Introduction to Modal Propositional Logic

Alicia de la Cruz
Universidad Politecnica de Madrid

MML Identifier: MODAL_1.

The terminology and notation used here are introduced in the following papers: [15], [11], [2], [14], [16], [13], [7], [5], [6], [8], [10], [12], [1], [9], [3], [4], and [17]. For simplicity we follow a convention: x, y will be arbitrary, n, m, k will denote natural numbers, t_{1} will denote a tree decorated by $: \mathbb{N}, \mathbb{N}$ qua a non-empty set :], w, s, t will denote finite sequences of elements of \mathbb{N}, X will denote a set, and D will denote a non-empty set. Next we state the proposition
(1) If X is finite, then card $X=2$ if and only if there exist x, y such that $X=\{x, y\}$ and $x \neq y$.
Let Z be a tree. The root of Z yields an element of Z and is defined as follows:
(Def.1) the root of $Z=\varepsilon$.
Let us consider D, and let T be a tree decorated by D. The root of T yields an element of D and is defined by:
(Def.2) the root of $T=T$ (the root of dom T).
Next we state a number of propositions:
(2) $\langle n\rangle=\langle m\rangle$ if and only if $n=m$.
(3) If $n \neq m$, then $\langle n\rangle$ and $\langle m\rangle \wedge s$ are not comparable.
(4) For every s such that $s \neq \varepsilon$ there exist w, n such that $s=\langle n\rangle^{\wedge} w$.
(5) If $n \neq m$, then $\langle n\rangle \nprec\langle m\rangle{ }^{\wedge} s$.
(6) If $n \neq m$, then $\langle n\rangle \npreceq\langle m\rangle\rangle^{\sim} s$.
(7) $\langle n\rangle \nprec\langle m\rangle$.
(8) If $w \neq \varepsilon$, then $s \prec s^{\wedge} w$.
(9) The elementary tree of $1=\{\varepsilon,\langle 0\rangle\}$.
(10) The elementary tree of $2=\{\varepsilon,\langle 0\rangle,\langle 1\rangle\}$.
(11) For every tree Z and for all n, m such that $n \leq m$ and $\langle m\rangle \in Z$ holds $\langle n\rangle \in Z$.

If $w^{\wedge} t \prec w^{\wedge} s$, then $t \prec s$.
$t_{1} \in \mathbb{N}^{*} \dot{\rightarrow}: \mathbb{N}, \mathbb{N}$ qua a non-empty set $]$.
For all trees Z, Z_{1} and for every element z of Z holds $z \in Z\left(z / Z_{1}\right)$.
(15) For all trees Z, Z_{1}, Z_{2} and for every element z of Z such that $Z\left(z / Z_{1}\right)=$ $Z\left(z / Z_{2}\right)$ holds $Z_{1}=Z_{2}$.
(16) For all trees Z, Z_{1}, Z_{2} decorated by D and for every element z of dom Z such that $Z\left(z / Z_{1}\right)=Z\left(z / Z_{2}\right)$ holds $Z_{1}=Z_{2}$.
(17) For all trees Z_{1}, Z_{2} and for every finite sequence p of elements of \mathbb{N} such that $p \in Z_{1}$ for every element v of $Z_{1}\left(p / Z_{2}\right)$ and for every element w of Z_{1} such that $v=w$ and $w \prec p$ holds succ $v=\operatorname{succ} w$.
(18) For all trees Z_{1}, Z_{2} and for every finite sequence p of elements of \mathbb{N} such that $p \in Z_{1}$ for every element v of $Z_{1}\left(p / Z_{2}\right)$ and for every element w of Z_{1} such that $v=w$ and p and w are not comparable holds succ $v=\operatorname{succ} w$.
(19) For all trees Z_{1}, Z_{2} and for every finite sequence p of elements of \mathbb{N} such that $p \in Z_{1}$ for every element v of $Z_{1}\left(p / Z_{2}\right)$ and for every element w of Z_{2} such that $v=p^{\wedge} w$ holds succ $v \approx \operatorname{succ} w$.
(20) For every tree Z_{1} and for every finite sequence p of elements of \mathbb{N} such that $p \in Z_{1}$ for every element v of Z_{1} and for every element w of $Z_{1} \upharpoonright p$ such that $v=p^{\wedge} w$ holds succ $v \approx \operatorname{succ} w$.
(21) For every tree Z and for every element p of Z such that Z is finite holds succ p is finite.
(22) For every tree Z such that Z is finite and the branch degree of the root of $Z=0$ holds card $Z=1$ and $Z=\{\varepsilon\}$.
(23) For every tree Z such that Z is finite and the branch degree of the root of $Z=1$ holds $\operatorname{succ}($ the root of $Z)=\{\langle 0\rangle\}$.
(24) For every tree Z such that Z is finite and the branch degree of the root of $Z=2$ holds succ (the root of $Z)=\{\langle 0\rangle,\langle 1\rangle\}$.
In the sequel s^{\prime}, w^{\prime} will be elements of \mathbb{N}^{*}. One can prove the following propositions:
(25) For every tree Z and for every element o of Z such that $o \neq$ the root of Z holds $Z \upharpoonright o \approx\left\{o^{\wedge} s^{\prime}: o^{\wedge} s^{\prime} \in Z\right\}$ and the root of $Z \notin\left\{o^{\wedge} w^{\prime}: o^{\wedge} w^{\prime} \in Z\right\}$.
(26) For every tree Z and for every element o of Z such that $o \neq$ the root of Z and Z is finite holds $\operatorname{card}(Z \upharpoonright o)<\operatorname{card} Z$.
(27) For every tree Z and for every element z of Z such that succ(the root of $Z)=\{z\}$ and Z is finite holds $Z=($ the elementary tree of 1$)(\langle 0\rangle /(Z \upharpoonright z))$.
(28) For every tree Z decorated by D and for every element z of $\operatorname{dom} Z$ such that $\operatorname{succ}($ the root of $\operatorname{dom} Z)=\{z\}$ and $\operatorname{dom} Z$ is finite holds $Z=($ the elementary tree of $1 \longmapsto$ the root of $Z)(\langle 0\rangle /(Z \upharpoonright z))$.
(29) For every tree Z and for all elements x_{1}, x_{2} of Z such that Z is finite and $x_{1}=\langle 0\rangle$ and $x_{2}=\langle 1\rangle$ and $\operatorname{succ}($ the root of $Z)=\left\{x_{1}, x_{2}\right\}$ holds $Z=($ the elementary tree of 2$)\left(\langle 0\rangle /\left(Z \upharpoonright x_{1}\right)\right)\left(\langle 1\rangle /\left(Z \upharpoonright x_{2}\right)\right)$.

Let Z be a tree decorated by D. Then for all elements x_{1}, x_{2} of $\operatorname{dom} Z$ such that $\operatorname{dom} Z$ is finite and $x_{1}=\langle 0\rangle$ and $x_{2}=\langle 1\rangle$ and $\operatorname{succ}($ the root of $\operatorname{dom} Z)=\left\{x_{1}, x_{2}\right\}$ holds $Z=($ the elementary tree of $2 \longmapsto$ the root of $Z)\left(\langle 0\rangle /\left(Z \upharpoonright x_{1}\right)\right)\left(\langle 1\rangle /\left(Z \upharpoonright x_{2}\right)\right)$.
The non-empty set \mathcal{V} is defined by:
(Def.3) $\mathcal{V}=\{\{3\}, \mathbb{N}:$.
A variable is an element of \mathcal{V}.
The non-empty set \mathcal{C} is defined as follows:
(Def.4) $\quad \mathcal{C}=\{\{0,1,2\}, \mathbb{N}:]$.
A conective is an element of \mathcal{C}.
One can prove the following proposition
(31) $\mathcal{C} \cap \mathcal{V}=\emptyset$.

In the sequel p, q denote variables. Let T be a tree, and let v be an element of T. Then the branch degree of v is a natural number.

Let D be a non-empty set. A non-empty set is called a non-empty set of trees decorated by D if:
(Def.5) for every x such that $x \in$ it holds x is a tree decorated by D.
Let D_{0} be a non-empty set, and let D be a non-empty set of trees decorated by D_{0}. We see that the element of D is a tree decorated by D_{0}.

The non-empty set WFF of trees decorated by : \mathbb{N}, \mathbb{N} qua a non-empty set :] is defined by the condition (Def.6).
(Def.6) Let x be a tree decorated by $: \mathbb{N}, \mathbb{N}$ qua a non-empty set:]. Then $x \in$ WFF if and only if the following conditions are satisfied:
(i) $\operatorname{dom} x$ is finite,
(ii) for every element v of $\operatorname{dom} x$ holds the branch degree of $v \leq 2$ but if the branch degree of $v=0$, then $x(v)=\langle 0,0\rangle$ or there exists k such that $x(v)=\langle 3, k\rangle$ but if the branch degree of $v=1$, then $x(v)=\langle 1,0\rangle$ or $x(v)=\langle 1,1\rangle$ but if the branch degree of $v=2$, then $x(v)=\langle 2,0\rangle$.
A MP-formula is an element of WFF.
In the sequel A, A_{1}, B, B_{1}, C denote MP-formulae. Let us consider A, and let a be an element of $\operatorname{dom} A$. Then $A \upharpoonright a$ is a MP-formula.

Let a be an element of \mathcal{C}. The functor $\operatorname{Arity}(a)$ yielding a natural number is defined by:
(Def.7) $\quad \operatorname{Arity}(a)=a_{1}$.
Let D be a non-empty set, and let T, T_{1} be trees decorated by D, and let p be a finite sequence of elements of \mathbb{N}. Let us assume that $p \in \operatorname{dom} T$. The functor $T\left(p \leftarrow T_{1}\right)$ yields a tree decorated by D and is defined by:
(Def.8) $\quad T\left(p \leftarrow T_{1}\right)=T\left(p / T_{1}\right)$.
The following propositions are true:
(32) (The elementary tree of $1 \longmapsto\langle 1,0\rangle)(\langle 0\rangle / A)$ is a MP-formula.
(33) (The elementary tree of $1 \longmapsto\langle 1,1\rangle)(\langle 0\rangle / A)$ is a MP-formula.
(34) (The elementary tree of $2 \longmapsto\langle 2,0\rangle)(\langle 0\rangle / A)(\langle 1\rangle / B)$ is a MP-formula.

We now define three new functors. Let us consider A. The functor $\neg A$ yields a MP-formula and is defined as follows:
(Def.9) $\quad \neg A=($ the elementary tree of $1 \longmapsto\langle 1,0\rangle)(\langle 0\rangle / A)$.
The functor $\square A$ yields a MP-formula and is defined as follows:
(Def.10) $\square A=($ the elementary tree of $1 \longmapsto\langle 1,1\rangle)(\langle 0\rangle / A)$.
Let us consider B. The functor $A \wedge B$ yielding a MP-formula is defined as follows:
(Def.11) $\quad A \wedge B=($ the elementary tree of $2 \longmapsto\langle 2,0\rangle)(\langle 0\rangle / A)(\langle 1\rangle / B)$.
We now define three new functors. Let us consider A. The functor ΔA yields a MP-formula and is defined as follows:
(Def.12) $\diamond A=\neg \square \neg A$.
Let us consider B. The functor $A \vee B$ yields a MP-formula and is defined as follows:
(Def.13) $\quad A \vee B=\neg(\neg A \wedge \neg B)$.
The functor $A \Rightarrow B$ yields a MP-formula and is defined by:
(Def.14) $\quad A \Rightarrow B=\neg(A \wedge \neg B)$.
The following propositions are true:
(35) The elementary tree of $0 \longmapsto\langle 3, n\rangle$ is a MP-formula.
(36) The elementary tree of $0 \longmapsto\langle 0,0\rangle$ is a MP-formula.

Let us consider p. The functor ${ }^{@} p$ yields a MP-formula and is defined by:
(Def.15) $\quad{ }^{@} p=$ the elementary tree of $0 \longmapsto p$.
We now state four propositions:
(37) If ${ }^{@} p={ }^{@} q$, then $p=q$.
(38) If $\neg A=\neg B$, then $A=B$.
(39) If $\square A=\square B$, then $A=B$.
(40) If $A \wedge B=A_{1} \wedge B_{1}$, then $A=A_{1}$ and $B=B_{1}$.

The MP-formula VERUM is defined by:
(Def.16) \quad VERUM $=$ the elementary tree of $0 \longmapsto\langle 0,0\rangle$.
Next we state several propositions:
(41) \quad card $\operatorname{dom} A \neq 0$.
(42) If card $\operatorname{dom} A=1$, then $A=$ VERUM or there exists p such that $A={ }^{@} p$.
(43) If card dom $A \geq 2$, then there exists B such that $A=\neg B$ or $A=\square B$ or there exist B, C such that $A=B \wedge C$.
(45) card $\operatorname{dom} A<$ card dom $\square A$
card $\operatorname{dom} A<\operatorname{card} \operatorname{dom}(A \wedge B)$ and card $\operatorname{dom} B<\operatorname{card} \operatorname{dom}(A \wedge B)$.

We now define four new attributes. A MP-formula is atomic if:
(Def.17) there exists p such that it $={ }^{@} p$.
A MP-formula is negative if:
(Def.18) there exists A such that it $=\neg A$.
A MP-formula is necessitive if:
(Def.19) there exists A such that it $=\square A$.
A MP-formula is conjunctive if:
(Def.20) there exist A, B such that it $=A \wedge B$.
The scheme MP_Ind deals with a unary predicate \mathcal{P}, and states that:
for every element A of WFF holds $\mathcal{P}[A]$
provided the parameter satisfies the following conditions:

- $\mathcal{P}[$ VERUM $]$,
- for every variable p holds $\mathcal{P}\left[{ }^{@} p\right]$,
- for every element A of WFF such that $\mathcal{P}[A]$ holds $\mathcal{P}[\neg A]$,
- for every element A of WFF such that $\mathcal{P}[A]$ holds $\mathcal{P}[\square A]$,
- for all elements A, B of WFF such that $\mathcal{P}[A]$ and $\mathcal{P}[B]$ holds $\mathcal{P}[A \wedge B]$.
The following propositions are true:
(47) For every element A of WFF holds $A=$ VERUM or A is a MP-formula or A is a MP-formula or A is a MP-formula or A is a MP-formula.
(48) $\quad A=$ VERUM or there exists p such that $A={ }^{@} p$ or there exists B such that $A=\neg B$ or there exists B such that $A=\square B$ or there exist B, C such that $A=B \wedge C$.

$$
\begin{align*}
& { }^{@} p \neq \neg A \text { and }{ }^{@} p \neq \square A \text { and }{ }^{@} p \neq A \wedge B . \tag{49}\\
& \neg A \neq \square B \text { and } \neg A \neq B \wedge C . \tag{50}\\
& \square A \neq B \wedge C . \tag{51}
\end{align*}
$$

(52) \quad VERUM $\neq{ }^{@} p$ and VERUM $\neq \neg A$ and VERUM $\neq \square A$ and VERUM \neq $A \wedge B$.
The scheme $M P_{-} F u n c_{-} E x$ deals with a non-empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, a unary functor \mathcal{F} yielding an element of \mathcal{A}, a unary functor \mathcal{G} yielding an element of \mathcal{A}, a unary functor \mathcal{H} yielding an element of \mathcal{A}, and a binary functor \mathcal{I} yielding an element of \mathcal{A} and states that:
there exists a function f from WFF into \mathcal{A} such that $f($ VERUM $)=\mathcal{B}$ and for every variable p holds $f\left({ }^{@} p\right)=\mathcal{F}(p)$ and for every element A of WFF and for every element d of \mathcal{A} such that $f(A)=d$ holds $f(\neg A)=\mathcal{G}(d)$ and for every element A of WFF and for every element d of \mathcal{A} such that $f(A)=d$ holds $f(\square A)=\mathcal{H}(d)$ and for all elements A, B of WFF and for all elements d_{1}, d_{2} of \mathcal{A} such that $d_{1}=f(A)$ and $d_{2}=f(B)$ holds $f(A \wedge B)=\mathcal{I}\left(d_{1}, d_{2}\right)$ for all values of the parameters.

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.
[4] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397-402, 1991.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[12] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[13] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[14] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[16] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[17] Wojciech Zielonka. Preliminaries to the Lambek calculus. Formalized Mathematics, 2(3):413-418, 1991.

Received September 30, 1990

