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The papers [19], [9], [1], [4], [20], [2], [18], [13], [5], [8], [14], [21], [7], [15], [12],
[11], [17], [6], [10], [16], and [3] provide the terminology and notation for this
paper. For simplicity we follow the rules: M is a metric space, ¢, g are elements
of the carrier of M, F' is a family of subsets of the carrier of M, A, B are
subsets of the carrier of M, f is a function, n, m, p, k are natural numbers,
and 7, s, L are real numbers. Next we state four propositions:
(1)  For every L such that 0 < L and L < 1 for all n, m such that n < m
holds L™ < L™.
(2)  For every L such that 0 < L and L < 1 for every k holds L* < 1 and
0<LF
(3) For every L such that 0 < L and L < 1 for every s such that 0 < s
there exists n such that L™ < s.
(4)  For every set X such that X is finite and X # () and for all sets Y, Z
such that Y € X and Z € X holds Y C Z or Z C Y there exists a set V
such that V € X and for every set Z such that Z € X holds V C Z.

Let us consider M, F. Then |J F' is a subset of the carrier of M.

Let D be a non-empty set. Then Qp is a subset of D. Then 0 is a subset
of D.

Let us consider M. We say that M is totally bounded if and only if:
(Def.1)  for every r such that r > 0 there exists F' such that F is finite and the
carrier of M = |J F and for every A such that A € F there exists g such
that A = Ball(g, ).
Let us consider M. A function is called a sequence of M if:
(Def.2) domit =N and rngit C the carrier of M.

In the sequel S; will denote a sequence of M. The following proposition is
true
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(5) f is a sequence of M if and only if dom f = N and for every n holds
f(n) is an element of the carrier of M.

Let us consider M, S1, n. Then Si(n) is an element of the carrier of M.
Let us consider M, S1. We say that Sp is convergent if and only if:

(Def.3)  there exists an element x of the carrier of M such that for every r such
that » > 0 there exists n such that for every m such that n < m holds
p(Si(m),x) <r.

Let us consider M, Sy. Let us assume that Sy is convergent. The functor
lim S; yields an element of the carrier of M and is defined by:

(Def.4)  for every r such that r > 0 there exists n such that for every m such

that m > n holds p(Si(m),lim Sy) < r.
The following proposition is true

(6)  For every S; such that S; is convergent holds lim S = ¢ if and only if
for every r such that 0 < r there exists n such that for every m such that
n < m holds p(S1(m),g) < r.

Let us consider M, S1. We say that S is a Cauchy sequence if and only if:
(Def.5)  for every r such that r > 0 there exists p such that for all n, m such
that p < n and p < m holds p(Si(n),S1(m)) < r.
Let us consider M. We say that M is complete if and only if:
(Def.6)  for every Sy such that S is a Cauchy sequence holds S; is convergent.

We now state two propositions:
(7)  For every Sy such that Sy is convergent holds S; is a Cauchy sequence.
(8)  For every Sp holds S is a Cauchy sequence if and only if for every r
such that r > 0 there exists p such that for all n, k such that p < n holds
p(Si(n+k),Si(n)) <r.
Let us consider M. A function from the carrier of M into the carrier of M
is called a contraction of M if:
(Def.7)  there exists L such that 0 < L and L < 1 and for all points z, y of M
holds p(it(x),it(y)) < L - p(x,y).
We now state four propositions:
(9) For every contraction f of M such that M is complete there exists ¢
such that f(c¢) = ¢ and for every element y of the carrier of M such that
fly) =y holds y = c.

(10)  If Myop is compact, then M is complete.

(11)  For every contraction f of M such that M., is compact there exists an
element ¢ of the carrier of M such that f(c) = ¢ and for every element y
of the carrier of M such that f(y) =y holds y = ¢.

(12)  If Miop is compact, then M is totally bounded.

We now define two new predicates. Let us consider M. We say that M is
bounded if and only if:
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(Def.8)  there exists r such that 0 < r and for all points z, y of M holds p(x,y) <
r

Let us consider A. We say that A is bounded if and only if:
(Detf.9) (i)  there exists r such that 0 < r and for all points x, y of M such that
x € Aand y € A holds p(z,y) <rif A#0.
One can prove the following propositions:

(13) If A # 0, then A is bounded if and only if there exists r such that 0 < r
and for all points x, y of M such that x € A and y € A holds p(x,y) < r.

(14) q)tho carrier of M 18 bounded.

(15)  If A # 0, then A is bounded if and only if there exist r, ¢ such that 0 < r
and ¢ € A and for every point z of M such that z € A holds p(c, z) <.

(16) If 0 < r, then g € Ball(g,r) and Ball(g,r) # 0.

(17) If r <0, then Ball(g,r) = 0.

(18) If 0 < r, then Ball(g,r) is bounded.

(19) Ball(g,r) is bounded.

(20) If Ais bounded and B is bounded, then A U B is bounded.
(21) If Ais bounded and B C A, then B is bounded.

(22) If A= {g}, then A is bounded.

(23) If A is finite, then A is bounded.

(24)

If F is finite and for every A such that A € F holds A is bounded, then
U F' is bounded.

(25) M is bounded if and only if Q¢pe carrier of A 18 bounded.
(26) If M is totally bounded, then M is bounded.

Let us consider M, A. Let us assume that A # () and A is bounded. The
functor VA yields a real number and is defined as follows:

(Def.10)  for all points x, y of M such that x € A and y € A holds p(z,y) < VA
and for every s such that for all points x, y of M such that x € A and
y € A holds p(z,y) < s holds VA < s.
We now state several propositions:

(27)  Suppose A # () and A is bounded. Then VA = r if and only if for all
points z, y of M such that x € A and y € A holds p(z,y) < r and for
every s such that for all points x, y of M such that x € A and y € A
holds p(z,y) < s holds r < s.

(28) If A= {g}, then VA =0.
(29) If A+#( and A is bounded, then 0 < VA.

(30) If A# () and A is bounded, then VA = 0 if and only if there exists a
point g of M such that A = {g}.

(31) If 0 <, then VBall(g,r) <2-7.

(32) If A+# 0 and A is bounded and B # () and B C A, then B is bounded
and VB < VA.
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If A+ () and A is bounded and B # () and B is bounded and ANB # (),
then AU B is bounded and V(AU B) < VA + VB.

Let us consider M, S1. Then rng S; is a subset of the carrier of M.
One can prove the following proposition
(34)

If 57 is a Cauchy sequence, then rng S; is bounded.
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