Metric Spaces as Topological Spaces -Fundamental Concepts

Agata Darmochwał¹ Warsaw University Białystok Yatsuka Nakamura Shinshu University Nagano

Summary. Some notions connected with metric spaces and the relationship between metric spaces and topological spaces. Compactness of topological spaces is transferred for the case of metric spaces [13]. Some basic theorems about translations of topological notions for metric spaces are proved. One-dimensional topological space \mathbb{R}^1 is introduced, too.

MML Identifier: TOPMETR.

The papers [21], [11], [1], [22], [20], [4], [5], [6], [12], [10], [3], [14], [16], [23], [9], [7], [2], [15], [18], [17], [19], and [8] provide the notation and terminology for this paper. For simplicity we follow a convention: a, b, r will denote real numbers, n will denote a natural number, T will denote a topological space, and F will denote a family of subsets of T. One can prove the following proposition

(1) F is a cover of T if and only if the carrier of $T \subseteq \bigcup F$.

In the sequel A will be a subspace of T. Next we state three propositions:

- (2) For every point p of A holds p is a point of T.
- (3) If T is a T_2 space, then A is a T_2 space.
- (4) For all subspaces A, B of T such that the carrier of $A \subseteq$ the carrier of B holds A is a subspace of B.

In the sequel P, Q denote subsets of T and p denotes a point of T. We now state several propositions:

- (5) If $P \neq \emptyset_T$, then $T \upharpoonright P$ is a subspace of $T \upharpoonright P \cup Q$ qua a subset of T but if $Q \neq \emptyset_T$, then $T \upharpoonright Q$ is a subspace of $T \upharpoonright P \cup Q$ qua a subset of T.
- (6) If $P \neq \emptyset$ and $p \in P$, then for every neighborhood Q of p and for every point p' of $T \upharpoonright P$ and for every subset Q' of $T \upharpoonright P$ such that $Q' = Q \cap P$ and p' = p holds Q' is a neighborhood of p'.

¹The article was written during my work at Shinshu University, 1991.

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

- (7) For all topological spaces A, B, C and for every map f from A into C such that f is continuous and C is a subspace of B for every map h from A into B such that h = f holds h is continuous.
- (8) For all topological spaces A, B and for every map f from A into B and for every subspace C of B such that f is continuous and rng $f \subseteq$ the carrier of C for every map h from A into C such that h = f holds h is continuous.
- (9) For all topological spaces A, B and for every map f from A into B and for every subset C of B such that f is continuous and $\operatorname{rng} f \subseteq C$ and $C \neq \emptyset$ for every map h from A into $B \upharpoonright C$ such that h = f holds h is continuous.
- (10) For all topological spaces T, S and for every map f from T into S such that f is continuous for every subset P of T and for every map h from $T \upharpoonright P$ into S such that $P \neq \emptyset_T$ and $h = f \upharpoonright P$ holds h is continuous.

In the sequel M will denote a metric space and p will denote a point of M. One can prove the following proposition

(11) If r > 0, then $p \in \text{Ball}(p, r)$.

We now define two new modes. Let us consider M. A subset of M is sets of points of M.

A family of subsets of M is a family of subsets of the carrier of M.

Let us consider M. A metric space is said to be a subspace of M if:

(Def.1) the carrier of it \subseteq the carrier of M and for all points x, y of it holds (the distance of it)(x, y) = (the distance of M)(x, y).

In the sequel A will be a subspace of M. One can prove the following propositions:

- (12) For every point p of A holds p is a point of M.
- (13) For every point x of M and for every point x' of A such that x = x' holds $\text{Ball}(x', r) = \text{Ball}(x, r) \cap$ the carrier of A.

Let M be a metric space, and let A be a non-empty subset of M. The functor $M \upharpoonright A$ yielding a subspace of M is defined as follows:

(Def.2) the carrier of $M \upharpoonright A = A$.

Let us consider a, b. Let us assume that $a \leq b$. The functor $[a, b]_{M}$ yields a subspace of the metric space of real numbers and is defined by:

(Def.3) for every non-empty subset P of the metric space of real numbers such that P = [a, b] holds $[a, b]_{M} =$ (the metric space of real numbers) $\upharpoonright P$.

We now state the proposition

(14) If $a \leq b$, then the carrier of $[a, b]_{M} = [a, b]$.

In the sequel F, G will be families of subsets of M. We now define two new predicates. Let us consider M, F. We say that F is a family of balls if and only if:

- (Def.4) for an arbitrary P such that $P \in F$ there exist p, r such that P = Ball(p, r).
 - We say that F is a cover of M if and only if:
- (Def.5) the carrier of $M \subseteq \bigcup F$.

The following propositions are true:

- (15) For all points p, q of the metric space of real numbers and for all real numbers x, y such that x = p and y = q holds $\rho(p, q) = |x y|$.
- (16) The carrier of M = the carrier of M_{top} and the topology of M_{top} = the open set family of M.
- (17) For every family F of subsets of M holds F is a family of subsets of M_{top} .
- (18) For every family F of subsets of M_{top} holds F is a family of subsets of M.
- (19) A_{top} is a subspace of M_{top} .
- (20) For every subset P of $\mathcal{E}_{\mathrm{T}}^n$ and for every non-empty subset Q of \mathcal{E}^n such that P = Q holds $(\mathcal{E}_{\mathrm{T}}^n) \upharpoonright P = (\mathcal{E}^n \upharpoonright Q)_{\mathrm{top}}$.
- (21) For every subset P of M_{top} such that P = Ball(p, r) holds P is open.
- (22) For every subset P of M_{top} holds P is open if and only if for every point p of M such that $p \in P$ there exists r such that r > 0 and $Ball(p, r) \subseteq P$.

Let us consider M. We say that M is compact if and only if:

(Def.6) M_{top} is compact.

We now state the proposition

(23) M is compact if and only if for every F such that F is a family of balls and F is a cover of M there exists G such that $G \subseteq F$ and G is a cover of M and G is finite.

The topological space \mathbb{R}^1 is defined as follows:

(Def.7) $\mathbb{R}^1 = (\text{the metric space of real numbers})_{\text{top}}.$

One can prove the following proposition

(24) The carrier of $\mathbb{R}^1 = \mathbb{R}$.

Let us consider a, b. Let us assume that $a \leq b$. The functor $[a, b]_T$ yields a subspace of \mathbb{R}^1 and is defined by:

(Def.8)
$$[a, b]_{\mathrm{T}} = ([a, b]_{\mathrm{M}})_{\mathrm{top}}.$$

We now state three propositions:

- (25) If $a \leq b$, then the carrier of $[a, b]_{\mathrm{T}} = [a, b]$.
- (26) If $a \leq b$, then for every subset P of \mathbb{R}^1 such that P = [a, b] holds $[a, b]_{\mathrm{T}} = \mathbb{R}^1 \upharpoonright P$.
- (27) $[0, 1]_{\mathrm{T}} = \mathbb{I}.$

Let us note that it makes sense to consider the following constant. Then \mathbb{I} is a subspace of $\mathbb{R}^1.$

The following proposition is true

(28) For every map f from \mathbb{R}^1 into \mathbb{R}^1 such that there exist real numbers a, b such that for every real number x holds $f(x) = a \cdot x + b$ holds f is continuous.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [6] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [7] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [9] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
- [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [12] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
- [13] John L. Kelly. *Topologie*. Volume I,II, von Nostrand, 1955.
- [14] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [15] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93–96, 1991.
 [16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [17] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [18] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [19] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535–545, 1991.
- [20] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [21] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [23] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231–237, 1990.

Received November 21, 1991