Serieses ${ }^{1}$

Konrad Raczkowski
Warsaw University
Białystok

Andrzej Nẹdzusiak
Warsaw University
Białystok

Summary. The article contains definitions and properties of convergent serieses.

MML Identifier: SERIES_1.

The articles [12], [2], [10], [1], [7], [6], [4], [3], [5], [11], [8], and [9] provide the notation and terminology for this paper. We follow the rules: n, m will denote natural numbers, a, p, r will denote real numbers, and s, s_{1}, s_{2} will denote sequences of real numbers. We now state three propositions:
(1) If $0<a$ and $a<1$ and for every n holds $s(n)=a^{n+1}$, then s is convergent and $\lim s=0$.
(2) If $a \neq 0$, then $|a|^{n}=\left|a^{n}\right|$.
(3) If $|a|<1$ and for every n holds $s(n)=a^{n+1}$, then s is convergent and $\lim s=0$.
Let us consider s. The functor $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathrm{N}}$ yielding a sequence of real numbers is defined by:
(Def.1) $\quad\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(0)=s(0)$ and for every n holds $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n+$ $1)=\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n)+s(n+1)$.
The following proposition is true
(4) For all s, s_{1} holds $s_{1}=\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}$ if and only if $s_{1}(0)=s(0)$ and for every n holds $s_{1}(n+1)=s_{1}(n)+s(n+1)$.
Let us consider s. We say that s is summable if and only if:
(Def.2) $\quad\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}$ is convergent.
Let us consider s. Let us assume that s is summable. The functor $\sum s$ yields a real number and is defined as follows:
(Def.3) $\quad \sum s=\lim \left(\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}\right)$.

[^0]The following propositions are true:
(6) ${ }^{2}$ For all s, r such that s is summable holds $r=\sum s$ if and only if $r=\lim \left(\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}\right)$.
(7) If s is summable, then s is convergent and $\lim s=0$. $\sum\left(s_{1}+s_{2}\right)=\sum s_{1}+\sum s_{2}$.
(11) If s_{1} is summable and s_{2} is summable, then $s_{1}-s_{2}$ is summable and $\sum\left(s_{1}-s_{2}\right)=\sum s_{1}-\sum s_{2}$.
(12) $\quad\left(\sum_{\alpha=0}^{\kappa}(r s)(\alpha)\right)_{\kappa \in \mathbb{N}}=r\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}$.
(13) If s is summable, then $r s$ is summable and $\sum(r s)=r \cdot \sum s$.
(14) For all s, s_{1} such that for every n holds $s_{1}(n)=s(0)$ holds $\left(\sum_{\alpha=0}^{\kappa}(s \uparrow\right.$ 1) $(\alpha))_{\kappa \in \mathbb{N}}=\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}} \uparrow 1-s_{1}$.
(15) If s is summable, then for every n holds $s \uparrow n$ is summable.
(16) If there exists n such that $s \uparrow n$ is summable, then s is summable.
(17) If for every n holds $s_{1}(n) \leq s_{2}(n)$, then for every n holds
$\left(\sum_{\alpha=0}^{\kappa} s_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \leq\left(\sum_{\alpha=0}^{\kappa} s_{2}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(18) If s is summable, then for every n holds $\sum s=\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n)+$ $\sum(s \uparrow(n+1))$.
(19) If for every n holds $0 \leq s(n)$, then $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}$ is non-decreasing.
(20) If for every n holds $0 \leq s(n)$, then $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}$ is upper bounded if and only if s is summable.
(21) If s is summable and for every n holds $0 \leq s(n)$, then $0 \leq \sum s$.
(22) If for every n holds $0 \leq s_{2}(n)$ and s_{1} is summable and there exists m such that for every n such that $m \leq n$ holds $s_{2}(n) \leq s_{1}(n)$, then s_{2} is summable.
(23) If for every n holds $0 \leq s_{2}(n)$ and s_{2} is not summable and there exists m such that for every n such that $m \leq n$ holds $s_{2}(n) \leq s_{1}(n)$, then s_{1} is not summable.
(24) If for every n holds $0 \leq s_{1}(n)$ and $s_{1}(n) \leq s_{2}(n)$ and s_{2} is summable, then s_{1} is summable and $\sum s_{1} \leq \sum s_{2}$.
(25) s is summable if and only if for every r such that $0<r$ there exists n such that for every m such that $n \leq m$ holds $\mid\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(m)-$ $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \mid<r$.
(26) If $a \neq 1$, then $\left(\sum_{\alpha=0}^{\kappa}\left(\left(a^{\kappa}\right)_{\kappa \in \mathbb{N}}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)=\frac{1-a^{n+1}}{1-a}$.
(27) If $a \neq 1$ and for every n holds $s(n+1)=a \cdot s(n)$, then for every n holds $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n)=\frac{s(0) \cdot\left(1-a^{n+1}\right)}{1-a}$.
(28) If $|a|<1$, then $\left(a^{\kappa}\right)_{\kappa \in \mathbb{N}}$ is summable and $\sum\left(\left(a^{\kappa}\right)_{\kappa \in \mathbb{N}}\right)=\frac{1}{1-a}$.

[^1](29) If $|a|<1$ and for every n holds $s(n+1)=a \cdot s(n)$, then s is summable and $\sum s=\frac{s(0)}{1-a}$.
(30) If for every n holds $s(n)>0$ and $s_{1}(n)=\frac{s(n+1)}{s(n)}$ and s_{1} is convergent and $\lim s_{1}<1$, then s is summable.
(31) If for every n holds $s(n)>0$ and there exists m such that for every n such that $n \geq m$ holds $\frac{s(n+1)}{s(n)} \geq 1$, then s is not summable.
(32) If for every n holds $s(n) \geq 0$ and $s_{1}(n)=\sqrt[n]{s(n)}$ and s_{1} is convergent and $\lim s_{1}<1$, then s is summable.
(33) If for every n holds $s(n) \geq 0$ and $s_{1}(n)=\sqrt[n]{s(n)}$ and there exists m such that for every n such that $m \leq n$ holds $s_{1}(n) \geq 1$, then s is not summable.
(34) If for every n holds $s(n) \geq 0$ and $s_{1}(n)=\sqrt[n]{s(n)}$ and s_{1} is convergent and $\lim s_{1}>1$, then s is not summable.
Let us consider n. The n-th power of 2 yields a natural number and is defined as follows:
(Def.4) the n-th power of $2=2^{n}$.
One can prove the following three propositions:
(35) If s is non-increasing and for every n holds $s(n) \geq 0$ and $s_{1}(n)=$ $2^{n} \cdot s$ (the n-th power of 2), then s is summable if and only if s_{1} is summable.
(36) If $p>1$ and for every n such that $n \geq 1$ holds $s(n)=\frac{1}{n^{p}}$, then s is summable.
(37) If $p \leq 1$ and for every n such that $n \geq 1$ holds $s(n)=\frac{1}{n^{p}}$, then s is not summable.
Let us consider s. We say that s is absolutely summable if and only if:
(Def.5) $\quad|s|$ is summable.
We now state several propositions:
$(39)^{3}$ For all n, m such that $n \leq m$ holds $\mid\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(m)-$ $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\left|\leq\left|\left(\sum_{\alpha=0}^{\kappa}|s|(\alpha)\right)_{\kappa \in \mathbb{N}}(m)-\left(\sum_{\alpha=0}^{\kappa}|s|(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right|\right.$.
(40) If s is absolutely summable, then s is summable.
(41) If for every n holds $0 \leq s(n)$ and s is summable, then s is absolutely summable.
(42) If for every n holds $s(n) \neq 0$ and $s_{1}(n)=\frac{|s|(n+1)}{|s|(n)}$ and s_{1} is convergent and $\lim s_{1}<1$, then s is absolutely summable.
(43) If $r>0$ and there exists m such that for every n such that $n \geq m$ holds $|s(n)| \geq r$, then s is not convergent or $\lim s \neq 0$.
(44) If for every n holds $s(n) \neq 0$ and there exists m such that for every n such that $n \geq m$ holds $\frac{|s|(n+1)}{|s|(n)} \geq 1$, then s is not summable.

[^2](45) If for every n holds $s_{1}(n)=\sqrt[n]{|s|(n)}$ and s_{1} is convergent and $\lim s_{1}<1$, then s is absolutely summable.
(46) If for every n holds $s_{1}(n)=\sqrt[n]{|s|(n)}$ and there exists m such that for every n such that $m \leq n$ holds $s_{1}(n) \geq 1$, then s is not summable.
(47) If for every n holds $s_{1}(n)=\sqrt[n]{|s|(n)}$ and s_{1} is convergent and $\lim s_{1}>1$, then s is not summable.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[5] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[6] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[7] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[8] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125130, 1991.
[9] Konrad Raczkowski and Andrzej Nẹdzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[11] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[12] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received October 15, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C8

[^1]: ${ }^{2}$ The proposition (5) has been removed.

[^2]: ${ }^{3}$ The proposition (38) has been removed.

