Introduction to Modal Propositional Logic

Alicia de la Cruz Universidad Politecnica de Madrid

 ${\rm MML} \ {\rm Identifier:} \ {\tt MODAL_1}.$

The terminology and notation used here are introduced in the following papers: [15], [11], [2], [14], [16], [13], [7], [5], [6], [8], [10], [12], [1], [9], [3], [4], and [17]. For simplicity we follow a convention: x, y will be arbitrary, n, m, k will denote natural numbers, t_1 will denote a tree decorated by $[\mathbb{N}, \mathbb{N}$ qua a non-empty set], w, s, t will denote finite sequences of elements of \mathbb{N}, X will denote a set, and D will denote a non-empty set. Next we state the proposition

(1) If X is finite, then card X = 2 if and only if there exist x, y such that $X = \{x, y\}$ and $x \neq y$.

Let Z be a tree. The root of Z yields an element of Z and is defined as follows:

(Def.1) the root of $Z = \varepsilon$.

Let us consider D, and let T be a tree decorated by D. The root of T yields an element of D and is defined by:

(Def.2) the root of T = T (the root of dom T).

Next we state a number of propositions:

- (2) $\langle n \rangle = \langle m \rangle$ if and only if n = m.
- (3) If $n \neq m$, then $\langle n \rangle$ and $\langle m \rangle \cap s$ are not comparable.
- (4) For every s such that $s \neq \varepsilon$ there exist w, n such that $s = \langle n \rangle \cap w$.
- (5) If $n \neq m$, then $\langle n \rangle \not\prec \langle m \rangle \uparrow s$.
- (6) If $n \neq m$, then $\langle n \rangle \not\preceq \langle m \rangle \uparrow s$.
- (7) $\langle n \rangle \not\prec \langle m \rangle$.
- (8) If $w \neq \varepsilon$, then $s \prec s \cap w$.
- (9) The elementary tree of $1 = \{\varepsilon, \langle 0 \rangle\}$.
- (10) The elementary tree of $2 = \{\varepsilon, \langle 0 \rangle, \langle 1 \rangle\}.$
- (11) For every tree Z and for all n, m such that $n \leq m$ and $\langle m \rangle \in Z$ holds $\langle n \rangle \in Z$.

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

- (12) If $w \cap t \prec w \cap s$, then $t \prec s$.
- (13) $t_1 \in \mathbb{N}^* \rightarrow [:\mathbb{N}, \mathbb{N}$ qua a non-empty set].
- (14) For all trees Z, Z_1 and for every element z of Z holds $z \in Z(z/Z_1)$.
- (15) For all trees Z, Z_1, Z_2 and for every element z of Z such that $Z(z/Z_1) = Z(z/Z_2)$ holds $Z_1 = Z_2$.
- (16) For all trees Z, Z_1, Z_2 decorated by D and for every element z of dom Z such that $Z(z/Z_1) = Z(z/Z_2)$ holds $Z_1 = Z_2$.
- (17) For all trees Z_1 , Z_2 and for every finite sequence p of elements of \mathbb{N} such that $p \in Z_1$ for every element v of $Z_1(p/Z_2)$ and for every element w of Z_1 such that v = w and $w \prec p$ holds succ $v = \operatorname{succ} w$.
- (18) For all trees Z_1 , Z_2 and for every finite sequence p of elements of \mathbb{N} such that $p \in Z_1$ for every element v of $Z_1(p/Z_2)$ and for every element w of Z_1 such that v = w and p and w are not comparable holds succ $v = \operatorname{succ} w$.
- (19) For all trees Z_1 , Z_2 and for every finite sequence p of elements of \mathbb{N} such that $p \in Z_1$ for every element v of $Z_1(p/Z_2)$ and for every element w of Z_2 such that $v = p \cap w$ holds succ $v \approx \text{succ } w$.
- (20) For every tree Z_1 and for every finite sequence p of elements of \mathbb{N} such that $p \in Z_1$ for every element v of Z_1 and for every element w of $Z_1 \upharpoonright p$ such that $v = p \cap w$ holds succ $v \approx \operatorname{succ} w$.
- (21) For every tree Z and for every element p of Z such that Z is finite holds succ p is finite.
- (22) For every tree Z such that Z is finite and the branch degree of the root of Z = 0 holds card Z = 1 and $Z = \{\varepsilon\}$.
- (23) For every tree Z such that Z is finite and the branch degree of the root of Z = 1 holds succ(the root of $Z) = \{\langle 0 \rangle\}.$
- (24) For every tree Z such that Z is finite and the branch degree of the root of Z = 2 holds succ(the root of $Z) = \{\langle 0 \rangle, \langle 1 \rangle\}.$

In the sequel s', w' will be elements of \mathbb{N}^* . One can prove the following propositions:

- (25) For every tree Z and for every element o of Z such that $o \neq$ the root of Z holds $Z \upharpoonright o \approx \{o^{\circ}s' : o^{\circ}s' \in Z\}$ and the root of $Z \notin \{o^{\circ}w' : o^{\circ}w' \in Z\}$.
- (26) For every tree Z and for every element o of Z such that $o \neq$ the root of Z and Z is finite holds $\operatorname{card}(Z \upharpoonright o) < \operatorname{card} Z$.
- (27) For every tree Z and for every element z of Z such that succ(the root of Z) = {z} and Z is finite holds Z = (the elementary tree of 1)($\langle 0 \rangle / (Z \upharpoonright z)$).
- (28) For every tree Z decorated by D and for every element z of dom Z such that succ(the root of dom Z) = $\{z\}$ and dom Z is finite holds Z = (the elementary tree of $1 \mapsto$ the root of $Z)(\langle 0 \rangle/(Z \upharpoonright z)).$
- (29) For every tree Z and for all elements x_1 , x_2 of Z such that Z is finite and $x_1 = \langle 0 \rangle$ and $x_2 = \langle 1 \rangle$ and succ(the root of Z) = $\{x_1, x_2\}$ holds $Z = (\text{the elementary tree of } 2)(\langle 0 \rangle / (Z \upharpoonright x_1))(\langle 1 \rangle / (Z \upharpoonright x_2)).$

(30) Let Z be a tree decorated by D. Then for all elements x_1, x_2 of dom Z such that dom Z is finite and $x_1 = \langle 0 \rangle$ and $x_2 = \langle 1 \rangle$ and succ(the root of dom Z) = $\{x_1, x_2\}$ holds Z = (the elementary tree of 2 \mapsto the root of Z)($\langle 0 \rangle / (Z \upharpoonright x_1)$)($\langle 1 \rangle / (Z \upharpoonright x_2)$).

The non-empty set \mathcal{V} is defined by:

(Def.3)
$$\mathcal{V} = [: \{3\}, \mathbb{N}].$$

A variable is an element of \mathcal{V} .

The non-empty set \mathcal{C} is defined as follows:

(Def.4) $C = [\{0, 1, 2\}, \mathbb{N}].$

A conective is an element of \mathcal{C} .

One can prove the following proposition

 $(31) \quad \mathcal{C} \cap \mathcal{V} = \emptyset.$

In the sequel p, q denote variables. Let T be a tree, and let v be an element of T. Then the branch degree of v is a natural number.

Let D be a non-empty set. A non-empty set is called a non-empty set of trees decorated by D if:

(Def.5) for every x such that $x \in it$ holds x is a tree decorated by D.

Let D_0 be a non-empty set, and let D be a non-empty set of trees decorated by D_0 . We see that the element of D is a tree decorated by D_0 .

The non-empty set WFF of trees decorated by $[\mathbb{N}, \mathbb{N}$ qua a non-empty set] is defined by the condition (Def.6).

- (Def.6) Let x be a tree decorated by $[\mathbb{N}, \mathbb{N}$ qua a non-empty set]. Then $x \in WFF$ if and only if the following conditions are satisfied:
 - (i) $\operatorname{dom} x$ is finite,
 - (ii) for every element v of dom x holds the branch degree of $v \leq 2$ but if the branch degree of v = 0, then $x(v) = \langle 0, 0 \rangle$ or there exists k such that $x(v) = \langle 3, k \rangle$ but if the branch degree of v = 1, then $x(v) = \langle 1, 0 \rangle$ or $x(v) = \langle 1, 1 \rangle$ but if the branch degree of v = 2, then $x(v) = \langle 2, 0 \rangle$.

A MP-formula is an element of WFF.

In the sequel A, A_1 , B, B_1 , C denote MP-formulae. Let us consider A, and let a be an element of dom A. Then $A \upharpoonright a$ is a MP-formula.

Let a be an element of C. The functor $\operatorname{Arity}(a)$ yielding a natural number is defined by:

(Def.7) Arity $(a) = a_1$.

Let D be a non-empty set, and let T, T_1 be trees decorated by D, and let p be a finite sequence of elements of N. Let us assume that $p \in \text{dom } T$. The functor $T(p \leftarrow T_1)$ yields a tree decorated by D and is defined by:

(Def.8)
$$T(p \leftarrow T_1) = T(p/T_1).$$

The following propositions are true:

(32) (The elementary tree of $1 \mapsto \langle 1, 0 \rangle$)($\langle 0 \rangle / A$) is a MP-formula.

- (33) (The elementary tree of $1 \mapsto \langle 1, 1 \rangle$)($\langle 0 \rangle / A$) is a MP-formula.
- (34) (The elementary tree of $2 \mapsto \langle 2, 0 \rangle$) $(\langle 0 \rangle / A)(\langle 1 \rangle / B)$ is a MP-formula. We now define three new functors. Let us consider A. The functor $\neg A$ yields

a MP-formula and is defined as follows:

(Def.9) $\neg A = ($ the elementary tree of $1 \longmapsto \langle 1, 0 \rangle)(\langle 0 \rangle / A).$

The functor $\Box A$ yields a MP-formula and is defined as follows:

(Def.10) $\Box A = ($ the elementary tree of $1 \longmapsto \langle 1, 1 \rangle)(\langle 0 \rangle / A).$

Let us consider B. The functor $A \wedge B$ yielding a MP-formula is defined as follows:

(Def.11) $A \wedge B = ($ the elementary tree of $2 \longmapsto \langle 2, 0 \rangle) (\langle 0 \rangle / A) (\langle 1 \rangle / B).$

We now define three new functors. Let us consider A. The functor $\Diamond A$ yields a MP-formula and is defined as follows:

 $(\text{Def.12}) \quad \Diamond A = \neg \Box \neg A.$

Let us consider B. The functor $A \lor B$ yields a MP-formula and is defined as follows:

(Def.13) $A \lor B = \neg(\neg A \land \neg B).$

The functor $A \Rightarrow B$ yields a MP-formula and is defined by:

(Def.14) $A \Rightarrow B = \neg (A \land \neg B).$

The following propositions are true:

- (35) The elementary tree of $0 \mapsto \langle 3, n \rangle$ is a MP-formula.
- (36) The elementary tree of $0 \mapsto \langle 0, 0 \rangle$ is a MP-formula.

Let us consider p. The functor ^{@p} yields a MP-formula and is defined by:

(Def.15) ^(a)p = the elementary tree of $0 \mapsto p$.

We now state four propositions:

- (37) If ${}^{@}p = {}^{@}q$, then p = q.
- (38) If $\neg A = \neg B$, then A = B.
- (39) If $\Box A = \Box B$, then A = B.
- (40) If $A \wedge B = A_1 \wedge B_1$, then $A = A_1$ and $B = B_1$.

The MP-formula VERUM is defined by:

(Def.16) VERUM = the elementary tree of $0 \mapsto \langle 0, 0 \rangle$.

Next we state several propositions:

- (41) card dom $A \neq 0$.
- (42) If card dom A = 1, then A = VERUM or there exists p such that $A = {}^{\textcircled{0}}p$.
- (43) If card dom $A \ge 2$, then there exists B such that $A = \neg B$ or $A = \Box B$ or there exist B, C such that $A = B \land C$.
- (44) card dom A <card dom $\neg A$.
- (45) card dom A <card dom $\Box A$.
- (46) card dom A <card dom $(A \land B)$ and card dom B <card dom $(A \land B)$.

We now define four new attributes. A MP-formula is atomic if:

(Def.17) there exists p such that it = [@]p.

- A MP-formula is negative if:
- (Def.18) there exists A such that it $= \neg A$.

A MP-formula is necessitive if:

(Def.19) there exists A such that it = $\Box A$.

A MP-formula is conjunctive if:

(Def.20) there exist A, B such that it $= A \wedge B$.

The scheme *MP_Ind* deals with a unary predicate \mathcal{P} , and states that: for every element A of WFF holds $\mathcal{P}[A]$

provided the parameter satisfies the following conditions:

- $\mathcal{P}[\text{VERUM}],$
- for every variable p holds $\mathcal{P}[@p]$,
- for every element A of WFF such that $\mathcal{P}[A]$ holds $\mathcal{P}[\neg A]$,
- for every element A of WFF such that $\mathcal{P}[A]$ holds $\mathcal{P}[\Box A]$,
- for all elements A, B of WFF such that $\mathcal{P}[A]$ and $\mathcal{P}[B]$ holds $\mathcal{P}[A \wedge B]$.

The following propositions are true:

- (47) For every element A of WFF holds A = VERUM or A is a MP-formula or A is a MP-formula or A is a MP-formula or A is a MP-formula.
- (48) A = VERUM or there exists p such that $A = {}^{\textcircled{a}}p$ or there exists B such that $A = \neg B$ or there exists B such that $A = \square B$ or there exist B, C such that $A = B \land C$.
- (49) ^(a) $p \neq \neg A$ and ^(a) $p \neq \Box A$ and ^(a) $p \neq A \land B$.
- (50) $\neg A \neq \Box B$ and $\neg A \neq B \land C$.
- (51) $\Box A \neq B \wedge C.$
- (52) VERUM $\neq {}^{\textcircled{0}}p$ and VERUM $\neq \neg A$ and VERUM $\neq \Box A$ and VERUM $\neq A \land B$.

The scheme MP_Func_Ex deals with a non-empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a unary functor \mathcal{F} yielding an element of \mathcal{A} , a unary functor \mathcal{G} yielding an element of \mathcal{A} , a unary functor \mathcal{H} yielding an element of \mathcal{A} , and a binary functor \mathcal{I} yielding an element of \mathcal{A} and states that:

there exists a function f from WFF into \mathcal{A} such that $f(\text{VERUM}) = \mathcal{B}$ and for every variable p holds $f({}^{\textcircled{m}}p) = \mathcal{F}(p)$ and for every element A of WFF and for every element d of \mathcal{A} such that f(A) = d holds $f(\neg A) = \mathcal{G}(d)$ and for every element A of WFF and for every element d of \mathcal{A} such that f(A) = d holds $f(\Box A) = \mathcal{H}(d)$ and for all elements A, B of WFF and for all elements d_1, d_2 of \mathcal{A} such that $d_1 = f(A)$ and $d_2 = f(B)$ holds $f(A \land B) = \mathcal{I}(d_1, d_2)$ for all values of the parameters.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.

- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41–46, 1990.
- [3] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421–427, 1990.
- [4] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397–402, 1991.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [12] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [13] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [14] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [16] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [17] Wojciech Zielonka. Preliminaries to the Lambek calculus. Formalized Mathematics, 2(3):413–418, 1991.

Received September 30, 1990