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Summary. Basic properties of the least common multiple and the
greatest common divisor. The lattice of natural numbers (L � ) and the
lattice of natural numbers greater than zero (L �

+ ) are constructed. The
notion of the sublattice of the lattice of natural numbers is given. Some
fact about it are proved. The last part of the article deals with some
properties of prime numbers and with the notions of the set of prime
numbers and the n-th prime number. It is proved that the set of prime
numbers is infinite.

MML Identifier: NAT LAT.

The papers [15], [6], [18], [14], [7], [17], [9], [1], [11], [2], [16], [12], [5], [4], [8],
[13], [10], and [3] provide the terminology and notation for this paper. In the
sequel n, m, l, k, j will be natural numbers. We now state two propositions:

(1) For all natural numbers m, n holds m | m · n and n | m · n.

(2) For all k, l such that l ≥ 1 holds k · l ≥ k.

Let us consider n. Then n! is a natural number.

The following propositions are true:

(3) For all n, k, l such that l ≥ 1 holds if n ≥ k · l, then n ≥ k.

(4) k = 0 or k ≥ 1.

(5) For every l such that l 6= 0 holds l | l!.

(6) k 6= k + 1.

(8)1 For every n such that n 6= 0 holds n+1
n

> 1.

(9) k

k+1
< 1.

1The proposition (7) has been removed.
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(10) For every l holds l! ≥ l.

(12)2 For all m, n such that m 6= 1 holds if m | n, then m
�
n + 1.

(13) j | l and j | l + 1 if and only if j = 1.

(14) For every l there exists j such that j | l!.

(15) For all k, j such that j 6= 0 holds j | (j + k)!.

(16) If j ≤ l and j 6= 0, then j | l!.

(17) For all l, j such that j 6= 1 and j 6= 0 holds if j | l! + 1, then j > l.

(18) For all natural numbers m, n holds lcm(m,n) = lcm(n,m).

(19) For all natural numbers m, n, k holds
lcm(m, lcm(n, k)) = lcm(lcm(m,n), k).

(20) For all natural numbers m, n holds m | n if and only if lcm(m,n) = n.

(21) m | lcm(m,n) and n | lcm(m,n).

(22) lcm(m,m) = m.

(23) n | m and k | m if and only if lcm(n, k) | m.

(24) lcm(m,n) | 0.

(25) 1 | lcm(m,n).

(26) lcm(m, 1) = m.

(27) lcm(m,n) | m · n.

(28) For all natural numbers m, n, k holds
gcd(m, gcd(n, k)) = gcd(gcd(m,n), k).

(29) gcd(m,n) | m and gcd(m,n) | n.

(30) For all natural numbers m, n such that n | m holds gcd(n,m) = n.

(31) gcd(m,m) = m.

(32) m | n and m | k if and only if m | gcd(n, k).

(33) gcd(m,n) | 0.

The following propositions are true:

(34) 1 | gcd(m,n).

(35) gcd(m, 1) = 1.

(36) gcd(m, 0) = m.

(37) For all natural numbers m, n holds lcm(gcd(m,n), n) = n.

(38) For all natural numbers m, n holds gcd(m, lcm(m,n)) = m.

(39) For all natural numbers m, n holds
gcd(m, lcm(m,n)) = lcm(gcd(n,m),m).

(40) If m | n, then gcd(m,k) | gcd(n, k).

(41) If m | n, then gcd(k,m) | gcd(k, n).

(42) For every m such that m > 0 holds gcd(0,m) > 0.

(43) For all m, n such that m > 0 and n > 0 holds gcd(n,m) > 0.

(44) For all m, n such that m > 0 and n > 0 holds lcm(m,n) > 0.

2The proposition (11) has been removed.
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(45) lcm(gcd(n,m), gcd(n, k)) | gcd(n, lcm(m,k)).

(46) For all m, n, l such that m | l holds lcm(m, gcd(n, l)) | gcd(lcm(m,n), l).

(47) gcd(n,m) | lcm(n,m).

Let m be an element of � qua a non-empty set. The functor @m yielding a
natural number is defined by:

(Def.1) @m = m.

Let m be a natural number. The functor @m yielding an element of � qua a
non-empty set is defined as follows:

(Def.2) @m = m.

We now define two new functors. The binary operation hcf � on � is defined
by:

(Def.3) hcf � (m, n) = gcd(m,n).

The binary operation lcm � on � is defined by:

(Def.4) lcm � (m, n) = lcm(m,n).

In the sequel p, q denote elements of the carrier of 〈 � , lcm � ,hcf � 〉. Let m be
an element of the carrier of 〈 � , lcm � ,hcf � 〉. The functor @m yielding a natural
number is defined as follows:

(Def.5) @m = m.

We now state several propositions:

(48) p ⊔ q = lcm(@p, @q).

(49) p ⊓ q = gcd(@p, @q).

(50) lcm � (p, q) = p ⊔ q.

(51) hcf � (p, q) = p ⊓ q.

(52) For all elements a, b of the carrier of 〈 � , lcm � ,hcf � 〉 such that a ⊑ b
holds @a | @b.

The element 0 ��� of the carrier of 〈 � , lcm � ,hcf � 〉 is defined as follows:

(Def.6) 0 ��� = 1.

The element 1 � � of the carrier of 〈 � , lcm � ,hcf � 〉 is defined by:

(Def.7) 1 � � = 0.

We now state three propositions:

(55)3 @(0 � � ) = 1.

(56) For every element a of the carrier of 〈 � , lcm � ,hcf � 〉 holds 0 � � ⊓a = 0 � � .

(57) There exists an element z of the carrier of 〈 � , lcm � ,hcf � 〉 such that for
every element x of the carrier of 〈 � , lcm � ,hcf � 〉 holds z ⊓ x = z.

The lattice � � is defined by:

(Def.8) � � = 〈 � , lcm � ,hcf � 〉.
The following proposition is true

(58) � � = 〈 � , lcm � ,hcf � 〉.
3The propositions (53) and (54) have been removed.
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In the sequel p, q, r will denote elements of the carrier of � � . One can prove
the following propositions:

(60)4 � � is a lower bound lattice.

(61) lcm � (p, q) = lcm � (q, p).

(62) hcf � (q, p) = hcf � (p, q).

(63) lcm � (p, lcm � (q, r)) = lcm � (lcm � (p, q), r).

(64) (i) lcm � (p, lcm � (q, r)) = lcm � (lcm � (q, p), r),
(ii) lcm � (p, lcm � (q, r)) = lcm � (lcm � (p, r), q),
(iii) lcm � (p, lcm � (q, r)) = lcm � (lcm � (r, q), p),
(iv) lcm � (p, lcm � (q, r)) = lcm � (lcm � (r, p), q).

(65) hcf � (p, hcf � (q, r)) = hcf � (hcf � (p, q), r).

(66) (i) hcf � (p, hcf � (q, r)) = hcf � (hcf � (q, p), r),
(ii) hcf � (p, hcf � (q, r)) = hcf � (hcf � (p, r), q),
(iii) hcf � (p, hcf � (q, r)) = hcf � (hcf � (r, q), p),
(iv) hcf � (p, hcf � (q, r)) = hcf � (hcf � (r, p), q).

(67) hcf � (q, lcm � (q, p)) = q and hcf � (lcm � (p, q), q) = q and hcf � (q, lcm � (p,
q)) = q and hcf � (lcm � (q, p), q) = q.

(68) lcm � (q, hcf � (q, p)) = q and lcm � (hcf � (p, q), q) = q and lcm � (q, hcf � (p,
q)) = q and lcm � (hcf � (q, p), q) = q.

The subset � + of � is defined by:

(Def.9) for every natural number n holds n ∈ � + if and only if 0 < n.

Let D be a non-empty set, and let S be a non-empty subset of D, and let N
be a non-empty subset of S. We see that the element of N is an element of S.

A positive natural number is an element of � + .

Let k be a natural number satisfying the condition: k > 0. The functor @k
yields an element of � + qua a non-empty set and is defined by:

(Def.10) @k = k.

Let k be an element of � + qua a non-empty set. The functor @k yields a
positive natural number and is defined as follows:

(Def.11) @k = k.

In the sequel m, n denote positive natural numbers. We now define two new
functors. The binary operation hcf �

+ on � + is defined by:

(Def.12) hcf �
+ (m, n) = gcd(m,n).

The binary operation lcm �
+ on � + is defined as follows:

(Def.13) lcm �
+ (m, n) = lcm(m,n).

In the sequel p, q will denote elements of the carrier of 〈 � + , lcm �
+ ,hcf �

+ 〉.
Let m be an element of the carrier of 〈 � + , lcm �

+ ,hcf �
+ 〉. The functor @m yields

a positive natural number and is defined as follows:

(Def.14) @m = m.

4The proposition (59) has been removed.
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One can prove the following four propositions:

(69) p ⊔ q = lcm(@p, @q).

(70) p ⊓ q = gcd(@p, @q).

(71) lcm �
+ (p, q) = p ⊔ q.

(72) hcf �
+ (p, q) = p ⊓ q.

The lattice � �
+ is defined by:

(Def.15) � �
+ = 〈 � + , lcm �

+ ,hcf �
+ 〉.

Next we state the proposition

(73) � �
+ = 〈 � + , lcm �

+ ,hcf �
+ 〉.

Let L be a lattice. A lattice is said to be a sublattice of L if:

(Def.16) the carrier of it ⊆ the carrier of L and the join operation of it = (the
join operation of L) � [: the carrier of it, the carrier of it :] and the meet
operation of it = (the meet operation of L) � [: the carrier of it, the carrier
of it :].

The following two propositions are true:

(75)5 For every lattice L holds L is a sublattice of L.

(76) � �
+ is a sublattice of � � .

In the sequel n, i, k, k1, k2, m, l will denote natural numbers. The set Prime
of natural numbers is defined as follows:

(Def.17) for every natural number n holds n ∈ Prime if and only if n is prime.

A natural number is said to be a prime number if:

(Def.18) it ∈ Prime.

In the sequel p, q denote prime numbers and f denotes a prime number.
Let us consider p. The functor Prime(p) yields sets of natural numbers and is
defined by:

(Def.19) for every natural number q holds q ∈ Prime(p) if and only if q < p and
q is prime.

Next we state a number of propositions:

(77) Prime(p) ⊆ Prime.

(78) For every prime number q such that p < q holds Prime(p) ⊆ Prime(q).

(79) Prime(p) ⊆ Seg p.

(80) Prime(p) is finite.

(81) For every l there exists p such that p is prime and p > l.

(82) For every q such that q is prime there exists p such that p is prime and
p > q.

(83) Prime ⊆ � .

(84) Prime 6= ∅.

(85) {k : k < 2 ∧ k is prime} = ∅.

5The proposition (74) has been removed.
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(86) For every p holds {k : k < p ∧ k is prime} ⊆ � .

(87) For every m holds {k : k < m ∧ k is prime} ⊆ Seg m.

(88) For every m holds {k : k < m ∧ k is prime} is finite.

(89) For every prime number f holds f /∈ {k : k < f ∧ k is prime}.

(90) For every f holds {k : k < f ∧ k is prime} ∪ {f} is finite.

(91) For all prime numbers f , g such that f < g holds {k1 : k1 < f ∧ k1 is
prime} ∪ {f} ⊆ {k2 : k2 < g ∧ k2 is prime}.

(92) For every k such that k > m holds k /∈ {k1 : k1 < m ∧ k1 is prime}.

Let us consider n. The functor pr(n) yielding a prime number is defined as
follows:

(Def.20) n = card{k : k < pr(n) ∧ k is prime}.

One can prove the following two propositions:

(93) Prime(p) = {k : k < p ∧ k is prime}.

(94) Prime is not finite.

The following proposition is true

(95) For every i such that i is prime for all m, n such that i | m · n holds
i | m or i | n.
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[6] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[7] Marek Chmur. The lattice of real numbers. The lattice of real functions. Formalized

Mathematics, 1(4):681–684, 1990.
[8] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[10] Rafa l Kwiatek. Factorial and Newton coeffitients. Formalized Mathematics, 1(5):887–

890, 1990.
[11] Rafa l Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative

primes. Formalized Mathematics, 1(5):829–832, 1990.
[12] Micha l Muzalewski and Les law W. Szczerba. Construction of finite sequences over ring

and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97–104, 1991.
[13] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized
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[18] Stanis law Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–
222, 1990.

Received April 26, 1991


