FORMALIZED MATHEMATICS
Vol.2,No0.5, November-December 1991
Université Catholique de Louvain

Series in Banach and Hilbert Spaces

Elzbieta Kraszewska Jan Popiotek
Warsaw University Warsaw University
Bialystok Bialystok

Summary. In [20] the series of real numbers were investigated.
The introduction to Banach and Hilbert Spaces ( [12,13,14]), enables us
to arrive at the concept of series in Hilbert Space. We start with the
notions: partial sums of series, sum and m-th sum of series, convergent
series (summable series), absolutely convergent series. We prove some ba-
sic theorems: the necessary condition for a series to converge, Weierstrass’
test, d’Alembert’s test, Cauchy’s test.

MML Identifier: BHSP_4.

The notation and terminology used here have been introduced in the following
articles: [5], (23], [28], [3], [4], [1], [10], [8], [9], [7], [20], [2], [29], [21], [22].
(17], [27], [26], [24], [16], [12], (13], [15], [6], [11], [14], [25], [18], and [19]. For
simplicity we adopt the following convention: X denotes a real unitary space, a,
b, r denote real numbers, s1, s3, s3 denote sequences of X, Ry, Ry, R3 denote
sequences of real numbers, and k, n, m denote natural numbers. The scheme
Rec_Func_Exz_RUS deals with a real unitary space A, a point B of A, and a
binary functor F yielding a point of A and states that:

there exists a function f from N into the vectors of the vectors of A such
that f(0) = B and for every element n of N and for every point x of A such that
z = f(n) holds f(n+1) = F(n,z)
for all values of the parameters.

Let us consider X, s;. The functor (3 r_, s1())xen yields a sequence of X
and is defined as follows:

(Def.1) (38— s1(@))ren (0) = s1(0) and for every n holds (35 _g s1(a))ken (n+
1) = (Xa=o51(a))wen (1) + s1(n + 1).
Next we state several propositions:
(1) (Ca=0s2())ken + (=0 53(a))nen = (Xa=o(s2 + 83)(@))ren -
(2)  (Za=0s2())ren — (Xa=053())ren = (Za=o(s2 — 53)(@))ren -

B)  (Ea=ola-s1)(@))sen = a- (Xa=g51())ren -
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(4)  Ca=o(=s1)(a))ren = —(XCa=051(®))ren -
(5)  a-(Xa=o52())ren +b-(Xa—0 53())ren = (Ca=o(a-s2+b-s3)())nen -
Let us consider X, s;. We say that s; is summable if and only if:

(Def.2) (30 _gsi(a))xen is convergent.

Let us consider X, s1. Let us assume that s; is summable. The functor >_ s;
yielding a point of X is defined by:

(Det.3) > s1 =lm((>h—p s1())ren )-
Next we state several propositions:
(6) If so is summable and s3 is summable, then sy + s3 is summable and
S(s2+s3)=> 82+ s3.
(7)  If s9 is summable and sz is summable, then s — s3 is summable and
(52 —83) =282 — 3 s3.
(8)  If 1 is summable, then a - s; is summable and Y (a-s1) =a- > 1.
(9) If sy is summable, then s is convergent and lim s; = Ogpe vectors of X -
1

(10) If X is a Hilbert space, then s; is summable if and only if for every r
such that r > 0 there exists k such that for all n, m such that n > k and
m 2 k holds [|(326=o s1(c))sen (1) = (XZa=o 81(c))sen (m)[| <.

(11)  If s1 is summable, then (3°5_; s1(a))ken is bounded.

(12)  For all s1, so such that for every n holds sa2(n) = s1(0) holds (356 _o(s1 7
D(a))ren = (Xa=0 s1())ren T1 = s2.

(13)  If s1 is summable, then for every & holds s; T k is summable.

(14)  If there exists k such that s; T &k is summable, then s; is summable.

Let us consider X, si, n. The functor Y ;_,si1(x) yielding a point of X is
defined by:

(Def.d)  >R_gs1(k) = (Xa=o 51())ren (n).

We now state several propositions:
(15) n r=051(r) = (Xa=0 51(a))ren (1)
(16) heos1(k) = ( ).
(17)  Yaoosi(r) = i s1(k) + s1(1).
(18)  Yacosi(r) = 81( )+ s1(1).
(19)  Eitgsi(r) = Xr_gs1(k) +si(n+1).
(20)  si(n+1) =k si(k) — Yoo s1(k).
(21)  s1(1) = Leegs1(r) — Tig s1(r).

Let us consider X, s1, n, m. The functor ;" s1(x) yielding a point of

X is defined by:

(Def.5) rent1 S1(R) = 2i—g s1(k) — 2k s1(k).
The following propositions are true:
(22)  YLagas1(k) = 2o s1(k) — 2o s1(k).
(23)  Yhoii si(k) = s1(D).
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(24)  Yhonqip151(k) =s1(n+1).

(25) If X is a Hilbert space, then s; is summable if and only if for every r
such that r > 0 there exists k such that for all n, m such that n > k and
m >k holds || > h_ys1(k) — >onegsi(k)]] <.

(26) If X is a Hilbert space, then s; is summable if and only if for every r
such that r > 0 there exists k such that for all n, m such that n > k and
m >k holds [|> 0%, 11 s1(k)|| <.

Let us consider Rj, n. The functor > 1_, R1(x) yields a real number and is
defined by:

(Def.6)  37%_g Ra(k) = (Za=o B1(@))ren (n)-
Let us consider Ry, n, m. The functor Y /", | Ri(k) yielding a real number
is defined by:
(Def.7) went1 B1(k) = 300 Ri(k) — 22k g Ra(k).
Let us consider X, s1. We say that s; is absolutely summable if and only if:
(Def.8)  ||s1]| is summable.

The following propositions are true:

(27)  1If s9 is absolutely summable and s3 is absolutely summable, then so+s3
is absolutely summable.

(28)  If s1 is absolutely summable, then a - s; is absolutely summable.

(29) If for every n holds ||s1]/(n) < Ri(n) and R; is summable, then s; is
absolutely summable.

(30)  If for every m holds s1(n) # Othe vectors of x and Rj(n) = w and
Ry is convergent and lim Ry < 1, then s1 is absolutely summable.

(31) Ifr > 0 and there exists m such that for every n such that n > m holds
||si(n)|| > r, then s1 is not convergent or lim s1 # Othe vectors of X -
(32)  If for every n holds s1(n) # Othe vectors of x and there exists m such that

for every n such that n > m holds W > 1, then s is not summable.

(33) If for every m holds s1(n) # Oghe vectors of x and for every m holds
Ri(n) = W and R; is convergent and lim R; > 1, then s; is not
summable.

(34) If for every n holds Ri(n) = {/||si(n)|| and R; is convergent and
lim Ry < 1, then s; is absolutely summable.

(35)  If for every n holds Ry(n) = {/||s1]/(n) and there exists m such that for
every n such that n > m holds Ri(n) > 1, then s; is not summable.

(36) If for every n holds Ri(n) = {/||s1]/(n) and R; is convergent and
lim R; > 1, then s; is not summable.

37 (OCh_ollsill(a))ken is non-decreasing.

(38)  For every n holds (3-8 _g||s1][(c))ken (n) > 0.

(39)  For every n holds [[(Xa=g s1(@))sen (n)]| < (Xa=ollsill(a))ren (7).
(40)  For every n holds [[325_q s1(s)] < Xjiolls1ll(x)-
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(41)  For all n, m holds [[(3-6—o s1(a))ren (m) — (Xg=0 s1(@))ren (N)[| <
|(Zo¢:0||81”( Dien (m) — (5tolls111(0))wen ()]

(42)  For all n, m holds
12 ok20 s1(k) = ko s1(R)I| < | 22k0lls1ll(k) — 2k=olls1ll(K)].

(43)  For all n, m holds [|32¢_, 11 s1(k) || < [ k—milIsall(k)]-

(44) If X is a Hilbert space, then if s; is absolutely summable, then s; is
summable.

Let us consider X, s, Ry. The functor Ry - s1 yielding a sequence of X is
defined as follows:

(Def.9)  for every n holds (Ry - s1)(n) = R1(n) - s1(n).

One can prove the following propositions:

Ry - (sg+s3) =Ry -sa+ Ry - s3.

(R2+R3)'81 =Ry-s1+ R3-s1.

(R2 R3) - 51 = Ry - (R3 - s51).

(CLRl) S =a- (Rl . 81).

R1 =81 = (—Rl) 51

If Ry is convergent and si is convergent, then Ry - s1 is convergent.
If R; is bounded and s; is bounded, then R; - s1 is bounded.

If R; is convergent and s; is convergent, then Ry - s1 is convergent and
lim(Ry - s1) = lim Ry - lim s;.
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Let us consider R1. We say that R; is a Cauchy sequence if and only if:

(Def.10)  for every r such that r > 0 there exists k such that for all n, m such

that n > k and m > k holds |R;(n) — Ri(m)| < r.

One can prove the following propositions:

(53) If X is a Hilbert space, then if s; is a Cauchy sequence and R is a
Cauchy sequence, then R - s1 is a Cauchy sequence.

(54)  For every n holds (356 _o((R1—R1T1)- (X h_o51())ren )(@))wen (n) =
(Ca=o(B1 - s1)(@))ren (n+1) — (R1 - (36=0 51(@))wen ) (n + 1).

(55)  For every n holds
(Xa=o(R1-s1)(@))ren (n+1) = (R1-(3a=0 51())ren ) (n+1) = (Co—o (B2 1
1= R1) - (326=051(a))ren ) (@))ren (n )

(56)  For every n holds ""T3(Ry - s1)(k) = (Ry - (X _g 81())wen ) (n 4+ 1) —
So=o((B1 11— R1) - (3C0=0s1(a))ken ) (k).
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