weierstrass' test, d'Alembert's test, Cauchy's test.

MML Identifier: BHSP_4.

The notation and terminology used here have been introduced in the following articles: [5], [23], [28], [3], [4], [1], [10], [8], [9], [7], [20], [2], [29], [21], [22], [17], [27], [26], [24], [16], [12], [13], [15], [6], [11], [14], [25], [18], and [19]. For simplicity we adopt the following convention: X denotes a real unitary space, a, b, r denote real numbers, s_{1}, s_{2}, s_{3} denote sequences of X, R_{1}, R_{2}, R_{3} denote sequences of real numbers, and k, n, m denote natural numbers. The scheme Rec_Func_Ex_RUS deals with a real unitary space \mathcal{A}, a point \mathcal{B} of \mathcal{A}, and a binary functor \mathcal{F} yielding a point of \mathcal{A} and states that:
there exists a function f from \mathbb{N} into the vectors of the vectors of \mathcal{A} such that $f(0)=\mathcal{B}$ and for every element n of \mathbb{N} and for every point x of \mathcal{A} such that $x=f(n)$ holds $f(n+1)=\mathcal{F}(n, x)$
for all values of the parameters.
Let us consider X, s_{1}. The functor $\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathrm{N}}$ yields a sequence of X and is defined as follows:
(Def.1) $\quad\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}(0)=s_{1}(0)$ and for every n holds $\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}(n+$ $1)=\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)+s_{1}(n+1)$.
Next we state several propositions:

$$
\begin{align*}
& \left(\sum_{\alpha=0}^{\kappa} s_{2}(\alpha)\right)_{\kappa \in \mathbb{N}}+\left(\sum_{\alpha=0}^{\kappa} s_{3}(\alpha)\right)_{\kappa \in \mathbb{N}}=\left(\sum_{\alpha=0}^{\kappa}\left(s_{2}+s_{3}\right)(\alpha)\right)_{\kappa \in \mathbb{N}} . \tag{1}\\
& \left(\sum_{\alpha=0}^{\kappa} s_{2}(\alpha)\right)_{\kappa \in \mathbb{N}}-\left(\sum_{\alpha=0}^{\kappa} s_{3}(\alpha)\right)_{\kappa \in \mathbb{N}}=\left(\sum_{\alpha=0}^{\kappa}\left(s_{2}-s_{3}\right)(\alpha)\right)_{\kappa \in \mathbb{N}} . \\
& \left(\sum_{\alpha=0}^{\kappa}\left(a \cdot s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=a \cdot\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}} .
\end{align*}
$$

(4) $\quad\left(\sum_{\alpha=0}^{\kappa}\left(-s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=-\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}$.
(5) $\quad a \cdot\left(\sum_{\alpha=0}^{\kappa} s_{2}(\alpha)\right)_{\kappa \in \mathbb{N}}+b \cdot\left(\sum_{\alpha=0}^{\kappa} s_{3}(\alpha)\right)_{\kappa \in \mathbb{N}}=\left(\sum_{\alpha=0}^{\kappa}\left(a \cdot s_{2}+b \cdot s_{3}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$.

Let us consider X, s_{1}. We say that s_{1} is summable if and only if:
(Def.2) $\quad\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathrm{N}}$ is convergent.
Let us consider X, s_{1}. Let us assume that s_{1} is summable. The functor $\sum s_{1}$ yielding a point of X is defined by:
(Def.3) $\quad \sum s_{1}=\lim \left(\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}\right)$.
Next we state several propositions:
(6) If s_{2} is summable and s_{3} is summable, then $s_{2}+s_{3}$ is summable and $\sum\left(s_{2}+s_{3}\right)=\sum s_{2}+\sum s_{3}$.
(7) If s_{2} is summable and s_{3} is summable, then $s_{2}-s_{3}$ is summable and $\sum\left(s_{2}-s_{3}\right)=\sum s_{2}-\sum s_{3}$.
(8) If s_{1} is summable, then $a \cdot s_{1}$ is summable and $\sum\left(a \cdot s_{1}\right)=a \cdot \sum s_{1}$.
(9) If s_{1} is summable, then s_{1} is convergent and $\lim s_{1}=0_{\text {the vectors of } X}$.
(10) If X is a Hilbert space, then s_{1} is summable if and only if for every r such that $r>0$ there exists k such that for all n, m such that $n \geq k$ and $m \geq k$ holds $\left\|\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)-\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}(m)\right\|<r$.
(11) If s_{1} is summable, then $\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}$ is bounded.
(12) For all s_{1}, s_{2} such that for every n holds $s_{2}(n)=s_{1}(0)$ holds $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1} \uparrow\right.\right.$ 1) $(\alpha))_{\kappa \in \mathbb{N}}=\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}} \uparrow 1-s_{2}$.
(13) If s_{1} is summable, then for every k holds $s_{1} \uparrow k$ is summable.
(14) If there exists k such that $s_{1} \uparrow k$ is summable, then s_{1} is summable.

Let us consider X, s_{1}, n. The functor $\sum_{\kappa=0}^{n} s_{1}(\kappa)$ yielding a point of X is defined by:
(Def.4) $\quad \sum_{\kappa=0}^{n} s_{1}(\kappa)=\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
We now state several propositions:

$$
\begin{align*}
& \sum_{\kappa=0}^{n} s_{1}(\kappa)=\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}(n) . \tag{15}\\
& \sum_{\kappa=0}^{0} s_{1}(\kappa)=s_{1}(0) . \tag{16}\\
& \sum_{\kappa=0}^{1} s_{1}(\kappa)=\sum_{\kappa=0}^{0} s_{1}(\kappa)+s_{1}(1) . \tag{17}\\
& \sum_{\kappa=0}^{1} s_{1}(\kappa)=s_{1}(0)+s_{1}(1) . \tag{18}\\
& \sum_{\kappa=0}^{n+1} s_{1}(\kappa)=\sum_{\kappa=0}^{n} s_{1}(\kappa)+s_{1}(n+1) . \tag{19}\\
& s_{1}(n+1)=\sum_{\kappa=0}^{n+1} s_{1}(\kappa)-\sum_{\kappa=0}^{n} s_{1}(\kappa) . \tag{20}\\
& s_{1}(1)=\sum_{\kappa=0}^{1} s_{1}(\kappa)-\sum_{\kappa=0}^{0} s_{1}(\kappa) . \tag{21}
\end{align*}
$$

Let us consider X, s_{1}, n, m. The functor $\sum_{\kappa=n+1}^{m} s_{1}(\kappa)$ yielding a point of X is defined by:
(Def.5) $\quad \sum_{\kappa=n+1}^{m} s_{1}(\kappa)=\sum_{\kappa=0}^{n} s_{1}(\kappa)-\sum_{\kappa=0}^{m} s_{1}(\kappa)$.
The following propositions are true:

$$
\begin{align*}
& \sum_{\kappa=n+1}^{m} s_{1}(\kappa)=\sum_{\kappa=0}^{n} s_{1}(\kappa)-\sum_{\kappa=0}^{m} s_{1}(\kappa) . \tag{22}\\
& \sum_{\kappa=1+1}^{0} s_{1}(\kappa)=s_{1}(1)
\end{align*}
$$

$$
\begin{equation*}
\sum_{\kappa=n+1+1}^{n} s_{1}(\kappa)=s_{1}(n+1) . \tag{24}
\end{equation*}
$$

If X is a Hilbert space, then s_{1} is summable if and only if for every r such that $r>0$ there exists k such that for all n, m such that $n \geq k$ and $m \geq k$ holds $\left\|\sum_{\kappa=0}^{n} s_{1}(\kappa)-\sum_{\kappa=0}^{m} s_{1}(\kappa)\right\|<r$.
(26) If X is a Hilbert space, then s_{1} is summable if and only if for every r such that $r>0$ there exists k such that for all n, m such that $n \geq k$ and $m \geq k$ holds $\left\|\sum_{k=n+1}^{m} s_{1}(\kappa)\right\|<r$.
Let us consider R_{1}, n. The functor $\sum_{\kappa=0}^{n} R_{1}(\kappa)$ yields a real number and is defined by:
(Def.6)

$$
\sum_{\kappa=0}^{n} R_{1}(\kappa)=\left(\sum_{\alpha=0}^{\kappa} R_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)
$$

Let us consider R_{1}, n, m. The functor $\sum_{\kappa=n+1}^{m} R_{1}(\kappa)$ yielding a real number is defined by:
(Def.7) $\quad \sum_{\kappa=n+1}^{m} R_{1}(\kappa)=\sum_{\kappa=0}^{n} R_{1}(\kappa)-\sum_{\kappa=0}^{m} R_{1}(\kappa)$.
Let us consider X, s_{1}. We say that s_{1} is absolutely summable if and only if:
(Def.8) $\left\|s_{1}\right\|$ is summable.
The following propositions are true:
(27) If s_{2} is absolutely summable and s_{3} is absolutely summable, then $s_{2}+s_{3}$ is absolutely summable.
(28) If s_{1} is absolutely summable, then $a \cdot s_{1}$ is absolutely summable.
(29) If for every n holds $\left\|s_{1}\right\|(n) \leq R_{1}(n)$ and R_{1} is summable, then s_{1} is absolutely summable.
(30) If for every n holds $s_{1}(n) \neq 0_{\text {the vectors of } X}$ and $R_{1}(n)=\frac{\left\|s_{1}(n+1)\right\|}{\left\|s_{1}(n)\right\|}$ and R_{1} is convergent and $\lim R_{1}<1$, then s_{1} is absolutely summable.
(31) If $r>0$ and there exists m such that for every n such that $n \geq m$ holds $\left\|s_{1}(n)\right\| \geq r$, then s_{1} is not convergent or $\lim s_{1} \neq 0_{\text {the vectors }}$ of .
(32) If for every n holds $s_{1}(n) \neq 0_{\text {the }}$ vectors of X and there exists m such that for every n such that $n \geq m$ holds $\frac{\left\|s_{1}(n+1)\right\|}{\left\|s_{1}(n)\right\|} \geq 1$, then s_{1} is not summable.
(33) If for every n holds $s_{1}(n) \neq 0_{\text {the }}$ vectors of X and for every n holds $R_{1}(n)=\frac{\left\|s_{1}(n+1)\right\|}{\left\|s_{1}(n)\right\|}$ and R_{1} is convergent and $\lim R_{1}>1$, then s_{1} is not summable.
(34) If for every n holds $R_{1}(n)=\sqrt[n]{\left\|s_{1}(n)\right\|}$ and R_{1} is convergent and $\lim R_{1}<1$, then s_{1} is absolutely summable.
(35) If for every n holds $R_{1}(n)=\sqrt[n]{\left\|s_{1}\right\|(n)}$ and there exists m such that for every n such that $n \geq m$ holds $R_{1}(n) \geq 1$, then s_{1} is not summable.
(36) If for every n holds $R_{1}(n)=\sqrt[n]{\left\|s_{1}\right\|(n)}$ and R_{1} is convergent and $\lim R_{1}>1$, then s_{1} is not summable.
$\left(\sum_{\alpha=0}^{\kappa}\left\|s_{1}\right\|(\alpha)\right)_{\kappa \in \mathbb{N}}$ is non-decreasing.
(38) For every n holds $\left(\sum_{\alpha=0}^{\kappa}\left\|s_{1}\right\|(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \geq 0$.
(39) For every n holds $\left\|\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right\| \leq\left(\sum_{\alpha=0}^{\kappa}\left\|s_{1}\right\|(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.

$$
\begin{equation*}
\text { For every } n \text { holds }\left\|\sum_{\kappa=0}^{n} s_{1}(\kappa)\right\| \leq \sum_{\kappa=0}^{n}\left\|s_{1}\right\|(\kappa) \tag{40}
\end{equation*}
$$

(41) For all n, m holds $\left\|\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}(m)-\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right\| \leq$ $\left|\left(\sum_{\alpha=0}^{\kappa}\left\|s_{1}\right\|(\alpha)\right)_{\kappa \in \mathbb{N}}(m)-\left(\sum_{\alpha=0}^{\kappa}\left\|s_{1}\right\|(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right|$.
(42) For all n, m holds
$\left\|\sum_{\kappa=0}^{m} s_{1}(\kappa)-\sum_{\kappa=0}^{n} s_{1}(\kappa)\right\| \leq\left|\sum_{\kappa=0}^{m}\left\|s_{1}\right\|(\kappa)-\sum_{\kappa=0}^{n}\left\|s_{1}\right\|(\kappa)\right|$.
(43) For all n, m holds $\left\|\sum_{\kappa=m+1}^{n} s_{1}(\kappa)\right\| \leq\left|\sum_{\kappa=m+1}^{n}\left\|s_{1}\right\|(\kappa)\right|$.
(44) If X is a Hilbert space, then if s_{1} is absolutely summable, then s_{1} is summable.
Let us consider X, s_{1}, R_{1}. The functor $R_{1} \cdot s_{1}$ yielding a sequence of X is defined as follows:
(Def.9) for every n holds $\left(R_{1} \cdot s_{1}\right)(n)=R_{1}(n) \cdot s_{1}(n)$.
One can prove the following propositions:

$$
\begin{align*}
& R_{1} \cdot\left(s_{2}+s_{3}\right)=R_{1} \cdot s_{2}+R_{1} \cdot s_{3} \tag{45}\\
& \left(R_{2}+R_{3}\right) \cdot s_{1}=R_{2} \cdot s_{1}+R_{3} \cdot s_{1} \tag{46}\\
& \left(R_{2} R_{3}\right) \cdot s_{1}=R_{2} \cdot\left(R_{3} \cdot s_{1}\right) \tag{47}\\
& \left(a R_{1}\right) \cdot s_{1}=a \cdot\left(R_{1} \cdot s_{1}\right) \tag{48}\\
& R_{1} \cdot-s_{1}=\left(-R_{1}\right) \cdot s_{1} \tag{49}
\end{align*}
$$

If R_{1} is convergent and s_{1} is convergent, then $R_{1} \cdot s_{1}$ is convergent.
(52) If R_{1} is convergent and s_{1} is convergent, then $R_{1} \cdot s_{1}$ is convergent and $\lim \left(R_{1} \cdot s_{1}\right)=\lim R_{1} \cdot \lim s_{1}$.
Let us consider R_{1}. We say that R_{1} is a Cauchy sequence if and only if:
(Def.10) for every r such that $r>0$ there exists k such that for all n, m such that $n \geq k$ and $m \geq k$ holds $\left|R_{1}(n)-R_{1}(m)\right|<r$.
One can prove the following propositions:
(53) If X is a Hilbert space, then if s_{1} is a Cauchy sequence and R_{1} is a Cauchy sequence, then $R_{1} \cdot s_{1}$ is a Cauchy sequence.
(54) For every n holds $\left(\sum_{\alpha=0}^{\kappa}\left(\left(R_{1}-R_{1} \uparrow 1\right) \cdot\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)=$ $\left(\sum_{\alpha=0}^{\kappa}\left(R_{1} \cdot s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n+1)-\left(R_{1} \cdot\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(n+1)$.
(55) For every n holds
$\left(\sum_{\alpha=0}^{\kappa}\left(R_{1} \cdot s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n+1)=\left(R_{1} \cdot\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(n+1)-\left(\sum_{\alpha=0}^{\kappa}\left(\left(R_{1} \uparrow\right.\right.\right.$ $\left.\left.\left.1-R_{1}\right) \cdot\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(56) For every n holds $\sum_{\kappa=0}^{n+1}\left(R_{1} \cdot s_{1}\right)(\kappa)=\left(R_{1} \cdot\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(n+1)-$ $\sum_{\kappa=0}^{n}\left(\left(R_{1} \uparrow 1-R_{1}\right) \cdot\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(\kappa)$.

REFERENCES

[1] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, $1(\mathbf{1}): 245-254,1990$.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[6] Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321-328, 1990.
[7] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[8] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[9] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[11] Andrzej Nẹdzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990.
[12] Jan Popiołek. Introduction to Banach and Hilbert spaces - part I. Formalized Mathematics, 2(4):511-516, 1991.
[13] Jan Popiołek. Introduction to Banach and Hilbert spaces - part II. Formalized Mathematics, 2(4):517-521, 1991.
[14] Jan Popiołek. Introduction to Banach and Hilbert spaces - part III. Formalized Mathematics, 2(4):523-526, 1991.
[15] Jan Popiołek. Quadratic inequalities. Formalized Mathematics, 2(4):507-509, 1991.
[16] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[17] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[18] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125130, 1991.
[19] Konrad Raczkowski and Andrzej Nẹdzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[20] Konrad Raczkowski and Andrzej Nẹdzusiak. Serieses. Formalized Mathematics, 2(4):449-452, 1991.
[21] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[22] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[24] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[25] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[26] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.
[27] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[28] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

