Serieses¹

Konrad Raczkowski Warsaw University Białystok Andrzej Nędzusiak Warsaw University Białystok

Summary. The article contains definitions and properties of convergent serieses.

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathtt{SERIES_1}.$

The articles [12], [2], [10], [1], [7], [6], [4], [3], [5], [11], [8], and [9] provide the notation and terminology for this paper. We follow the rules: n, m will denote natural numbers, a, p, r will denote real numbers, and s, s_1, s_2 will denote sequences of real numbers. We now state three propositions:

- (1) If 0 < a and a < 1 and for every n holds $s(n) = a^{n+1}$, then s is convergent and $\lim s = 0$.
- (2) If $a \neq 0$, then $|a|^n = |a^n|$.
- (3) If |a| < 1 and for every *n* holds $s(n) = a^{n+1}$, then *s* is convergent and $\lim s = 0$.

Let us consider s. The functor $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa\in\mathbb{N}}$ yielding a sequence of real numbers is defined by:

(Def.1) $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa\in\mathbb{N}}(0) = s(0)$ and for every n holds $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa\in\mathbb{N}}(n+1) = (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa\in\mathbb{N}}(n) + s(n+1).$

The following proposition is true

(4) For all s, s_1 holds $s_1 = (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}$ if and only if $s_1(0) = s(0)$ and for every n holds $s_1(n+1) = s_1(n) + s(n+1)$.

Let us consider s. We say that s is summable if and only if:

(Def.2) $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}$ is convergent.

Let us consider s. Let us assume that s is summable. The functor $\sum s$ yields a real number and is defined as follows:

(Def.3)
$$\sum s = \lim((\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}).$$

¹Supported by RPBP.III-24.C8

C 1991 Fondation Philippe le Hodey ISSN 0777-4028 The following propositions are true:

- (6)² For all s, r such that s is summable holds $r = \sum s$ if and only if $r = \lim((\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}).$
- (7) If s is summable, then s is convergent and $\lim s = 0$.
- (8) $(\sum_{\alpha=0}^{\kappa} s_1(\alpha))_{\kappa\in\mathbb{N}} + (\sum_{\alpha=0}^{\kappa} s_2(\alpha))_{\kappa\in\mathbb{N}} = (\sum_{\alpha=0}^{\kappa} (s_1+s_2)(\alpha))_{\kappa\in\mathbb{N}}.$
- (9) $(\sum_{\alpha=0}^{\kappa} s_1(\alpha))_{\kappa\in\mathbb{N}} (\sum_{\alpha=0}^{\kappa} s_2(\alpha))_{\kappa\in\mathbb{N}} = (\sum_{\alpha=0}^{\kappa} (s_1 s_2)(\alpha))_{\kappa\in\mathbb{N}}.$
- (10) If s_1 is summable and s_2 is summable, then $s_1 + s_2$ is summable and $\sum (s_1 + s_2) = \sum s_1 + \sum s_2$.
- (11) If s_1 is summable and s_2 is summable, then $s_1 s_2$ is summable and $\sum (s_1 s_2) = \sum s_1 \sum s_2$.
- (12) $(\sum_{\alpha=0}^{\kappa} (rs)(\alpha))_{\kappa \in \mathbb{N}} = r(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}.$
- (13) If s is summable, then rs is summable and $\sum (rs) = r \cdot \sum s$.
- (14) For all s, s_1 such that for every n holds $s_1(n) = s(0)$ holds $(\sum_{\alpha=0}^{\kappa} (s \uparrow 1)(\alpha))_{\kappa \in \mathbb{N}} = (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}} \uparrow 1 s_1.$
- (15) If s is summable, then for every n holds $s \uparrow n$ is summable.
- (16) If there exists n such that $s \uparrow n$ is summable, then s is summable.
- (17) If for every *n* holds $s_1(n) \le s_2(n)$, then for every *n* holds $(\sum_{\alpha=0}^{\kappa} s_1(\alpha))_{\kappa \in \mathbb{N}} (n) \le (\sum_{\alpha=0}^{\kappa} s_2(\alpha))_{\kappa \in \mathbb{N}} (n).$
- (18) If s is summable, then for every n holds $\sum s = (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}} (n) + \sum (s \uparrow (n+1)).$
- (19) If for every *n* holds $0 \le s(n)$, then $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}$ is non-decreasing.
- (20) If for every *n* holds $0 \le s(n)$, then $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}$ is upper bounded if and only if *s* is summable.
- (21) If s is summable and for every n holds $0 \le s(n)$, then $0 \le \sum s$.
- (22) If for every n holds $0 \le s_2(n)$ and s_1 is summable and there exists m such that for every n such that $m \le n$ holds $s_2(n) \le s_1(n)$, then s_2 is summable.
- (23) If for every n holds $0 \le s_2(n)$ and s_2 is not summable and there exists m such that for every n such that $m \le n$ holds $s_2(n) \le s_1(n)$, then s_1 is not summable.
- (24) If for every *n* holds $0 \le s_1(n)$ and $s_1(n) \le s_2(n)$ and s_2 is summable, then s_1 is summable and $\sum s_1 \le \sum s_2$.
- (25) s is summable if and only if for every r such that 0 < r there exists n such that for every m such that $n \le m$ holds $|(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}} (m) - (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}} (n)| < r$.
- (26) If $a \neq 1$, then $\left(\sum_{\alpha=0}^{\kappa} ((a^{\kappa})_{\kappa \in \mathbb{N}})(\alpha)\right)_{\kappa \in \mathbb{N}} (n) = \frac{1-a^{n+1}}{1-a}$.
- (27) If $a \neq 1$ and for every n holds $s(n+1) = a \cdot s(n)$, then for every n holds $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}} (n) = \frac{s(0) \cdot (1-a^{n+1})}{1-a}.$
- (28) If |a| < 1, then $(a^{\kappa})_{\kappa \in \mathbb{N}}$ is summable and $\sum ((a^{\kappa})_{\kappa \in \mathbb{N}}) = \frac{1}{1-a}$.

²The proposition (5) has been removed.

- (29) If |a| < 1 and for every *n* holds $s(n+1) = a \cdot s(n)$, then *s* is summable and $\sum s = \frac{s(0)}{1-a}$.
- (30) If for every *n* holds s(n) > 0 and $s_1(n) = \frac{s(n+1)}{s(n)}$ and s_1 is convergent and $\lim s_1 < 1$, then *s* is summable.
- (31) If for every *n* holds s(n) > 0 and there exists *m* such that for every *n* such that $n \ge m$ holds $\frac{s(n+1)}{s(n)} \ge 1$, then *s* is not summable.
- (32) If for every *n* holds $s(n) \ge 0$ and $s_1(n) = \sqrt[n]{s(n)}$ and s_1 is convergent and $\lim s_1 < 1$, then *s* is summable.
- (33) If for every n holds $s(n) \ge 0$ and $s_1(n) = \sqrt[n]{s(n)}$ and there exists m such that for every n such that $m \le n$ holds $s_1(n) \ge 1$, then s is not summable.
- (34) If for every *n* holds $s(n) \ge 0$ and $s_1(n) = \sqrt[n]{s(n)}$ and s_1 is convergent and $\lim s_1 > 1$, then *s* is not summable.

Let us consider n. The n-th power of 2 yields a natural number and is defined as follows:

(Def.4) the *n*-th power of $2=2^n$.

One can prove the following three propositions:

- (35) If s is non-increasing and for every n holds $s(n) \ge 0$ and $s_1(n) = 2^n \cdot s$ (the n-th power of 2), then s is summable if and only if s_1 is summable.
- (36) If p > 1 and for every n such that $n \ge 1$ holds $s(n) = \frac{1}{n^p}$, then s is summable.
- (37) If $p \le 1$ and for every n such that $n \ge 1$ holds $s(n) = \frac{1}{n^p}$, then s is not summable.

Let us consider s. We say that s is absolutely summable if and only if:

(Def.5) |s| is summable.

We now state several propositions:

- (39)³ For all n, m such that $n \leq m$ holds $|(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}} (m) (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}} (n)| \leq |(\sum_{\alpha=0}^{\kappa} |s|(\alpha))_{\kappa \in \mathbb{N}} (m) (\sum_{\alpha=0}^{\kappa} |s|(\alpha))_{\kappa \in \mathbb{N}} (n)|.$
- (40) If s is absolutely summable, then s is summable.
- (41) If for every n holds $0 \le s(n)$ and s is summable, then s is absolutely summable.
- (42) If for every *n* holds $s(n) \neq 0$ and $s_1(n) = \frac{|s|(n+1)}{|s|(n)}$ and s_1 is convergent and $\lim s_1 < 1$, then *s* is absolutely summable.
- (43) If r > 0 and there exists m such that for every n such that $n \ge m$ holds $|s(n)| \ge r$, then s is not convergent or $\lim s \ne 0$.
- (44) If for every *n* holds $s(n) \neq 0$ and there exists *m* such that for every *n* such that $n \geq m$ holds $\frac{|s|(n+1)}{|s|(n)} \geq 1$, then *s* is not summable.

³The proposition (38) has been removed.

- (45) If for every *n* holds $s_1(n) = \sqrt[n]{|s|(n)|}$ and s_1 is convergent and $\lim s_1 < 1$, then *s* is absolutely summable.
- (46) If for every *n* holds $s_1(n) = \sqrt[n]{|s|(n)|}$ and there exists *m* such that for every *n* such that $m \le n$ holds $s_1(n) \ge 1$, then *s* is not summable.
- (47) If for every *n* holds $s_1(n) = \sqrt[n]{|s|(n)}$ and s_1 is convergent and $\lim s_1 > 1$, then *s* is not summable.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [5] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471–475, 1990.
- [6] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [7] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [8] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125– 130, 1991.
- Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
- [10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [11] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [12] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received October 15, 1990